首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The coupling of chromosome conformation capture (3C) with next-generation sequencing technologies enables the high-throughput detection of long-range genomic interactions, via the generation of ligation products between DNA sequences, which are closely juxtaposed in vivo. These interactions involve promoter regions, enhancers and other regulatory and structural elements of chromosomes and can reveal key details of the regulation of gene expression. 3C-seq is a variant of the method for the detection of interactions between one chosen genomic element (viewpoint) and the rest of the genome. We present r3Cseq, an R/Bioconductor package designed to perform 3C-seq data analysis in a number of different experimental designs. The package reads a common aligned read input format, provides data normalization, allows the visualization of candidate interaction regions and detects statistically significant chromatin interactions, thus greatly facilitating hypothesis generation and the interpretation of experimental results. We further demonstrate its use on a series of real-world applications.  相似文献   

3.
4.
Structural conversion of the presynaptic, intrinsically disordered protein α-synuclein into amyloid fibrils underlies neurotoxicity in Parkinson’s disease. The detailed mechanism by which this conversion occurs is largely unknown. Here, we identify a discrete pattern of transient tertiary interactions in monomeric α-synuclein involving amino acid residues that are, in the fibrillar state, part of β-strands. Importantly, this pattern of pairwise interactions does not correspond to that found in the amyloid state. A redistribution of this network of fibril-like contacts must precede aggregation into the amyloid structure.  相似文献   

5.
6.
7.
8.
9.
Many enhancers regulate their target genes via long-distance interactions. High-throughput experiments like ChIA-PET have been developed to map such largely cell-type-specific interactions between cis-regulatory elements genome-widely. In this study, we integrated multiple types of data in order to reveal the general hidden patterns embedded in the ChIA-PET data. We found characteristic distance features related to promoter–promoter, enhancer–enhancer and insulator–insulator interactions. Although a protein may have many binding sites along the genome, our hypothesis is that those sites that share certain open chromatin structure can accommodate relatively larger protein complex consisting of specific regulatory and ‘bridging’ factors, and may be more likely to form robust long-range deoxyribonucleic acid (DNA) loops. This hypothesis was validated in the estrogen receptor alpha (ERα) ChIA-PET data. An efficient classifier was built to predict ERα-associated long-range interactions solely from the related ChIP-seq data, hence linking distal ERα-dependent enhancers to their target genes. We further applied the classifier to generate additional novel interactions, which were undetected in the original ChIA-PET paper but were validated by other independent experiments. Our work provides a new insight into the long-range chromatin interactions through deeper and integrative ChIA-PET data analysis and demonstrates DNA looping predictability from ordinary ChIP-seq data.  相似文献   

10.
Inflammation can influence multipotency and self-renewal of mesenchymal stem cells (MSCs), resulting in their awakened bone-regeneration ability. Human periodontal ligament tissue-derived MSCs (PDLSCs) have been isolated, and their differentiation potential was found to be defective due to β-catenin signaling indirectly regulated by inflammatory microenvironments. Nuclear factor-κB (NF-κB) is well studied in inflammation by many different groups. The role of NF-κB needs to be studied in PDLSCs, although genetic evidences have recently shown that NF-κB inhibits osteoblastic bone formation in mice. However, the mechanism as to how inflammation leads to the modulation of β-catenin and NF-κB signaling remains unclear. In this study, we investigated β-catenin and NF-κB signaling through regulation of glycogen synthase kinase 3β activity (GSK-3β, which modulates β-catenin and NF-κB signaling) using a specific inhibitor LiCl and a phosphatidylinositol 3-kinase (PI3K) inhibitor LY 294002. We identified that NF-κB signaling might be more important for the regulation of osteogenesis in PDLSCs from periodontitis compared with β-catenin. BAY 11-7082 (an inhibitor of NF-κB) could inhibit phosphorylation of p65 and partly rescue the differentiation potential of PDLSCs in inflammation. Our data indicate that NF-κB has a central role in regulating osteogenic differentiation of PDLSCs in inflammatory microenvironments. Given the molecular mechanisms of NF-κB in osteogenic differentiation governed by inflammation, it can be said that NF-κB helps in improving stem cell-mediated inflammatory bone disease therapy.  相似文献   

11.

Background/Aim

The human intestinal microbiota plays an important role in modulation of mucosal immune responses. To study interactions between intestinal epithelial cells (IECs) and commensal bacteria, a functional metagenomic approach was developed. One interest of metagenomics is to provide access to genomes of uncultured microbes. We aimed at identifying bacterial genes involved in regulation of NF-κB signaling in IECs. A high throughput cell-based screening assay allowing rapid detection of NF-κB modulation in IECs was established using the reporter-gene strategy to screen metagenomic libraries issued from the human intestinal microbiota.

Methods

A plasmid containing the secreted alkaline phosphatase (SEAP) gene under the control of NF-κB binding elements was stably transfected in HT-29 cells. The reporter clone HT-29/kb-seap-25 was selected and characterized. Then, a first screening of a metagenomic library from Crohn''s disease patients was performed to identify NF-κB modulating clones. Furthermore, genes potentially involved in the effect of one stimulatory metagenomic clone were determined by sequence analysis associated to mutagenesis by transposition.

Results

The two proinflammatory cytokines, TNF-α and IL-1β, were able to activate the reporter system, translating the activation of the NF-κB signaling pathway and NF-κB inhibitors, BAY 11-7082, caffeic acid phenethyl ester and MG132 were efficient. A screening of 2640 metagenomic clones led to the identification of 171 modulating clones. Among them, one stimulatory metagenomic clone, 52B7, was further characterized. Sequence analysis revealed that its metagenomic DNA insert might belong to a new Bacteroides strain and we identified 2 loci encoding an ABC transport system and a putative lipoprotein potentially involved in 52B7 effect on NF-κB.

Conclusions

We have established a robust high throughput screening assay for metagenomic libraries derived from the human intestinal microbiota to study bacteria-driven NF-κB regulation. This opens a strategic path toward the identification of bacterial strains and molecular patterns presenting a potential therapeutic interest.  相似文献   

12.
MicroRNAs have been shown to contribute to a repertoire of host-pathogen interactions during viral infection. Our previous study demonstrated that microRNA-30e* (miR-30e*) directly targeted the IκBα 3′-UTR and disrupted the NF-κB/IκBα negative feedback loop, leading to hyperactivation of NF-κB. This current study investigated the possible role of miR-30e* in the regulation of innate immunity associated with dengue virus (DENV) infection. We found that DENV infection could induce miR-30e* expression in DENV-permissive cells, and such an overexpression of miR-30e* upregulated IFN-β and the downstream IFN-stimulated genes (ISGs) such as OAS1, MxA and IFITM1, and suppressed DENV replication. Furthermore, suppression of IκBα mediates the enhancing effect of miR-30e* on IFN-β-induced antiviral response. Collectively, our findings suggest a modulatory role of miR-30e* in DENV induced IFN-β signaling via the NF-κB-dependent pathway. Further investigation is needed to evaluate whether miR-30e* has an anti-DENV effect in vivo.  相似文献   

13.
With more than 150,000 species, parasitoids are a large group of hymenopteran insects that inject venom into and then lay their eggs in or on other insects, eventually killing the hosts. Their venoms have evolved into different mechanisms for manipulating host immunity, physiology and behavior in such a way that enhance development of the parasitoid young. The venom from the ectoparasitoid Nasonia vitripennis inhibits the immune system in its host organism in order to protect their offspring from elimination. Since the major innate immune pathways in insects, the Toll and Imd pathways, are homologous to the NF-κB pathway in mammals, we were interested in whether a similar immune suppression seen in insects could be elicited in a mammalian cell system. A well characterized NF-κB reporter gene assay in fibrosarcoma cells showed a dose-dependent inhibition of NF-κB signaling caused by the venom. In line with this NF-κB inhibitory action, N. vitripennis venom dampened the expression of IL-6, a prototypical proinflammatory cytokine, from LPS-treated macrophages. The venom also inhibited the expression of two NF-κB target genes, IκBα and A20, that act in a negative feedback loop to prevent excessive NF-κB activity. Surprisingly, we did not detect any effect of the venom on the early events in the canonical NF-κB activation pathway, leading to NF-κB nuclear translocation, which was unaltered in venom-treated cells. The MAP kinases ERK, p38 and JNK are other crucial regulators of immune responses. We observed that venom treatment did not affect p38 and ERK activation, but induced a prolonged JNK activation. In summary, our data indicate that venom from N. vitripennis inhibits NF-κB signaling in mammalian cells. We identify venom-induced up regulation of the glucocorticoid receptor-regulated GILZ as a most likely molecular mediator for this inhibition.  相似文献   

14.
15.
16.
17.
18.
19.
Polydnaviruses are mutualists of their parasitoid wasps and express genes in immune cells of their Lepidopteran hosts. Polydnaviral genomes carry multiple copies of viral ankyrins or vankyrins. Vankyrin proteins are homologous to IκB proteins, but lack sequences for regulated degradation. We tested if Ichnoviral Vankyrins differentially impede Toll-NF-κB-dependent hematopoietic and immune signaling in a heterologous in vivo Drosophila, system. We first show that hematopoiesis and the cellular encapsulation response against parasitoid wasps are tightly-linked via NF-κB signaling. The niche, which neighbors the larval hematopoietic progenitors, responds to parasite infection. Drosophila NF-κB proteins are expressed in the niche, and non cell-autonomously influence fate choice in basal and parasite-activated hematopoiesis. These effects are blocked by the Vankyrin I2-vank-3, but not by P-vank-1, as is the expression of a NF-κB target transgene. I2-vank-3 and P-vank-1 differentially obstruct cellular and humoral inflammation. Additionally, their maternal expression weakens ventral embryonic patterning. We propose that selective perturbation of NF-κB-IκB interactions in natural hosts of parasitic wasps negatively impacts the outcome of hematopoietic and immune signaling and this immune deficit contributes to parasite survival and species success in nature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号