首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Universal bases hybridize with all other natural DNA or RNA bases, and have applications in PCR and sequencing. We have analysed by nuclear magnetic resonance spectroscopy the structure and dynamics of three DNA oligonucleotides containing the universal base analogues 5-nitroindole and 5-nitroindole-3-carboxamide. In all systems studied, both the 5-nitroindole nucleotide and the opposing nucleotide adopt a standard anti conformation and are fully stacked within the DNA duplex. The 5-nitroindole bases do not base pair with the nucleotide opposite them, but intercalate between this base and an adjacent Watson–Crick pair. In spite of their smooth accommodation within the DNA double-helix, the 5-nitroindole-containing duplexes exist as a dynamic mixture of two different stacking configurations exchanging fast on the chemical shift timescale. These configurations depend on the relative intercalating positions of the universal base and the opposing base, and their exchange implies nucleotide opening motions on the millisecond time range. The structure of these nitroindole-containing duplexes explains the mechanism by which these artificial moieties behave as universal bases.  相似文献   

2.
Abasic sites are common DNA lesions resulting from spontaneous depurination and excision of damaged nucleobases by DNA repair enzymes. However, the influence of the local sequence context on the structure of the abasic site and ultimately, its recognition and repair, remains elusive. In the present study, duplex DNAs with three different bases (G, C or T) opposite an abasic site have been synthesized in the same sequence context (5′-CCA AAG6 XA8C CGG G-3′, where X denotes the abasic site) and characterized by 2D NMR spectroscopy. Studies on a duplex DNA with an A opposite the abasic site in the same sequence has recently been reported [Chen,J., Dupradeau,F.-Y., Case,D.A., Turner,C.J. and Stubbe,J. (2007) Nuclear magnetic resonance structural studies and molecular modeling of duplex DNA containing normal and 4′-oxidized abasic sites. Biochemistry, 46, 3096–3107]. Molecular modeling based on NMR-derived distance and dihedral angle restraints and molecular dynamics calculations have been applied to determine structural models and conformational flexibility of each duplex. The results indicate that all four duplexes adopt an overall B-form conformation with each unpaired base stacked between adjacent bases intrahelically. The conformation around the abasic site is more perturbed when the base opposite to the lesion is a pyrimidine (C or T) than a purine (G or A). In both the former cases, the neighboring base pairs (G6-C21 and A8-T19) are closer to each other than those in B-form DNA. Molecular dynamics simulations reveal that transient H-bond interactions between the unpaired pyrimidine (C20 or T20) and the base 3′ to the abasic site play an important role in perturbing the local conformation. These results provide structural insight into the dynamics of abasic sites that are intrinsically modulated by the bases opposite the abasic site.  相似文献   

3.
Chemically modified bases are frequently used to stabilize nucleic acids, to study the driving forces for nucleic acid structure formation and to tune DNA and RNA hybridization conditions. In particular, fluorobenzene and fluorobenzimidazole base analogues can act as universal bases able to pair with any natural base and to stabilize RNA duplex formation. Although these base analogues are compatible with an A-form RNA geometry, little is known about the influence on the fine structure and conformational dynamics of RNA. In the present study, nano-second molecular dynamics (MD) simulations have been performed to characterize the dynamics of RNA duplexes containing a central 1'-deoxy-1'-(2,4-difluorophenyl)-beta-D-ribofuranose base pair or opposite to an adenine base. For comparison, RNA with a central uridine:adenine pair and a 1'-deoxy-1'-(phenyl)-beta-D-ribofuranose opposite to an adenine was also investigated. The MD simulations indicate a stable overall A-form geometry for the RNAs with base analogues. However, the presence of the base analogues caused a locally enhanced mobility of the central bases inducing mainly base pair shear and opening motions. No stable 'base-paired' geometry was found for the base analogue pair or the base analogue:adenine pairs, which explains in part the universal base character of these analogues. Instead, the conformational fluctuations of the base analogues lead to an enhanced accessibility of the bases in the major and minor grooves of the helix compared with a regular base pair.  相似文献   

4.
The DNA repair enzyme human uracil DNA glycosylase (UNG) scans short stretches of genomic DNA and captures rare uracil bases as they transiently emerge from the DNA duplex via spontaneous base pair breathing motions. The process of DNA scanning requires that the enzyme transiently loosen its grip on DNA to allow stochastic movement along the DNA contour, while engaging extrahelical bases requires motions on a more rapid timescale. Here, we use NMR dynamic measurements to show that free UNG has no intrinsic dynamic properties in the millisecond to microsecond and subnanosecond time regimes, and that the act of binding to nontarget DNA reshapes the dynamic landscape to allow productive millisecond motions for scanning and damage recognition. These results suggest that DNA structure and the spontaneous dynamics of base pairs may drive the evolution of a protein sequence that is tuned to respond to this dynamic regime.  相似文献   

5.
Deoxyguanosine residues are hydroxylated by reactive oxygen species at the C-8 position to form 8-hydroxy-2'-deoxyguanosine (8-OG), one of the most important mutagenic lesions in DNA. Though the spontaneous G:C to C:G transversions are rare events, the pathways leading to this mutation are not established. An 8-OG:G mispair, if not corrected by DNA repair enzymes, could lead to G:C to C:G transversions. NMR spectroscopy and restrained molecular dynamics calculations are used to refine the solution structure of the base mismatch formed by the 8-OG:G pair on a self complementary DNA dodecamer duplex d(CGCGAATT(8-O)GGCG)(2). The results reveal that the 8-OG base is inserted into the helix and forms Hoogsteen base-pairing with the G on the opposite strand. The 8-OG:G base-pairs are seen to be stabilized by two hydrogen bonding interactions, one between the H7 of the 8-OG and the O6 of the G, and a three-center hydrogen bonding between the O8 of the 8-OG and the imino and amino protons of the G. The 8-OG:G base-pairs are very well stacked between the Watson-Crick base-paired flanking bases. Both strands of the DNA duplex adopt right-handed conformations. All of the unmodified bases, including the G at the lesion site, adopt anti glycosidic torsion angles and form Watson-Crick base-pairs. At the lesion site, the 8-OG residues adopt syn conformations. The structural studies demonstrate that 8-OG(syn):G(anti) forms a stable pair in the interior of the duplex, providing a basis for the in vivo incorporation of G opposite 8-OG. Calculated helical parameters and backbone torsional angles, and the observed 31P chemical shifts, indicate that the structure of the duplex is perturbed near lesion sites, with the local unwinding of the double helix. The melting temperature of the 8-OG:G containing duplex is only 2.6 deg. C less than the t(m) of the unmodified duplex.  相似文献   

6.
Metal-mediated base pairs formed by the interaction between metal ions and artificial bases in oligonucleotides have been developed for potential applications in nanotechnology. We recently found that a natural C:C mismatched base pair bound to an Ag(+) ion to generate a novel metal-mediated base pair in duplex DNA. Preparation of the novel C-Ag-C base pair involving natural bases is more convenient than that of metal-mediated base pairs involving artificial bases because time-consuming base synthesis is not required. Here, we examined the thermodynamic properties of the binding between the Ag(+) ion and each of single and double C:C mismatched base pair in duplex DNA by isothermal titration calorimetry. The Ag(+) ion specifically bound to the C:C mismatched base pair at a 1:1 molar ratio with 10(6) M(-1) binding constant, which was significantly larger than those for nonspecific metal ion-DNA interactions. The specific binding between the Ag(+) ion and the single C:C mismatched base pair was mainly driven by the positive dehydration entropy change and the negative binding enthalpy change. In the interaction between the Ag(+) ion and each of the consecutive and interrupted double C:C mismatched base pairs, stoichiometric binding at a 1:1 molar ratio was achieved in each step of the first and second Ag(+) binding. The binding affinity for the second Ag(+) binding was similar to that for the first Ag(+) binding. Stoichiometric binding without interference and negative cooperativity may be favorable for aligning multiple Ag(+) ions in duplex DNA for applications of the metal-mediated base pairs in nanotechnology.  相似文献   

7.
SURVEY AND SUMMARY: The applications of universal DNA base analogues   总被引:2,自引:2,他引:0  
A universal base analogue forms ‘base pairs’ with each of the natural DNA/RNA bases with little discrimination between them. A number of such analogues have been prepared and their applications as biochemical tools investigated. Most of these analogues are non-hydrogen bonding, hydrophobic, aromatic ‘bases’ which stabilise duplex DNA by stacking interactions. This review of the literature of universal bases (to 2000) details the analogues investigated, and their uses and limitations are discussed.  相似文献   

8.
8‐oxoguanine is a major lesion of genomic DNA that results from oxidation of guanine by reactive oxygen species. The repair of this lesion is initiated by 8‐oxoguanine glycosylases, which excise the damaged base by “flipping” it outside the DNA double helix. The molecular mechanisms involved in the specific recognition of the damaged base by the enzyme are not yet fully understood. Several models have proposed that, in DNA, the base pair between 8‐oxoguanine and cytosine may possess altered dynamic properties that could help the enzyme locate the lesion and could favor the selective extra‐helical flipping of the damaged base. To test this proposal, we have characterized the spontaneous opening of the base pair between 8‐oxoguanine and cytosine in a DNA double helix using NMR spectroscopy and proton exchange. The results show that the rate of spontaneous opening of 8‐oxoguanine and the lifetime of the base in the extra‐helical state are the same as those of a canonical guanine‐cytosine base pair, in the same base sequence context. This finding suggests that the opening dynamics of 8‐oxoguanine, when paired with cytosine in DNA, does not play a significant role in the recognition of the lesion by glycosylases. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Recently, we discovered novel silver(I)-mediated cytosine–cytosine base pair (C–AgI–C) in DNA duplexes. To understand the properties of these base pairs, we searched for a DNA sequence that can be used in NMR structure determination. After extensive sequence optimizations, a non-symmetric 15-base-paired DNA duplex with a single C–AgI–C base pair flanked by 14 A–T base pairs was selected. In spite of its challenging length for NMR measurements (30 independent residues) with small sequence variation, we could assign most non-exchangeable protons (254 out of 270) and imino protons for structure determination.  相似文献   

10.
Genetic information is frequently disturbed by introduction of modified or mismatch bases into duplex DNA, and hence all organisms contain DNA repair systems to restore normal genetic information by removing such damaged bases or nucleotides and replacing them by correct ones. The understanding of this repair mechanism is a central subject in cell biology. This review focuses on the three-dimensional structural views of damaged DNA recognition by three proteins. The first protein is T4 endonuclease V (T4 endo V), which catalyzes the first reaction step of the excision repair pathway to remove pyrimidine-dimers (PD) produced within duplex DNA by UV irradiation. The crystal structure of this enzyme complexed with DNA containing a thymidine-dimer provided the first direct view of DNA lesion recognition by a repair enzyme, indicating that the DNA kink coupled with base flipping-out is important for damaged DNA recognition. The second is very short patch repair (Vsr) endonuclease, which recognizes a TG mismatch within the five base pair consensus sequence. The crystal structure of this enzyme in complex with duplex DNA containing a TG mismatch revealed a novel mismatch base pair recognition scheme, where three aromatic residues intercalate from the major groove into the DNA to strikingly deform the base pair stacking but the base flipping-out does not occur. The third is human nucleotide excision repair (NER) factor XPA, which is a major component of a large protein complex. This protein has been shown to bind preferentially to UV- or chemical carcinogen-damaged DNA. The solution structure of the XPA central domain, essential for the interaction of damaged DNA, was determined by NMR. This domain was found to be divided mainly into a (Cys)4-type zinc-finger motif subdomain for replication protein A (RPA) recognition and the carboxyl terminal subdomain responsible for DNA binding.  相似文献   

11.
The base lesion 8-oxoguanine is formed readily by oxidation of DNA, potentially leading to G → T transversion mutations. Despite the apparent similarity of 8-oxoguanine-cytosine base pairs to normal guanine-cytosine base pairs, cellular base excision repair systems effectively recognize the lesion base. Here we apply several techniques to examine a single 8-oxoguanine lesion at the center of a nonpalindromic 15-mer duplex oligonucleotide in an effort to determine what, if anything, distinguishes an 8-oxoguanine-cytosine (8oxoG-C) base pair from a normal base pair. The lesion duplex is globally almost indistinguishable from the unmodified parent duplex using circular dichroism spectroscopy and ultraviolet melting thermodynamics. The DNA mismatch-detecting photocleavage agent Rh(bpy)(2)chrysi(3+) cleaves only weakly and nonspecifically, revealing that the 8oxoG-C pair is locally stable at the level of the individual base pairs. Nuclear magnetic resonance spectra are also consistent with a well-conserved B-form duplex structure. In the two-dimensional nuclear Overhauser effect spectra, base-sugar and imino-imino cross-peaks are strikingly similar between parent and lesion duplexes. Changes in chemical shift due to the 8oxoG lesion are localized to its complementary cytosine and to the 2-3 bp immediately flanking the lesion on the lesion strand. Residues further removed from the lesion are shown to be unperturbed by its presence. Notably, imino exchange experiments indicate that the 8-oxoguanine-cytosine pair is strong and stable, with an apparent equilibrium constant for opening equal to that of other internal guanine-cytosine base pairs, on the order of 10(-6). This collection of experiments shows that the 8-oxoguanine-cytosine base pair is incredibly stable and similar to the native pair.  相似文献   

12.
We have used high-resolution NMR spectroscopy and molecular dynamics simulations to determine the solution structure of DNA containing the genotoxic lesion 1, N (2)-etheno-2'-deoxyguanosine (epsilonG), paired to dC. The NMR data suggest the presence of a major, minimally perturbed structure at neutral pH. NOESY spectra indicate the presence of a right-handed helix with all nucleotides in anti, 2'-deoxyribose conformations within the C2'-endo/C1'-exo range and proper Watson-Crick base pair alignments outside the lesion site. The epsilonG residue remains deeply embedded inside the helix and stacks between the flanking base pairs. The lesion partner dC is extrahelical and is located in the minor groove of the duplex, where it is highly exposed to solvent. Upon acidification of the sample, a second conformation at the lesion site of the duplex emerges, with protonation of the lesion partner dC and possible formation of a Hoogsteen base pair. Restrained molecular dynamics simulations of the neutral-pH structure generated a set of three-dimensional models that show epsilonG inside the helix, where the lesion is stabilized by stacking interactions with flanking bases but without participating in hydrogen bonding. The lesion counterbase dC is displaced in the minor groove of the duplex where it can form a hydrogen bond with the sugar O4' atom of a residue 2 bp away.  相似文献   

13.
2-Nitropropane (2-NP), an important industrial solvent and a component of cigarette smoke, is mutagenic in bacteria and carcinogenic in rats. 8-Amino-2'-deoxyguanosine (8-amino-dG) is one of the types of DNA damage found in liver, the target organ in 2-NP-treated rats. To investigate the thermodynamic properties of 8-amino-dG opposite each of the four DNA bases, we have synthesized an 11mer, d(CCATCG*CTACC), in which G* represents the modified base. By annealing a complementary DNA strand to this modified 11mer, four sets of duplexes were generated each containing one of the four DNA bases opposite the lesion. Circular dichroism studies indicated that 8-amino-dG did not alter the global helical properties of natural right-handed B-DNA. The thermal stability of each duplex was examined by UV melting measurements and compared with its unmodified counterpart. For the unmodified 11mer, the relative stability of the complementary DNA bases opposite G was in the order C > T > G > A, as determined from their -DeltaG degrees values. The free energy change of each modified duplex was lower than its unmodified counterpart, except for the G*:G pair that exhibited a higher melting transition and a larger -DeltaG degrees than the G:G duplex. Nevertheless, the stability of the modified 11mer duplex also followed the order C > T > G > A when placed opposite 8-amino-dG. To explore if 8-amino-dG opposite another 8-amino-dG has any advantage in base pairing, a G*:G* duplex was evaluated, which showed that the stability of this duplex was similar to the G*:G duplex. Mutagenesis of 8-amino-dG in this sequence context was studied in Escherichia coli, which showed that the lesion is weakly mutagenic (mutation frequency approximately 10(-3)) but still can induce a variety of targeted and semi-targeted mutations.  相似文献   

14.
Bifunctional DNA alkylating agents form a diverse assortment of covalent DNA interstrand cross-linked (ICL) structures that are potent cytotoxins. Because it is implausible that cells could possess distinct DNA repair systems for each individual ICL, it is believed that common structural and dynamic features of ICL damage are recognized, rather than specific structural characteristics of each cross-linking agent. Investigation of the structural and dynamic properties of ICLs that might be important for recognition has been complicated by heterogeneous incorporation of these lesions into DNA. To address this problem, we have synthesized and characterized several homogeneous ICL DNAs containing site-specific staggered N4-cytosine-ethyl-N4-cytosine cross-links. Staggered cross-links were introduced in two ways, in a manner that preserves the overall structure of B-form duplex DNA and in a manner that highly distorts the DNA structure, with the goal of understanding how structural and dynamic properties of diverse ICL duplexes might flag these sites for repair. Measurements of base pair opening dynamics in the B-form ICL duplex by (1)H NMR line width or imino proton solvent exchange showed that the guanine base opposite the cross-linked cytosine opened at least 1 order of magnitude more slowly than when in a control matched normal duplex. To a lesser degree, the B-form ICL also induced a decrease in base pair opening dynamics that extended from the site of the cross-link to adjacent base pairs. In contrast, the non-B-form ICL showed extensive conformational dynamics at the site of the cross-link, which extended over the entire DNA sequence. Because DNA duplexes containing the B-form and non-B-form ICL cross-links have both been shown to be incised when incubated in mammalian whole cell extracts, while a matched normal duplex is not, we conclude that intrinsic DNA dynamics is not a requirement for specific damage incision of these ICLs. Instead, we propose a general model in which destabilized ICL duplexes serve to energetically facilitate binding of DNA repair factors that must induce bubbles or other distortions in the duplex. However, the essential requirement for incision is an immobile Y-junction where the repair factors are stably bound at the site of the ICL, and the two DNA strands are unpaired.  相似文献   

15.
4,5',8-Trimethylpsoralen (TMP) cross-links a 5' TpA or a 5' ApT site by photoreacting with one thymine moiety in each DNA strand. We are interested in whether psoralen interstrand cross-links all share one structure or whether there are significant differences. In this paper, we employed a rapid method for probing the structure of the cross-link by making a series of TMP cross-linked duplexes containing specific base-pair mismatches. The relative stability provided by a base pair can be correlated with neighboring base pairs by comparing the extents of gel retardation when base-pair mismatches happen in each position. From our studies, we infer that with respect to the furan-side strand, the 5'T.A base pair of the two T.A base pairs in the TpA site is not hydrogen bonded. Immediately on each side of the cross-linked TpA site is a highly stabilized base pair. Next, a region of decreased stability occurs in each arm of a cross-linked duplex and these base pairs of least stability are located farther away from the cross-linked thymines as the lengths of the arms of the cross-linked helix increase. Finally, even in 7 M urea at 49 degrees C the cross-linked helix is hydrogen bonded at both ends of a duplex of 22 base pairs. We propose that the structures of interstrand cross-links in DNA vary appreciably with the DNA sequence, the length of the DNA duplex, and the structures of the DNA cross-linking agents.  相似文献   

16.
Despite major advances in characterizing purine(R)-purine(R), purine(R)-pyrimidine(Y) and pyrimidine(Y)-pyrimidine(Y) mismatches in DNA, there have not been any structural studies on a synthetic DNA duplex containing several different mispairs. Here, using NMR restrained molecular mechanics and dynamics simulations we have structurally characterized a 12 nucleotide long antiparallel DNA duplex with three different mispairs, namely A+-C, G-T and T-C. Our results show that the overall conformation of the antiparallel DNA duplex is B-DNA-like with slight structural distortions at or near the mispairs' sites. All these mispairs are properly stacked with their flanking base pairs. Each mispair is stabilized by two hydrogen bonds and the decreasing order of the hydrogen-bonding interactions is G-T>T-C>A+-C. G-T mispair has smaller configurational space while the structure is slightly bent at A+-C mispair's site. Overall, this study is the first ever structural characterization of a DNA duplex with three different mismatched base pairs and throws light upon the local conformations of the three mispairs present in the DNA duplex.  相似文献   

17.
A 12 bp long GCN4-binding, self-complementary duplex DNA d(CATGACGTCATG)2 has been investigated by NMR spectroscopy to study the structure and dynamics of the molecule in aqueous solution. The NMR structure of the DNA obtained using simulated annealing and iterative relaxation matrix calculations compares quite closely with the X-ray structure of ATF/CREB DNA in complex with GCN4 protein (DNA-binding domain). The DNA is also seen to be curved in the free state and this has a significant bearing on recognition by the protein. The dynamic characteristics of the molecule have been studied by 13C relaxation measurements at natural abundance. A correlation has been observed between sequence-dependent dynamics and recognition by GCN4 protein.  相似文献   

18.
One- and two-dimensional NMR experiments have been undertaken to investigate deoxyinosine:deoxyguanosine (dI:dG) base pairing in a self-complementary dodecadeoxyribonucleotide, d(C1-G2-C3-I4-A5-A6-T7-T8-G9-G10-G11-G12) (designated IG-12), duplex. The NMR data indicate formation of a dI(syn):dG(anti) base pair in a B-DNA helix. This unusual base pairing results in altered NOE patterns between the base protons (H8 and H2) of the I4 residue and the sugar protons of its own and the 5'-flanking C3 residues. The dI(syn):dG(anti) base pair is accommodated in the B-DNA duplex with only a subtle distortion of the local conformation. Identification of the dI:dG base pairing in this study confirms that a hypoxanthine base can form hydrogen-bonded base pairs with all of the four normal bases, C, A, T, and G, in DNA.  相似文献   

19.
A Hoogsteen base pair embedded in undistorted B-DNA   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

20.
E Trotta  M Paci 《Nucleic acids research》1998,26(20):4706-4713
The solution structure of the complex between 4', 6-diamidino-2-phenylindole (DAPI) and DNA oligomer [d(GCGATTCGC)]2, containing a central T.T mismatch, has been characterized by combined use of proton one- and two-dimensional NMR spectroscopy, molecular mechanics and molecular dynamics computations including relaxation matrix refinement. The results show that the DAPI molecule binds in the minor groove of the central region 5'-ATT-3' of the DNA oligomer, which predominantly adopts a duplex structure with a global right-handed B-like conformation. In the final models of the complex, the DAPI molecule is located nearly isohelical with its NH indole proton oriented towards the DNA helix axis and forming a bifurcated hydrogen bond with the carbonyl O2 groups of a mismatched T5 and the T6 residue of the opposite strand. Mismatched thymines adopt a wobble base pair conformation and are found stacked between the flanking base pairs, inducing only minor local conformational changes in global duplex structure. In addition, no other binding mechanisms were observed, showing that minor groove binding of DAPI to the mismatch-containing site is favoured in comparison with any other previously reported interaction with G.C sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号