首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Radiation damage incurred by nuclear DNA is well documented and interest is increasing in the properties of 'bystander' factor(s) and their ability to induce radiation-like damage in cells never exposed to radiation. 'Bystander' and direct low-LET radiation effects on the mitochondria, and more particularly the mitochondrial genome are less well understood. In this study HPV-G cells (a human keratinocyte cell line derived from human neonatal foreskin transfected with the HPV-16 virus) were exposed to either gamma-radiation doses as low as 5 mGy and up to 5 Gy from a 60Co teletherapy unit, or to growth medium taken from similarly irradiated cells, i.e. irradiated cell conditioned medium (ICCM). Mutation and deletion analysis was performed on mitochondrial DNA (mtDNA) 4-96 h after exposure. Primers flanking the so-called mitochondrial 'common deletion' were employed to assess its possible induction. Single-strand conformation polymorphism (SSCP) analysis was conducted to identify induced point mutations. The relative mitochondrial number per cell was analysed by semi-quantitative PCR (sqPCR). Results indicate the induction of a relatively novel deletion in the mitochondrial genome as early as 12 h after direct exposure to doses as low as 0.5 Gy and 24 h after exposure to 0.5-Gy ICCM. SSCP analysis identified the induction of point mutations, in a non-consistent manner, in only the D-loop region of the mitochondrial genome and only in cells exposed to 5 Gy, and neither in cells exposed to lower doses of direct radiation nor in those exposed to ICCM. SqPCR also identified an increase in the number of mitochondria per cell after both exposure to low level gamma-radiation and ICCM, indicative of a possible mechanism to respond to mitochondrial stress by increasing the number of mitochondria per cell.  相似文献   

2.
Mitochondrial DNA (mtDNA) deletion mutations accumulate with age in tissues of a variety of species. Although the relatively low calculated abundance of these deletion mutations in whole tissue homogenates led some investigators to suggest that these mutations do not have any physiological impact, their focal and segmental accumulation suggests that they can, and do, accumulate to levels sufficient to affect the metabolism of a tissue. This phenomenon is most clearly demonstrated in skeletal muscle, where the accumulation of mtDNA deletion mutations remove critical subunits that encode for the electron transport system (ETS). In this review, we detail and provide evidence for a molecular basis of muscle fiber loss with age. Our data suggest that the mtDNA deletion mutations, which are generated in tissues with age, cause muscle fiber loss. Within a fiber, the process begins with a mtDNA replication error, an error that results in a loss of 25-80% of the mitochondrial genome. This smaller genome is replicated and, through a process not well understood, eventually comprises the majority of mtDNA within the small affected region of the muscle fiber. The preponderance of the smaller genomes results in a dysfunctional ETS in the affected area. As a consequence of both the decline in energy production and the increase in oxidative damage in the region, the fiber is no longer capable of self-maintenance, resulting in the observed intrafiber atrophy and fiber breakage. We are therefore proposing that a process contained within a very small region of a muscle fiber can result in breakage and loss of muscle fiber from the tissue.  相似文献   

3.
We investigated the presence and potential role of mitochondrial DNA (mtDNA) deletion mutations in adult cardiac stem cells. Cardiac side population (SP) cells were isolated from 12-week-old mice. Standard polymerase chain reaction (PCR) was used to screen for the presence of mtDNA deletion mutations in (a) freshly isolated SP cells and (b) SP cells cultured to passage 10. When present, the abundance of mtDNA deletion mutation was analyzed in single cell colonies. The effect of different levels of deletion mutations on SP cell growth and differentiation was determined. MtDNA deletion mutations were found in both freshly isolated and cultured cells from 12-week-old mice. While there was no significant difference in the number of single cell colonies with mtDNA deletion mutations from any of the groups mentioned above, the abundance of mtDNA deletion mutations was significantly higher in the cultured cells, as determined by quantitative PCR. Within a single clonal cell population, the detectable mtDNA deletion mutations were the same in all cells and unique when compared to deletions of other colonies. We also found that cells harboring high levels of mtDNA deletion mutations (i.e. where deleted mtDNA comprised more than 60% of total mtDNA) had slower proliferation rates and decreased differentiation capacities. Screening cultured adult stem cells for mtDNA deletion mutations as a routine assessment will benefit the biomedical application of adult stem cells.  相似文献   

4.
The age-related accumulation of mitochondrial DNA mutations has the potential to impair organ function and contribute to disease. In support of this hypothesis, accelerated mitochondrial mutagenesis is pathogenic in the mouse heart, and there is an increase in myocyte apoptosis. The current study sought to identify functional alterations in cell death signaling via mitochondria. Of particular interest is the mitochondrial permeability transition pore, opening of which can initiate cell death, while pore inhibition is protective. Here, we show that mitochondria from transgenic mice that develop mitochondrial DNA mutations have a marked inhibition of calcium-induced pore opening. Temporally, inhibited pore opening coincides with disease. Pore inhibition also correlates with an increase in Bcl-2 protein integrated into the mitochondrial membrane. We hypothesized that pore inhibition was mediated by mitochondrial Bcl-2. To test this hypothesis, we treated isolated mitochondria with Bcl-2 antagonistic peptides (derived from the BH3 domain of Bax or Bid). These peptides released the inhibition to pore opening. The data are consistent with a Bcl-2-mediated inhibition of pore opening. Thus, mitochondrial DNA mutations induce an adaptive-protective response in the heart that inhibits opening of the mitochondrial permeability pore.  相似文献   

5.
The mechanism by which we age has sparked a huge number of theories, and is an area of intense debate. As the elderly population rises, the importance of elucidating these mechanisms is becoming more apparent as age is the single biggest risk factor for a number of diseases such as cancer, diabetes and neurodegenerative disease. Mitochondrial DNA (MtDNA) mutations have been shown to accumulate in cells and tissues during the ageing process; however the question as to whether these mutations have a causal role in the ageing process remains an area of uncertainty. Here we review the current literature, and discuss the evidence for and against a causal role of mtDNA mutations in ageing and in the pathogenesis of age-related disease.  相似文献   

6.
Mitochondrial DNA mutations and neuromuscular disease   总被引:27,自引:0,他引:27  
Mitochondrial DNA mutations have been identified in patients with certain neuromuscular diseases. Point mutations have been associated with maternally inherited diseases, while deletions have been identified in some 'spontaneous' cases.  相似文献   

7.
Infertility can be defined as difficulty in conceiving a child after 1 year of unprotected intercourse. Infertility can arise either because of the male factor or female factor or both. According to the current estimates, 15% of couples attempting their first pregnancy could not succeed. Infertility is either primary or secondary. Mitochondria have profound effect on all biochemical pathways, including the one that drivessperm motility. Sperm motility is heavily dependent on the ATP generated by oxidative phosphorylation in the mitochondrial sheath. In this review, the very positive role of mitochondrial genome's association with infertility is discussed.  相似文献   

8.
Mitochondrial DNA deletion in human myocardium   总被引:4,自引:0,他引:4  
Mutation of myocardial mitochondrial DNA was investigated in human left ventricles obtained at autopsy using the polymerase chain reaction (PCR). Seventeen autopsy cases were examined, including patients with diabetes mellitus, myocardial infarction, cardiomyopathy, cancer, and other diseases. Two cases of diabetes mellitus, 2 of myocardial infarction, and 1 of pulmonary fibrosis showed a 7.4 kb deletion of myocardial mitochondrial DNA. Primer shift PCR confirmed that an amplified DNA fragment had not been obtained by misannealing of the primers. It is unclear how much these findings are related to the severity or prognosis of the various diseases, but they indicate that mutation of myocardial mitochondrial DNA can occur in other diseases besides cardiomyopathy, although the influence of aging could not be excluded.  相似文献   

9.
Breast cancer is a heterogeneous disease and genetic factors play an important role in its genesis. Although mutations in tumor suppressors and oncogenes encoded by the nuclear genome are known to play a critical role in breast tumorigenesis, the contribution of the mitochondrial genome to this process is unclear. Like the nuclear genome, the mitochondrial genome also encodes proteins critical for mitochondrion functions such as oxidative phosphorylation (OXPHOS), which is known to be defective in cancer including breast cancer. Mitochondrial DNA (mtDNA) is more susceptible to mutations due to limited repair mechanisms compared to nuclear DNA (nDNA). Thus changes in mitochondrial genes could also contribute to the development of breast cancer. In this review we discuss mtDNA mutations that affect OXPHOS. Continuous acquisition of mtDNA mutations and selection of advantageous mutations ultimately leads to generation of cells that propagate uncontrollably to form tumors. Since irreversible damage to OXPHOS leads to a shift in energy metabolism towards enhanced aerobic glycolysis in most cancers, mutations in mtDNA represent an early event during breast tumorigenesis, and thus may serve as potential biomarkers for early detection and prognosis of breast cancer. Because mtDNA mutations lead to defective OXPHOS, development of agents that target OXPHOS will provide specificity for preventative and therapeutic agents against breast cancer with minimal toxicity.  相似文献   

10.
Mitochondrial DNA mutations and human disease   总被引:1,自引:0,他引:1  
Helen A.L. Tuppen 《BBA》2010,1797(2):113-109
Mitochondrial disorders are a group of clinically heterogeneous diseases, commonly defined by a lack of cellular energy due to oxidative phosphorylation (OXPHOS) defects. Since the identification of the first human pathological mitochondrial DNA (mtDNA) mutations in 1988, significant efforts have been spent in cataloguing the vast array of causative genetic defects of these disorders. Currently, more than 250 pathogenic mtDNA mutations have been identified. An ever-increasing number of nuclear DNA mutations are also being reported as the majority of proteins involved in mitochondrial metabolism and maintenance are nuclear-encoded. Understanding the phenotypic diversity and elucidating the molecular mechanisms at the basis of these diseases has however proved challenging. Progress has been hampered by the peculiar features of mitochondrial genetics, an inability to manipulate the mitochondrial genome, and difficulties in obtaining suitable models of disease. In this review, we will first outline the unique features of mitochondrial genetics before detailing the diseases and their genetic causes, focusing specifically on primary mtDNA genetic defects. The functional consequences of mtDNA mutations that have been characterised to date will also be discussed, along with current and potential future diagnostic and therapeutic advances.  相似文献   

11.
12.
Endometriosis is a multifactorial gynecological condition characterized by the presence of ectopic endometrial and stromal tissue outside the uterus. Free radicals and Oxidative stress have been proposed to be involved in the pathogenesis of the endometriosis. It has been shown that mitochondrial DNA (mtDNA) is particularly susceptible to oxidative damage and mutations due to the high rate of reactive oxygen species production and limited DNA repair capacity in mitochondria. While a number of deletions can occur, the most commonly studied in human is a 4977-bp deletion that removes all or parts of the genes for NADH dehydrogenase subunits 3, 4, 4L and 5, cytochrome C oxidase subunit III and ATP synthase subunits 6 and 8.” We evaluated whether mtDNA common deletion is related with the susceptibility to endometriosis in northern Iran. In this study 80 endometriosis cases and 100 controls were enrolled. Total DNA was extracted from endometrial tissue samples. The mitochondrial common deletion was determined by Gap- polymerase chain reaction (Gap-PCR). It was found that the mitochondrial common deletion was more likely to be present in patients with endometriosis. Assessing indicate that 60 % of patients and 8 % of controls show mtDNA 4977-bp deletion (Odds Ratio [OR] = 17.25, P < 0.0001, confidence interval [CI] = 5.18–57.36). The mtDNA 4977 deletion may play a role in endometriosis. Further studies with larger numbers of patients are required for further evaluation and confirmation of our finding.  相似文献   

13.
Mitochondrial DNA mutations in disease and aging   总被引:1,自引:0,他引:1  
The small mammalian mitochondrial DNA (mtDNA) is very gene dense and encodes factors critical for oxidative phosphorylation. Mutations of mtDNA cause a variety of human mitochondrial diseases and are also heavily implicated in age-associated disease and aging. There has been considerable progress in our understanding of the role for mtDNA mutations in human pathology during the last two decades, but important mechanisms in mitochondrial genetics remain to be explained at the molecular level. In addition, mounting evidence suggests that most mtDNA mutations may be generated by replication errors and not by accumulated damage.  相似文献   

14.
线粒体DNA突变与相关人类疾病   总被引:1,自引:0,他引:1  
陈刚  杜卫东  曹慧敏 《遗传》2007,29(11):1299-1308
在过去的20年里, 人们发现线粒体DNA(mitochondrial DNA, mtDNA)突变与多种人类疾病相关, 其致病范围从单器官组织损害到多系统受累。文章目的在于探讨mtDNA突变与人类疾病的关系。文章重点论述: (1)线粒体遗传学特征; (2) mtDNA突变与人类遗传性疾病; (3)体细胞mtDNA突变在衰老和肿瘤中的作用; (4)mtDNA疾病的诊断和治疗。  相似文献   

15.
Mitochondrial DNA mutations in human disease   总被引:9,自引:0,他引:9  
The human mitochondrial genome is extremely small compared with the nuclear genome, and mitochondrial genetics presents unique clinical and experimental challenges. Despite the diminutive size of the mitochondrial genome, mitochondrial DNA (mtDNA) mutations are an important cause of inherited disease. Recent years have witnessed considerable progress in understanding basic mitochondrial genetics and the relationship between inherited mutations and disease phenotypes, and in identifying acquired mtDNA mutations in both ageing and cancer. However, many challenges remain, including the prevention and treatment of these diseases. This review explores the advances that have been made and the areas in which future progress is likely.  相似文献   

16.
Many models of tumour formation have been put forth so far. In general they involve mutations in at least three elements within the cell: oncogenes, tumour suppressors and regulators of telomere replication. Recently numerous mutations in mitochondria have been found in many tumours, whereas they were absent in normal tissues from the same individual. The presence of mutations, of course, does not prove that they play a causative role in development of neoplastic lesions and progression; however, the key role played by mitochondria in both apoptosis and generation of DNA-damaging reactive oxygen species might indicate that the observed mutations contribute to tumour development. Recent experiments with nude mice have proven that mtDNA mutations are indeed responsible for tumour growth and exacerbated ROS production. This review describes mtDNA mutations in main types of human neoplasia.  相似文献   

17.
Greaves LC  Taylor RW 《IUBMB life》2006,58(3):143-151
Since their first association with human disease in 1988, more than 250 pathogenic point mutations and rearrangements of the 16.6 kb mitochondrial genome (mtDNA) have been reported in a spectrum of clinical disorders which exhibit prominent muscle and central nervous system involvement. With novel mutations and disease phenotypes still being described, mtDNA disorders are recognized collectively as common, inherited genetic diseases although relatively little is still known concerning the precise pathophysiological mechanisms that lead to cell dysfunction and pathology. This review considers the basic principles of mitochondrial genetics which govern both the behaviour and investigation of pathogenic mtDNA mutations summarizing recent advances in this area, and an assessment of the ongoing debate into the role of somatic mtDNA mutations in neurodegenerative disease, ageing and cancer.  相似文献   

18.
Mutations in a 443-bp amplicon of the hypervariable region HVR1 of the D-loop of mitochondrial DNA (mtDNA) were quantified in DNA extracted from peripheral blood samples of 10 retired radiation workers who had accumulated external radiation doses of >0.9 Sv over the course of their working life and were compared to the levels of mutations in 10 control individuals matched for age and smoking status. The mutation rate in the 10 exposed individuals was 9.92 x 10(-5) mutations/ nucleotide, and for the controls it was 8.65 x 10(-5) mutations/ nucleotide, with a procedural error rate of 2.65 x 10(-5) mutations/nucleotide. No increase in mtDNA mutations due to radiation exposure was detectable (P = 0.640). In contrast, chromosomal translocation frequencies, a validated radiobiological technique for retrospective dosimetric purposes, were significantly elevated in the exposed individuals. This suggests that mutations identified through sequencing of mtDNA in peripheral blood lymphocytes do not represent a promising genetic marker of DNA damage after low-dose or low-dose-rate exposures to ionizing radiation. There was an increase in singleton mutations above that attributable to procedural error in both exposed and control groups that is likely to reflect age-related somatic mutation.  相似文献   

19.
Multiple symmetric lipomatosis (MSL) is a rare disorder of middle life characterized by large subcutaneous fat masses around the neck, shoulders and other parts of the trunk. Peripheral neuropathy is a common finding in these predominantly male patients. Employing electrophysiological measures, we found additional signs of central nervous system involvement in a majority of patients. Etiologically, there is an association with mitochondrial dysfunction. In muscle biopsy, we found ragged red fibers in 8 of 12 patients. Molecular genetic analysis revealed multiple deletions of mitochondrial DNA in one patient and the MERRF mutation at nucleotide 8344 in another. In this review, we summarize our clinical, electrophysiological morphological, biochemical and molecular genetic findings in 17 MSL patients, and give a survey of the literature. (Mol Cell Biochem 174: 271–275, 1997)  相似文献   

20.
High-throughput screening for induced point mutations   总被引:40,自引:0,他引:40  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号