首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The multifunctional movement protein (MP) of Tomato mosaic tobamovirus (ToMV) is involved in viral cell-to-cell movement, symptom development, and resistance gene recognition. However, it remains to be elucidated how ToMV MP plays such diverse roles in plants. Here, we show that ToMV MP interacts with the Rubisco small subunit (RbCS) of Nicotiana benthamiana in vitro and in vivo. In susceptible N. benthamiana plants, silencing of NbRbCS enabled ToMV to induce necrosis in inoculated leaves, thus enhancing virus local infectivity. However, the development of systemic viral symptoms was delayed. In transgenic N. benthamiana plants harboring Tobacco mosaic virus resistance-22 (Tm-22), which mediates extreme resistance to ToMV, silencing of NbRbCS compromised Tm-22-dependent resistance. ToMV was able to establish efficient local infection but was not able to move systemically. These findings suggest that NbRbCS plays a vital role in tobamovirus movement and plant antiviral defenses.Plant viruses use at least one movement protein (MP) to facilitate viral spread between plant cells via plasmodesmata (PD; Lucas and Gilbertson, 1994; Ghoshroy et al., 1997). Among viral MPs, the MP of tobamoviruses, such as Tobacco mosaic virus (TMV) and its close relative Tomato mosaic virus (ToMV), is the best characterized. TMV MP specifically accumulates in PD and modifies the plasmodesmatal size exclusion limit in mature source leaves or tissues (Wolf et al., 1989; Deom et al., 1990; Ding et al., 1992). TMV MP and viral genomic RNA form a mobile ribonucleoprotein complex that is essential for cell-to-cell movement of viral infection (Watanabe et al., 1984; Deom et al., 1987; Citovsky et al., 1990, 1992; Kiselyova et al., 2001; Kawakami et al., 2004; Waigmann et al., 2007). TMV MP also enhances intercellular RNA silencing (Vogler et al., 2008) and affects viral symptom development, host range, and host susceptibility to virus (Dardick et al., 2000; Bazzini et al., 2007). Furthermore, ToMV MP is identified as an avirulence factor that is recognized by tomato (Solanum lycopersicum) resistance proteins Tobacco mosaic virus resistance-2 (Tm-2) and Tm-22 (Meshi et al., 1989; Lanfermeijer et al., 2004). Indeed, tomato Tm-22 confers extreme resistance against TMV and ToMV in tomato plants and even in heterologous tobacco (Nicotiana tabacum) plants (Lanfermeijer et al., 2003, 2004).To date, several host factors that interact with TMV MP have been identified. These TMV MP-binding host factors include cell wall-associated proteins such as pectin methylesterase (Chen et al., 2000), calreticulin (Meshi et al., 1989), ANK1 (Ueki et al., 2010), and the cellular DnaJ-like protein MPIP1 (Shimizu et al., 2009). Many cytoskeletal components such as actin filaments (McLean et al., 1995), microtubules (Heinlein et al., 1995), and the microtubule-associated proteins MPB2C (Kragler et al., 2003) and EB1a (Brandner et al., 2008) also interact with TMV MP. Most of these factors are involved in TMV cell-to-cell movement.Rubisco catalyzes the first step of CO2 assimilation in photosynthesis and photorespiration. The Rubisco holoenzyme is a heteropolymer consisting of eight large subunits (RbCLs) and eight small subunits (RbCSs). RbCL was reported to interact with the coat protein of Potato virus Y (Feki et al., 2005). Both RbCS and RbCL were reported to interact with the P3 proteins encoded by several potyviruses, including Shallot yellow stripe virus, Onion yellow dwarf virus, Soybean mosaic virus, and Turnip mosaic virus (Lin et al., 2011). Proteomic analysis of the plant-virus interactome revealed that RbCS participates in the formation of virus complexes of Rice yellow mottle virus (Brizard et al., 2006). However, the biological function of Rubisco in viral infection remains unknown.In this study, we show that RbCS plays an essential role in virus movement, host susceptibility, and Tm-22-mediated extreme resistance in the ToMV-host plant interaction.  相似文献   

2.
Abscisic acid (ABA) induces stomatal closure and inhibits light-induced stomatal opening. The mechanisms in these two processes are not necessarily the same. It has been postulated that the ABA receptors involved in opening inhibition are different from those involved in closure induction. Here, we provide evidence that four recently identified ABA receptors (PYRABACTIN RESISTANCE1 [PYR1], PYRABACTIN RESISTANCE-LIKE1 [PYL1], PYL2, and PYL4) are not sufficient for opening inhibition in Arabidopsis (Arabidopsis thaliana). ABA-induced stomatal closure was impaired in the pyr1/pyl1/pyl2/pyl4 quadruple ABA receptor mutant. ABA inhibition of the opening of the mutant’s stomata remained intact. ABA did not induce either the production of reactive oxygen species and nitric oxide or the alkalization of the cytosol in the quadruple mutant, in accordance with the closure phenotype. Whole cell patch-clamp analysis of inward-rectifying K+ current in guard cells showed a partial inhibition by ABA, indicating that the ABA sensitivity of the mutant was not fully impaired. ABA substantially inhibited blue light-induced phosphorylation of H+-ATPase in guard cells in both the mutant and the wild type. On the other hand, in a knockout mutant of the SNF1-related protein kinase, srk2e, stomatal opening and closure, reactive oxygen species and nitric oxide production, cytosolic alkalization, inward-rectifying K+ current inactivation, and H+-ATPase phosphorylation were not sensitive to ABA.The phytohormone abscisic acid (ABA), which is synthesized in response to abiotic stresses, plays a key role in the drought hardiness of plants. Reducing transpirational water loss through stomatal pores is a major ABA response (Schroeder et al., 2001). ABA promotes the closure of open stomata and inhibits the opening of closed stomata. These effects are not simply the reverse of one another (Allen et al., 1999; Wang et al., 2001; Mishra et al., 2006).A class of receptors of ABA was identified (Ma et al., 2009; Park et al., 2009; Santiago et al., 2009; Nishimura et al., 2010). The sensitivity of stomata to ABA was strongly decreased in quadruple and sextuple mutants of the ABA receptor genes PYRABACTIN RESISTANCE/PYRABACTIN RESISTANCE-LIKE/REGULATORY COMPONENT OF ABSCISIC ACID RECEPTOR (PYR/PYL/RCAR; Nishimura et al., 2010; Gonzalez-Guzman et al., 2012). The PYR/PYL/RCAR receptors are involved in the early ABA signaling events, in which a sequence of interactions of the receptors with PROTEIN PHOSPHATASE 2Cs (PP2Cs) and subfamily 2 SNF1-RELATED PROTEIN KINASES (SnRK2s) leads to the activation of downstream ABA signaling targets in guard cells (Cutler et al., 2010; Kim et al., 2010; Weiner et al., 2010). Studies of Commelina communis and Vicia faba suggested that the ABA receptors involved in stomatal opening are not the same as the ABA receptors involved in stomatal closure (Allan et al., 1994; Anderson et al., 1994; Assmann, 1994; Schwartz et al., 1994). The roles of PYR/PYL/RCAR in either stomatal opening or closure remained to be elucidated.Blue light induces stomatal opening through the activation of plasma membrane H+-ATPase in guard cells that generates an inside-negative electrochemical gradient across the plasma membrane and drives K+ uptake through voltage-dependent inward-rectifying K+ channels (Assmann et al., 1985; Shimazaki et al., 1986; Blatt, 1987; Schroeder et al., 1987; Thiel et al., 1992). Phosphorylation of the penultimate Thr of the plasma membrane H+-ATPase is a prerequisite for blue light-induced activation of the H+-ATPase (Kinoshita and Shimazaki, 1999, 2002). ABA inhibits H+-ATPase activity through dephosphorylation of the penultimate Thr in the C terminus of the H+-ATPase in guard cells, resulting in prevention of the opening (Goh et al., 1996; Zhang et al., 2004; Hayashi et al., 2011). Inward-rectifying K+ currents (IKin) of guard cells are negatively regulated by ABA in addition to through the decline of the H+ pump-driven membrane potential difference (Schroeder and Hagiwara, 1989; Blatt, 1990; McAinsh et al., 1990; Schwartz et al., 1994; Grabov and Blatt, 1999; Saito et al., 2008). This down-regulation of ion transporters by ABA is essential for the inhibition of stomatal opening.A series of second messengers has been shown to mediate ABA-induced stomatal closure. Reactive oxygen species (ROS) produced by NADPH oxidases play a crucial role in ABA signaling in guard cells (Pei et al., 2000; Zhang et al., 2001; Kwak et al., 2003; Sirichandra et al., 2009; Jannat et al., 2011). Nitric oxide (NO) is an essential signaling component in ABA-induced stomatal closure (Desikan et al., 2002; Guo et al., 2003; Garcia-Mata and Lamattina, 2007; Neill et al., 2008). Alkalization of cytosolic pH in guard cells is postulated to mediate ABA-induced stomatal closure in Arabidopsis (Arabidopsis thaliana) and Pisum sativum and Paphiopedilum species (Irving et al., 1992; Gehring et al., 1997; Grabov and Blatt, 1997; Suhita et al., 2004; Gonugunta et al., 2008). These second messengers transduce environmental signals to ion channels and ion transporters that create the driving force for stomatal movements (Ward et al., 1995; MacRobbie, 1998; Garcia-Mata et al., 2003).In this study, we examined the mobilization of second messengers, the inactivation of IKin, and the suppression of H+-ATPase phosphorylation evoked by ABA in Arabidopsis mutants to clarify the downstream signaling events of ABA signaling in guard cells. The mutants included a quadruple mutant of PYR/PYL/RCARs, pyr1/pyl1/pyl2/pyl4, and a mutant of a SnRK2 kinase, srk2e.  相似文献   

3.
4.
5.
6.
The major plant polyamines (PAs) are the tetraamines spermine (Spm) and thermospermine (T-Spm), the triamine spermidine, and the diamine putrescine. PA homeostasis is governed by the balance between biosynthesis and catabolism; the latter is catalyzed by polyamine oxidase (PAO). Arabidopsis (Arabidopsis thaliana) has five PAO genes, AtPAO1 to AtPAO5, and all encoded proteins have been biochemically characterized. All AtPAO enzymes function in the back-conversion of tetraamine to triamine and/or triamine to diamine, albeit with different PA specificities. Here, we demonstrate that AtPAO5 loss-of-function mutants (pao5) contain 2-fold higher T-Spm levels and exhibit delayed transition from vegetative to reproductive growth compared with that of wild-type plants. Although the wild type and pao5 are indistinguishable at the early seedling stage, externally supplied low-dose T-Spm, but not other PAs, inhibits aerial growth of pao5 mutants in a dose-dependent manner. Introduction of wild-type AtPAO5 into pao5 mutants rescues growth and reduces the T-Spm content, demonstrating that AtPAO5 is a T-Spm oxidase. Recombinant AtPAO5 catalyzes the conversion of T-Spm and Spm to triamine spermidine in vitro. AtPAO5 specificity for T-Spm in planta may be explained by coexpression with T-Spm synthase but not with Spm synthase. The pao5 mutant lacking T-Spm oxidation and the acl5 mutant lacking T-Spm synthesis both exhibit growth defects. This study indicates a crucial role for T-Spm in plant growth and development.Polyamines (PAs) are low-molecular mass aliphatic amines that are present in almost all living organisms. Cellular PA concentrations are governed primarily by the balance between biosynthesis and catabolism. In plants, the major PAs are the diamine putrescine (Put), the triamine spermidine (Spd), and the tetraamines spermine (Spm) and thermospermine (T-Spm; Kusano et al., 2008; Alcázar et al., 2010; Mattoo et al., 2010; Takahashi and Kakehi, 2010; Tiburcio et al., 2014). Put is synthesized from Orn by Orn decarboxylase and/or from Arg by three sequential reactions catalyzed by Arg decarboxylase (ADC), agmatine iminohydrolase, and N-carbamoylputrescine amidohydrolase. Arabidopsis (Arabidopsis thaliana) does not contain an ORNITHINE DECARBOXYLASE gene (Hanfrey et al., 2001) and synthesizes Put from Arg via the ADC pathway. Put is further converted to Spd via an aminopropyltransferase reaction catalyzed by spermidine synthase (SPDS). In this reaction, an aminopropyl residue is transferred to Put from decarboxylated S-adenosyl-Met, which is synthesized by S-adenosyl-Met decarboxylase (SAMDC; Kusano et al., 2008). Spd is then converted to Spm or T-Spm, reactions catalyzed in Arabidopsis by spermine synthase (SPMS; encoded by SPMS) or thermospermine synthase (encoded by Acaulis5 [ACL5]), respectively (Hanzawa et al., 2000; Knott et al., 2007; Kakehi et al., 2008; Naka et al., 2010). A recent review reports that T-Spm is ubiquitously present in the plant kingdom (Takano et al., 2012).The PA catabolic pathway has been extensively studied in mammals. Spm and Spd acetylation by Spd/Spm-N1-acetyltransferase (Enzyme Commission no. 2.3.1.57) precedes the catabolism of PAs and is a rate-limiting step in the catabolic pathway (Wallace et al., 2003). A mammalian polyamine oxidase (PAO), which requires FAD as a cofactor, oxidizes N1-acetyl Spm and N1-acetyl Spd at the carbon on the exo-side of the N4-nitrogen to produce Spd and Put, respectively (Wang et al., 2001; Vujcic et al., 2003; Wu et al., 2003; Cona et al., 2006). Mammalian spermine oxidases (SMOs) perform oxidation of the carbon on the exo-side of the N4-nitrogen to produce Spd, 3-aminopropanal, and hydrogen peroxide (Vujcic et al., 2002; Cervelli et al., 2003; Wang et al., 2003). Thus, mammalian PAOs and SMOs are classified as back-conversion (BC)-type PAOs.In plants, Spm, T-Spm, and Spd are catabolized by PAO. Plant PAOs derived from maize (Zea mays) and barley (Hordeum vulgare) catalyze terminal catabolism (TC)-type reactions (Tavladoraki et al., 1998). TC-type PAOs oxidize the carbon at the endo-side of the N4-nitrogen of Spm and Spd to produce N-(3-aminopropyl)-4-aminobutanal and 4-aminobutanal, respectively, plus 1,3-diaminopropane and hydrogen peroxide (Cona et al., 2006; Angelini et al., 2008, 2010). The Arabidopsis genome contains five PAO genes, designated as AtPAO1 to AtPAO5. Four recombinant AtPAOs, AtPAO1 to AtPAO4, have been homogenously purified and characterized (Tavladoraki et al., 2006; Kamada-Nobusada et al., 2008; Moschou et al., 2008; Takahashi et al., 2010; Fincato et al., 2011, 2012). AtPAO1 to AtPAO4 possess activities that convert Spm (or T-Spm) to Spd, called partial BC, or they convert Spm (or T-Spm) first to Spd and subsequently to Put, called full BC. Ahou et al. (2014) report that recombinant AtPAO5 also catalyzes a BC-type reaction. Therefore, all Arabidopsis PAOs are BC-type enzymes (Kamada-Nobusada et al., 2008; Moschou et al., 2008; Takahashi et al., 2010; Fincato et al., 2011, 2012; Ahou et al., 2014). Four of the seven PAOs in rice (Oryza sativa; OsPAO1, OsPAO3, OsPAO4, and OsPAO5) catalyze BC-type reactions (Ono et al., 2012; Liu et al., 2014a), whereas OsPAO7 catalyzes a TC-type reaction (Liu et al., 2014b). OsPAO2 and OsPAO6 remain to be characterized, but may catalyze TC-type reactions based on their structural similarity with OsPAO7. Therefore, plants possess both TC-type and BC-type PAOs.PAs are involved in plant growth and development. Recent molecular genetic analyses in Arabidopsis indicate that metabolic blocks at the ADC, SPDS, or SAMDC steps lead to embryo lethality (Imai et al., 2004; Urano et al., 2005; Ge et al., 2006). Potato (Solanum tuberosum) plants with suppressed SAMDC expression display abnormal phenotypes (Kumar et al., 1996). It was also reported that hydrogen peroxide derived from PA catabolism affects root development and xylem differentiation (Tisi et al., 2011). These studies indicate that flux through metabolic and catabolic PA pathways is required for growth and development. The Arabidopsis acl5 mutant, which lacks T-Spm synthase activity, displays excessive differentiation of xylem tissues and a dwarf phenotype, especially in stems (Hanzawa et al., 2000; Kakehi et al., 2008, 2010). An allelic ACL5 mutant (thickvein [tkv]) exhibits a similar phenotype as that of acl5 (Clay and Nelson, 2005). These results indicate that T-Spm plays an important role in Arabidopsis xylem differentiation (Vera-Sirera et al., 2010; Takano et al., 2012).Here, we demonstrate that Arabidopsis pao5 mutants contain 2-fold higher T-Spm levels and exhibit aerial tissue growth retardation approximately 50 d after sowing compared with that of wild-type plants. Growth inhibition of pao5 stems and leaves at an early stage of development is induced by growth on media containing low T-Spm concentrations. Complementation of pao5 with AtPAO5 rescues T-Spm-induced growth inhibition. We confirm that recombinant AtPAO5 catalyzes BC of T-Spm (or Spm) to Spd. Our data strongly suggest that endogenous T-Spm levels in Arabidopsis are fine tuned, and that AtPAO5 regulates T-Spm homeostasis through a T-Spm oxidation pathway.  相似文献   

7.
8.
The plastidic 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus × canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO2]. Isoprene biosynthesis was by far (99%) the main carbon sink of MEP pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-d-xylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-d-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the MEP pathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, NE plants redirected only approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties.Isoprenoids represent the largest and most diverse group (over 50,000) of natural compounds and are essential in all living organisms (Gershenzon and Dudareva, 2007; Thulasiram et al., 2007). They are economically important for humans as flavor and fragrance, cosmetics, drugs, polymers for rubber, and precursors for the chemical industry (Chang and Keasling, 2006). The broad variety of isoprenoid products is formed from two building blocks, dimethylallyl diphosphate (DMADP) and isopentenyl diphosphate (IDP). In plants, the plastidic 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway (Zeidler et al., 1997) produces physiologically and ecologically important volatile organic compounds (VOCs), the carotenoids (tetraterpenes; Giuliano et al., 2008; Cazzonelli and Pogson, 2010), diterpenes, the prenyl side-chains of chlorophylls (Chls) and plastoquinones, isoprenylated proteins, the phytohormones gibberellins, and side-chain of cytokinins (for review, see Dudareva et al., 2013; Moses et al., 2013). Industrially important prokaryotes (e.g. Escherichia coli) also use the MEP pathway for the biosynthesis of isoprenoids (Vranová et al., 2012), and there is an increasing interest in manipulating the MEP pathway of engineered microbes to increase production of economically relevant isoprenoids (Chang and Keasling, 2006). To achieve this, a mechanistic understanding of the regulation of the MEP pathway is needed (Vranová et al., 2012).Some plants, including poplars (Populus spp.), produce large amounts of the hemiterpene VOC isoprene. Worldwide isoprene emissions from plants are estimated to be 600 teragrams per year and to account for one-third of all hydrocarbons emitted to the atmosphere (Arneth et al., 2008; Guenther, 2013). Isoprene has strong effects on air chemistry and climate by participating in ozone formation reactions (Fuentes et al., 2000), by prolonging the lifespan of methane, a greenhouse gas (Poisson et al., 2000; Archibald et al., 2011), and by taking part in the formation of secondary organic aerosols (Kiendler-Scharr et al., 2012).Poplar leaves invest a significant amount of recently fixed carbon in isoprene biosynthesis (Delwiche and Sharkey, 1993; Schnitzler et al., 2010; Ghirardo et al., 2011) to cope with abiotic stresses (Sharkey, 1995; Velikova and Loreto, 2005; Behnke et al., 2007, 2010b, 2013; Vickers et al., 2009; Loreto and Schnitzler, 2010; Sun et al., 2013b), although there are indications that other protective mechanisms can partially compensate the lack of isoprene emission in genetically transformed poplars (Behnke et al., 2012; Way et al., 2013). It has been suggested that in isoprene-emitting (IE) species, most of the carbon that passes through the MEP pathway is used for isoprene biosynthesis (Sharkey and Yeh, 2001). However, a recent study using pulse-chase labeling with 14C has shown continuous synthesis and degradation of carotenes and Chl a in mature leaves of Arabidopsis (Arabidopsis thaliana; Beisel et al., 2010), and the amount of flux diverted to carotenoid and Chl synthesis compared with isoprene biosynthesis in poplar leaves is not known.Isoprene emission is temperature, light, and CO2 dependent (Schnitzler et al., 2005; Rasulov et al., 2010; Way et al., 2011; Monson et al., 2012; Li and Sharkey, 2013a). It has been demonstrated that isoprene biosynthesis depends on the activities of IDP isomerase (EC 5.3.3.2), isoprene synthase (ISPS; EC 4.2.3.27), and the amount of ISPS substrate, DMADP (Brüggemann and Schnitzler, 2002a, 2002b; Schnitzler et al., 2005; Rasulov et al., 2009b). In turn, DMADP concentration has been hypothesized to act as a feedback regulator of the MEP pathway by inhibiting 1-deoxy-d-xylulose-5-phosphate synthase (DXS; EC 2.2.1.7), the first enzyme of the MEP pathway (Banerjee et al., 2013). Understanding the controlling mechanism of isoprene biosynthesis is not only of fundamental relevance, but also necessary for engineering the MEP pathway in various organisms and for accurate simulation of isoprene emissions by plants in predicting atmospheric reactivity (Niinemets and Monson, 2013).There is ample evidence that silencing the ISPS in poplar has a broad effect on the leaf metabolome (Behnke et al., 2009, 2010a, 2013; Way et al., 2011; Kaling et al., 2014). While some of those changes (e.g. ascorbate and α-tocopherol) are compensatory mechanisms to cope with abiotic stresses, others (e.g. shikimate pathway and phenolic compounds) might be related to the alteration of the MEP pathway (Way et al., 2013; Kaling et al., 2014). The perturbation of these metabolic pathways can be attributed to the removal of a major carbon sink of the MEP pathway and the resulting change in the energy balance within the plant cell (Niinemets et al., 1999; Ghirardo et al., 2011). In this work, we analyzed the carbon fluxes through the MEP pathway into the main plastidic isoprenoid products.We used the 13C-labeling technique as a tool to measure the carbon fluxes through the MEP pathway at different temperatures, light intensities, and CO2 concentrations in mature leaves of IE and transgenic, isoprene-nonemitting (NE) gray poplar (Populus × canescens). Isoprene emission was drastically reduced in the transgenic trees through knockdown of PcISPS gene expression by RNA interference, resulting in plants with only 1% to 5% of isoprene emission potential compared with wild-type plants (Behnke et al., 2007).We measured the appearance of 13C in the isoprenoid precursors 2-C-methyl-d-erythritol-2,4-cyclodiphosphate (MEcDP) and DMADP as well as isoprene and the major downstream products of the MEP pathway, i.e. carotenoids and Chls. To reliably detect de novo synthesis of the pigments, which occur at very low rates (Beisel et al., 2010), we used isotope ratio mass spectrometry (IRMS).Here, (1) we quantify the effect of isoprene biosynthesis on the MEP pathway in poplar, and (2) we show that suppression of isoprene biosynthesis negatively affects the carbon flux through the MEP pathway by accumulating plastidic DMADP, which feeds back to inhibit PcDXS, leading to (3) a slight increase of carbon flux toward production of greater chain-length isoprenoids and (4) a strong decrease in the overall isoprenoid carbon fluxes to compensate for the much lower MEP pathway demand for carbon. This study strongly supports the hypothesis that an important regulatory mechanism of the MEP pathway is the feedback regulation of plastidic DMADP on DXS. The large carbon flux through the MEP pathway of IE poplar plastids demonstrates the potential of transgenically altered IE plant species to produce economically valuable isoprenoids at high rates in, for instance, industrial applications.  相似文献   

9.
10.
Yeast elicitor (YEL) induces stomatal closure that is mediated by a Ca2+-dependent signaling pathway. A Ca2+-dependent protein kinase, CPK6, positively regulates activation of ion channels in abscisic acid and methyl jasmonate signaling, leading to stomatal closure in Arabidopsis (Arabidopsis thaliana). YEL also inhibits light-induced stomatal opening. However, it remains unknown whether CPK6 is involved in induction by YEL of stomatal closure or in inhibition by YEL of light-induced stomatal opening. In this study, we investigated the roles of CPK6 in induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening in Arabidopsis. Disruption of CPK6 gene impaired induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening. Activation by YEL of nonselective Ca2+-permeable cation channels was impaired in cpk6-2 guard cells, and transient elevations elicited by YEL in cytosolic-free Ca2+ concentration were suppressed in cpk6-2 and cpk6-1 guard cells. YEL activated slow anion channels in wild-type guard cells but not in cpk6-2 or cpk6-1 and inhibited inward-rectifying K+ channels in wild-type guard cells but not in cpk6-2 or cpk6-1. The cpk6-2 and cpk6-1 mutations inhibited YEL-induced hydrogen peroxide accumulation in guard cells and apoplast of rosette leaves but did not affect YEL-induced hydrogen peroxide production in the apoplast of rosette leaves. These results suggest that CPK6 positively functions in induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening in Arabidopsis and is a convergent point of signaling pathways for stomatal closure in response to abiotic and biotic stress.Stomata, formed by pairs of guard cells, play a critical role in regulation of plant CO2 uptake and water loss, thus critically influencing plant growth and water stress responsiveness. Guard cells respond to a variety of abiotic and biotic stimuli, such as light, drought, and pathogen attack (Israelsson et al., 2006; Shimazaki et al., 2007; Melotto et al., 2008).Elicitors derived from microbial surface mimic pathogen attack and induce stomatal closure in various plant species such as Solanum lycopersicum (Lee et al., 1999), Commelina communis (Lee et al., 1999), Hordeum vulgare (Koers et al., 2011), and Arabidopsis (Arabidopsis thaliana; Melotto et al., 2006; Khokon et al., 2010). Yeast elicitor (YEL) induces stomatal closure in Arabidopsis (Klüsener et al., 2002; Khokon et al., 2010; Salam et al., 2013). Our recent studies showed that YEL inhibits light-induced stomatal opening and that protein phosphorylation is involved in induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening (Salam et al., 2013).Cytosolic Ca2+ has long been recognized as a conserved second messenger in stomatal movement (Shimazaki et al., 2007; Roelfsema and Hedrich 2010; Hubbard et al., 2012). Elevation of cytosolic free Ca2+ concentration ([Ca2+]cyt) is triggered by influx of Ca2+ from apoplast and release of Ca2+ from intracellular stores in guard cell signaling (Leckie et al., 1998; Hamilton et al., 2000; Pei et al., 2000; Garcia-Mata et al., 2003; Lemtiri-Chlieh et al., 2003). The influx of Ca2+ is carried by nonselective Ca2+-permeable cation (ICa) channels that are activated by plasma membrane hyperpolarization and H2O2 (Pei et al., 2000; Murata et al., 2001; Kwak et al., 2003). Elevation of [Ca2+]cyt activates slow anion (S-type) channels and down-regulates inward-rectifying potassium (Kin) channels in guard cells (Schroeder and Hagiwara, 1989; Grabov and Blatt, 1999). The activation of S-type channels is a hallmark of stomatal closure, and the suppression of Kin channels is favorable to stomatal closure but not to stomatal opening (Pei et al., 1997; Kwak et al., 2001; Xue et al., 2011; Uraji et al., 2012).YEL induces stomatal closure with extracellular H2O2 production, intracellular H2O2 accumulation, activation of ICa channels, and transient [Ca2+]cyt elevations (Klüsener et al., 2002; Khokon et al., 2010). However, it remains to be clarified whether YEL activates S-type channels and inhibits Kin channels in guard cells.Calcium-dependent protein kinases (CDPKs) are regulators in Ca2+-dependent guard cell signaling (Mori et al., 2006; Zhu et al., 2007; Geiger et al., 2010, 2011; Zou et al., 2010; Munemasa et al., 2011; Brandt et al., 2012; Scherzer et al., 2012). In guard cells, CDPKs regulate activation of S-type and ICa channels and inhibition of Kin channels (Mori et al., 2006; Zou et al., 2010; Munemasa et al., 2011). A CDPK, CPK6, positively regulates activation of S-type channels and ICa channels without affecting H2O2 production in abscisic acid (ABA)- and methyl jasmonate (MeJA)-induced stomatal closure (Mori et al., 2006; Munemasa et al., 2011). CPK6 phosphorylates and activates SLOW ANION CHANNEL-ASSOCIATED1 expressed in Xenopus spp. oocyte (Brandt et al., 2012; Scherzer et al., 2012). These findings underline the role of CPK6 in regulation of ion channel activation and stomatal movement, leading us to test whether CPK6 regulates the induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening.In this study, we investigated activation of S-type channels and inhibition of Kin channels by YEL and roles of CPK6 in induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening. For this purpose, we examined the effects of mutation of CPK6 on induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening, activation of ICa channels, transient [Ca2+]cyt elevations, activation of S-type channels, inhibition of Kin channels, H2O2 production in leaves, and H2O2 accumulation in leaves and guard cells.  相似文献   

11.
Tomato (Solanum lycopersicum), like other Solanaceous species, accumulates high levels of antioxidant caffeoylquinic acids, which are strong bioactive molecules and protect plants against biotic and abiotic stresses. Among these compounds, the monocaffeoylquinic acids (e.g. chlorogenic acid [CGA]) and the dicaffeoylquinic acids (diCQAs) have been found to possess marked antioxidative properties. Thus, they are of therapeutic interest both as phytonutrients in foods and as pharmaceuticals. Strategies to increase diCQA content in plants have been hampered by the modest understanding of their biosynthesis and whether the same pathway exists in different plant species. Incubation of CGA with crude extracts of tomato fruits led to the formation of two new products, which were identified by liquid chromatography-mass spectrometry as diCQAs. This chlorogenate:chlorogenate transferase activity was partially purified from ripe fruit. The final protein fraction resulted in 388-fold enrichment of activity and was subjected to trypsin digestion and mass spectrometric sequencing: a hydroxycinnamoyl-Coenzyme A:quinate hydroxycinnamoyl transferase (HQT) was selected as a candidate protein. Assay of recombinant HQT protein expressed in Escherichia coli confirmed its ability to synthesize diCQAs in vitro. This second activity (chlorogenate:chlorogenate transferase) of HQT had a low pH optimum and a high Km for its substrate, CGA. High concentrations of CGA and relatively low pH occur in the vacuoles of plant cells. Transient assays demonstrated that tomato HQT localizes to the vacuole as well as to the cytoplasm of plant cells, supporting the idea that in this species, the enzyme catalyzes different reactions in two subcellular compartments.The importance of plant-based foods in preventing or reducing the risk of chronic disease has been widely demonstrated (Martin et al., 2011, 2013). In addition to vitamins, a large number of other nutrients in plant-based foods promote health and reduce the risk of chronic diseases; these are often referred to as phytonutrients. The presence of phytonutrients in fruit and vegetables is of significant nutritional and therapeutic importance, as many have been found to possess strong antioxidant activity (Rice-Evans et al., 1997). Phenolics are the most widespread dietary antioxidants and caffeoylquinic acids, such as chlorogenic acid (CGA), dicaffeoylquinic acids (diCQAs), and tricaffeoylquinic acids (triCQAs), play important roles in promoting health (Clifford, 1999; Niggeweg et al., 2004). CGA limits low density lipid oxidation (Meyer et al., 1998), diCQAs possess antihepatotoxic activity (Choi et al., 2005), and triCQAs reduce the blood Glc levels of diabetic rats (Islam, 2006). diCQA derivatives have been shown to protect humans from various kinds of diseases; diCQAs suppress melanogenesis effectively (Kaul and Khanduja, 1998), show anti-inflammatory activity in vitro (Peluso et al., 1995), and exhibit a selective inhibition of HIV replication (McDougall et al., 1998). The physiological effects of caffeoylquinic acid derivatives with multiple caffeoyl groups are generally greater than those of monocaffeoylquinic acids, perhaps because the antioxidant activity is largely determined by the number of hydroxyl groups present on the aromatic rings (Wang et al., 2003; Islam, 2006). Furthermore, both diCQAs and triCQAs may function as inhibitors of the activity of HIV integrase, which catalyzes the insertion of viral DNA into the genome of host cells (McDougall et al., 1998; Slanina et al., 2001; Gu et al., 2007).CGA is the major soluble phenolic in Solanaceous crops (Clifford, 1999) and the major antioxidant in the average U.S. diet (Luo et al., 2008), while different isomers of diCQAs have been identified in many crops such as coffee (Coffea canephora), globe artichoke (Cynara cardunculus), tomato (Solanum lycopersicum), lettuce (Lactuca sativa), and sweet potato (Ipomoea batatas; Clifford, 1999; Islam, 2006; Moco et al., 2006, 2007; Moglia et al., 2008). In tomato, CGA accounts for 75% and 35% of the total phenolics in mature green and ripe fruit, respectively, amounting to 2 to 40 mg 100 g–1 dry weight (DW), although levels decline after ripening and during postharvest storage (Slimestad and Verheul, 2009). diCQAs and triCQAs also accumulate in tomato fruit (diCQAs, approximately 2 mg 100 g–1 DW; and triCQAs, 1–2 mg 100 g–1 DW; Chanforan et al., 2012).Three pathways (Villegas and Kojima, 1986; Hoffmann et al., 2003; Niggeweg et al., 2004) have been proposed for the synthesis of CGA: (1) the direct pathway involving caffeoyl-CoA transesterification with quinic acid by hydroxycinnamoyl-Coenzyme A:quinate hydroxycinnamoyl transferase (HQT; Niggeweg et al., 2004; Comino et al., 2009; Menin et al., 2010; Sonnante et al., 2010); (2) the route by which p-coumaroyl-CoA is first transesterified with quinic acid via hydroxycinnamoyl-Coenzyme A transferase (HCT) acyltransferase (Hoffmann et al., 2003; Comino et al., 2007), followed by the hydroxylation of p-coumaroyl quinate to 5-caffeoylquinic acid, catalyzed by C3′H (p-coumaroyl-3-hydroxylase; Schoch et al., 2001; Mahesh et al., 2007; Moglia et al., 2009); and (3) the use of caffeoyl-glucoside as the acyl-donor (Villegas and Kojima, 1986). In tomato, the synthesis of CGA involves transesterification of caffeoyl-CoA with quinic acid by HQT (Niggeweg et al., 2004).To date, it is not clear whether diCQAs are derived directly from the monocaffeoylquinic acids (such as CGA) through a second acyltransferase reaction involving an acyl-CoA or not, although their structural similarity provides good a priori evidence supporting this hypothesis. Recently the in vitro synthesis of 3,5-diCQA from CGA and CoA by HCT from coffee has been reported (Lallemand et al., 2012). By contrast, in sweet potato, an enzyme that catalyzes the transfer of the caffeoyl moiety of CGA to another molecule of CGA, leading to the synthesis of isochlorogenate (3,5-di-O-caffeoylquinate), has been described, but the corresponding gene has not been identified (Villegas and Kojima, 1986).We report a chlorogenate:chlorogenate transferase (CCT) activity leading to the synthesis of diCQAs in tomato fruits and describe how alternative catalysis, by a single enzyme, leads to the production of both CGA and diCQA in different cellular compartments.  相似文献   

12.
13.
14.
15.
Plant resistance to phytopathogenic microorganisms mainly relies on the activation of an innate immune response usually launched after recognition by the plant cells of microbe-associated molecular patterns. The plant hormones, salicylic acid (SA), jasmonic acid, and ethylene have emerged as key players in the signaling networks involved in plant immunity. Rhamnolipids (RLs) are glycolipids produced by bacteria and are involved in surface motility and biofilm development. Here we report that RLs trigger an immune response in Arabidopsis (Arabidopsis thaliana) characterized by signaling molecules accumulation and defense gene activation. This immune response participates to resistance against the hemibiotrophic bacterium Pseudomonas syringae pv tomato, the biotrophic oomycete Hyaloperonospora arabidopsidis, and the necrotrophic fungus Botrytis cinerea. We show that RL-mediated resistance involves different signaling pathways that depend on the type of pathogen. Ethylene is involved in RL-induced resistance to H. arabidopsidis and to P. syringae pv tomato whereas jasmonic acid is essential for the resistance to B. cinerea. SA participates to the restriction of all pathogens. We also show evidence that SA-dependent plant defenses are potentiated by RLs following challenge by B. cinerea or P. syringae pv tomato. These results highlight a central role for SA in RL-mediated resistance. In addition to the activation of plant defense responses, antimicrobial properties of RLs are thought to participate in the protection against the fungus and the oomycete. Our data highlight the intricate mechanisms involved in plant protection triggered by a new type of molecule that can be perceived by plant cells and that can also act directly onto pathogens.In their environment, plants are challenged by potentially pathogenic microorganisms. In response, they express a set of defense mechanisms including preformed structural and chemical barriers, as well as an innate immune response quickly activated after microorganism perception (Boller and Felix, 2009). Plant innate immunity is triggered after recognition by pattern recognition receptors of conserved pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs, respectively) or by plant endogenous molecules released by pathogen invasion and called danger-associated molecular patterns (Boller and Felix, 2009; Dodds and Rathjen, 2010). This first step of recognition leads to the activation of MAMP-triggered immunity (MTI). Successful pathogens can secrete effectors that interfere or suppress MTI, resulting in effector-triggered susceptibility. A second level of perception involves the direct or indirect recognition by specific receptors of pathogen effectors leading to effector-triggered immunity (ETI; Boller and Felix, 2009; Dodds and Rathjen, 2010). Whereas MTI and ETI are thought to involve common signaling network, ETI is usually quantitatively stronger than MTI and associated with more sustained and robust immune responses (Katagiri and Tsuda, 2010; Tsuda and Katagiri, 2010).The plant hormones, salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) have emerged as key players in the signaling networks involved in MTI and ETI (Robert-Seilaniantz et al., 2007; Tsuda et al., 2009; Katagiri and Tsuda, 2010; Mersmann et al., 2010; Tsuda and Katagiri, 2010; Robert-Seilaniantz et al., 2011). Interactions between these signal molecules allow the plant to activate and/or modulate an appropriate spectrum of responses, depending on the pathogen lifestyle, necrotroph or biotroph (Glazebrook, 2005; Koornneef and Pieterse, 2008). It is assumed that JA and ET signaling pathways are important for resistance to necrotrophic fungi including Botrytis cinerea and Alternaria brassicicola (Thomma et al., 2001; Ferrari et al., 2003; Glazebrook, 2005). Infection of Arabidopsis (Arabidopsis thaliana) with B. cinerea causes the induction of the JA/ET responsive gene PLANT DEFENSIN1.2 (PDF1.2; Penninckx et al., 1996; Zimmerli et al., 2001). Induction of PDF1.2 by B. cinerea is blocked in ethylene-insensitive2 (ein2) and coronatine-insensitive1 (coi1) mutants that are respectively defective in ET and JA signal transduction pathways. Moreover, ein2 and coi1 plants are highly susceptible to B. cinerea infection (Thomma et al., 1998; Thomma et al., 1999). JA/ET-dependent responses do not seem to be usually induced during resistance to biotrophs, but they can be effective if they are stimulated prior to pathogen challenge (Glazebrook, 2005). Plants impaired in SA signaling are highly susceptible to biotrophic and hemibiotrophic pathogens. Following pathogen infection, SA hydroxylase (NahG), enhanced disease susceptibility5 (eds5), or SA induction-deficient2 (sid2) plants are unable to accumulate high SA levels and they display heightened susceptibility to Pseudomonas syringae pv tomato (Pst), Hyaloperonospora arabidopsidis, or Erysiphe orontii (Delaney et al., 1994; Lawton et al., 1995; Wildermuth et al., 2001; Nawrath et al., 2002; Vlot et al., 2009). Mutants that are insensitive to SA, such as nonexpressor of PATHOGENESIS-RELATED (PR) genes1 (npr1), have enhanced susceptibility to these pathogens (Cao et al., 1994; Glazebrook et al., 1996; Shah et al., 1997; Dong, 2004). According to some reports, plant defense against necrotrophs also involves SA. Arabidopsis plants expressing the nahG gene and infected with B. cinerea show larger lesions compared with wild-type plants (Govrin and Levine, 2002). In tobacco (Nicotiana tabacum), acidic isoforms of PR3 and PR5 gene that are specifically induced by SA (Ménard et al., 2004) are up-regulated after challenge by B. cinerea (El Oirdi et al., 2010). Resistance to some necrotrophs like Fusarium graminearum involves both SA and JA signaling pathways (Makandar et al., 2010). It is assumed that SA and JA signaling can be antagonistic (Bostock, 2005; Koornneef and Pieterse, 2008; Pieterse et al., 2009; Thaler et al., 2012). In Arabidopsis, SA inhibits JA-dependent resistance against A. brassicicola or B. cinerea (Spoel et al., 2007; Koornneef et al., 2008). Recent studies demonstrated that ET modulates the NPR1-mediated antagonism between SA and JA (Leon-Reyes et al., 2009; Leon-Reyes et al., 2010a) and suppression by SA of JA-responsive gene expression is targeted at a position downstream of the JA biosynthesis pathway (Leon-Reyes et al., 2010b). Synergistic effects of SA- and JA-dependent signaling are also well documented (Schenk et al., 2000; van Wees et al., 2000; Mur et al., 2006) and induction of some defense responses after pathogen challenge requires intact JA, ET, and SA signaling pathways (Campbell et al., 2003).Isolated MAMPs trigger defense responses that also require the activation of SA, JA, and ET signaling pathways (Tsuda et al., 2009; Katagiri and Tsuda, 2010). For instance, treatment with the flagellin peptide flg22 induces many SA-related genes including SID2, EDS5, NPR1, and PR1 (Ferrari et al., 2007; Denoux et al., 2008), causes SA accumulation (Tsuda et al., 2008; Wang et al., 2009), and activates ET signaling (Bethke et al., 2009; Mersmann et al., 2010). Local application of lipopolysaccharides elevates the level of SA (Mishina and Zeier, 2007). The oomycete Pep13 peptide induces defense responses in potato (Solanum tuberosum) that require both SA and JA (Halim et al., 2009). Although signaling networks induced by isolated MAMPs are well documented, the contribution of SA, JA, and ET in MAMP- or PAMP-induced resistance to biotrophs and necrotrophs is poorly understood.Rhamnolipids (RLs) are glycolipids produced by various bacteria species including some Pseudomonas and Burkholderia species. They are essential for bacterial surface motility and biofilm development (Vatsa et al., 2010; Chrzanowski et al., 2012). RLs are potent stimulators of animal immunity (Vatsa et al., 2010). They have recently been shown to elicit plant defense responses and to induce resistance against B. cinerea in grapevine (Vitis vinifera; Varnier et al., 2009). They also participate to biocontrol activity of the plant beneficial bacteria Pseudomonas aeruginosa PNA1 against oomycetes (Perneel et al., 2008). However, the signaling pathways used by RLs to stimulate plant innate immunity are not known. To gain more insights into RL-induced MTI, we investigated RL-triggered defense responses and resistance to the necrotrophic fungus B. cinerea, the biotroph oomycete H. arabidopsidis, and the hemibiotroph bacterium Pst in Arabidopsis. Our results show that RLs trigger an innate immune response in Arabidopsis that protects the plant against these different lifestyle pathogens. We demonstrate that RL-mediated resistance involves separated signaling sectors that depend on the type of pathogen. In plants challenged by RLs, SA has a central role and participates to the restriction of the three pathogens. ET is fully involved in RL-induced resistance to the biotrophic oomycete and to the hemibiotrophic bacterium whereas JA is essential for the resistance to the necrotrophic fungus.  相似文献   

16.
A reevaluation of flux data for Arabidopsis mutants reveals that nitrate uptake through AtNRT1.1 conforms to a single low-affinity transport system that makes virtually no contribution to high-affinity nitrate uptake.In papers by Wang et al. (1998), Liu et al. (1999), and Liu and Tsay (2003), it was proposed that Arabidopsis thaliana Nitrate Transporter1.1 (AtNRT1.1; CHL1) encodes a dual-affinity nitrate transporter that “plays a major role in high-affinity nitrate uptake.” Here, we evaluate this concept by reexamining the uptake kinetics of Arabidopsis (Arabidopsis thaliana) mutant lines defective in NRT1.1 or other nitrate transporters.The uptake of inorganic ions by plant roots conforms to a pattern of biphasic kinetics. At low external ion concentration, ions are absorbed by saturable high-affinity transport systems (HATS), while at high concentrations, nonsaturating low-affinity transport systems (LATS) operate. Such is the case for K+, NH4+, NO3, and ClO3 (a NO3 analog; Kochian and Lucas, 1982; Ullrich et al., 1984; Pace and McClure, 1986; Guy et al., 1988; Siddiqi et al., 1990; Aslam et al., 1992). The LATS for 36ClO3 uptake was linear at [ClO3] down to 200 μm in tobacco (Nicotiana tabacum; Guy et al., 1988) and for nitrate uptake by barley (Hordeum vulgare) down to 100 μm NO3 (Aslam et al., 1992). These concentrations were the lowest examined by the latter authors. In the studies by Pace and McClure (1986), Guy et al. (1988), Siddiqi et al. (1990), and Aslam et al. (1992), LATS fluxes were extremely small at low external [NO3] and linear at both low and high [NO3].In barley, both constitutive HATS (CHATS) and inducible HATS (IHATS) were demonstrated at low [NO3], while a constitutive LATS (CLATS) failed to saturate even at 50 mm NO3 (Siddiqi et al., 1990). Likewise, CHATS and IHATS for nitrate have been demonstrated in Arabidopsis, as well as CLATS and inducible LATS (ILATS; Tsay et al., 1993; Huang et al., 1999).Doddema and Telkamp (1979) isolated an Arabidopsis B1 mutant that was defective in the LATS for nitrate (but not the HATS) by screening for survival on ClO3. Tsay et al. (1993) isolated the nitrate-inducible AtNRT1.1 gene that encodes the ILATS. Interestingly, Touraine and Glass (1997) were unable to detect reduced LATS or HATS influxes in AtNRT1.1 mutants grown on KNO3, while Muños et al. (2004) reported increased HATS influx in AtNRT1.1 mutants. Likewise, Remans et al. (2006) failed to detect reduced uptake rates at low (0.5 mm) or high (10 mm) nitrate in AtNRT1.1 mutants.Among eukaryotes, genes encoding IHATS for nitrate were first isolated from Aspergillus nidulans (Unkles et al., 1991) and subsequently from Chlamydomonas reinhardtii (Quesada et al., 1994) and several higher plants (Glass, 2009), and based on the correlations between AtNRT2.1 expression and IHATS influx, it became accepted that IHATS was encoded by AtNRT2.1. This conclusion was supported by the demonstration that transfer DNA mutants disrupted in both AtNRT2.1 and AtNRT2.2 exhibited 67% reduction of HATS but no reduction in LATS function (Filleur et al., 2001). A gene encoding CHATS has not yet been identified, although a mutant with defective CHATS has been isolated (Wang and Crawford, 1996). In summary, it was held that in Arabidopsis, AtNRT2.1 was responsible for IHATS, while AtNRT1.1 and AtNRT1.2 encoded ILATS and CLATS, respectively (Forde, 2000; Li et al., 2007).In papers by Wang et al. (1998), Liu et al. (1999), and Liu and Tsay (2003), it was demonstrated that AtNRT1.1 mutants of Arabidopsis exhibited reduced nitrate uptake even at 10 μm nitrate. The authors concluded that AtNRT1.1 fluxes exhibited saturation kinetics in planta and in Xenopus laevis oocytes and proposed that NRT1.1 encodes a dual-affinity nitrate transporter that “plays a major role in high-affinity nitrate uptake” (Wang et al., 1998). Liu and Tsay (2003) demonstrated that the AtNRT1.1 protein was capable of switching between high- and low-affinity states by phosphorylation of Thr residue 101; under low-nitrogen (N) conditions, phosphorylation mediated via the activation of protein kinase CIPK23 generated a high-affinity transporter (Ho et al., 2009), whereas high-N favored the dephosphorylated low-affinity configuration.  相似文献   

17.
Nitric oxide (NO) is a small redox molecule that acts as a signal in different physiological and stress-related processes in plants. Recent evidence suggests that the biological activity of NO is also mediated by S-nitrosylation, a well-known redox-based posttranslational protein modification. Here, we show that during programmed cell death (PCD), induced by both heat shock (HS) or hydrogen peroxide (H2O2) in tobacco (Nicotiana tabacum) Bright Yellow-2 cells, an increase in S-nitrosylating agents occurred. NO increased in both experimentally induced PCDs, although with different intensities. In H2O2-treated cells, the increase in NO was lower than in cells exposed to HS. However, a simultaneous increase in S-nitrosoglutathione (GSNO), another NO source for S-nitrosylation, occurred in H2O2-treated cells, while a decrease in this metabolite was evident after HS. Consistently, different levels of activity and expression of GSNO reductase, the enzyme responsible for GSNO removal, were found in cells subjected to the two different PCD-inducing stimuli: low in H2O2-treated cells and high in the heat-shocked ones. Irrespective of the type of S-nitrosylating agent, S-nitrosylated proteins formed upon exposure to both of the PCD-inducing stimuli. Interestingly, cytosolic ascorbate peroxidase (cAPX), a key enzyme controlling H2O2 levels in plants, was found to be S-nitrosylated at the onset of both PCDs. In vivo and in vitro experiments showed that S-nitrosylation of cAPX was responsible for the rapid decrease in its activity. The possibility that S-nitrosylation induces cAPX ubiquitination and degradation and acts as part of the signaling pathway leading to PCD is discussed.Nitric oxide (NO) is a gaseous and diffusible redox molecule that acts as a signaling compound in both animal and plant systems (Pacher et al., 2007; Besson-Bard et al., 2008). In plants, NO has been found to play a key role in several physiological processes, such as germination, lateral root development, flowering, senescence, stomatal closure, and growth of pollen tubes (Beligni and Lamattina, 2000; Neill et al., 2002; Correa-Aragunde et al., 2004; He et al., 2004; Prado et al., 2004; Carimi et al., 2005). In addition, NO has been reported to be involved in plant responses to both biotic and abiotic stresses (Leitner et al., 2009; Siddiqui et al., 2011) and in the signaling pathways leading to programmed cell death (PCD; Delledonne et al., 1998; de Pinto et al., 2006; De Michele et al., 2009; Lin et al., 2012; Serrano et al., 2012).The cellular environment may greatly influence the chemical reactivity of NO, giving rise to different biologically active NO-derived compounds, collectively named reactive nitrogen species, which amplify and differentiate its ability to activate physiological and stress-related processes. Many of the biological properties of NO are due to its high affinity with transition metals of metalloproteins as well as its reactivity with reactive oxygen species (ROS; Hill et al., 2010). However, recent evidence suggests that protein S-nitrosylation, due to the addition of NO to reactive Cys thiols, may act as a key mechanism of NO signaling in plants (Wang et al., 2006; Astier et al., 2011). NO is also able to react with reduced glutathione (GSH), the most abundant cellular thiol, thus producing S-nitrosoglutathione (GSNO), which also acts as an endogenous trans-nitrosylating agent. GSNO is also considered as a NO store and donor and, as it is more stable than NO, acts as a long-distance NO transporter through the floematic flux (Malik et al., 2011). S-Nitrosoglutathione reductase (GSNOR), which is an enzyme conserved from bacteria to humans, has been suggested to play a role in regulating S-nitrosothiols (SNO) and the turnover of S-nitrosylated proteins in plants (Liu et al., 2001; Rusterucci et al., 2007).A number of proteins involved in metabolism, stress responses, and redox homeostasis have been identified as potential targets for S-nitrosylation in Arabidopsis (Arabidopsis thaliana; Lindermayr et al., 2005). During the hypersensitive response (HR), 16 proteins were identified to be S-nitrosylated in the seedlings of the same species (Romero-Puertas et al., 2008); in Citrus species, S-nitrosylation of about 50 proteins occurred in the NO-mediated resistance to high salinity (Tanou et al., 2009).However, while the number of candidate proteins for S-nitrosylation is increasing, the functional significance of protein S-nitrosylation has been explained only in a few cases, such as for nonsymbiotic hemoglobin (Perazzolli et al., 2004), glyceraldehyde 3-phosphate dehydrogenase (Lindermayr et al., 2005; Wawer et al., 2010), Met adenosyltransferase (Lindermayr et al., 2006), and metacaspase9 (Belenghi et al., 2007). Of particular interest are the cases in which S-nitrosylation involves enzymes controlling ROS homeostasis. For instance, it has been reported that S-nitrosylation of peroxiredoxin IIE regulates the antioxidant function of this enzyme and might contribute to the HR (Romero-Puertas et al., 2007). It has also been shown that in the immunity response, S-nitrosylation of NADPH oxidase inactivates the enzyme, thus reducing ROS production and controlling HR development (Yun et al., 2011).Recently, S-nitrosylation has also been shown to be involved in PCD of nitric oxide excess1 (noe1) rice (Oryza sativa) plants, which are mutated in the OsCATC gene coding for catalase (Lin et al., 2012). In these plants, which show PCD-like phenotypes under high-light conditions, glyceraldehyde 3-phosphate dehydrogenase and thioredoxin are S-nitrosylated. This suggests that the NO-dependent regulation of these proteins is involved in plant PCD, similar to what occurs in animal apoptosis (Sumbayev, 2003; Hara et al., 2005; Lin et al., 2012). The increase in hydrogen peroxide (H2O2) after exposure to high light in noe1 plants is responsible for the production of NO required for leaf cell death induction (Lin et al., 2012). There is a strict relationship between H2O2 and NO in PCD activation (Delledonne et al., 2001; de Pinto et al., 2002); however, the mechanism of this interplay is largely still unknown (for review, see Zaninotto et al., 2006; Zhao, 2007; Yoshioka et al., 2011). NO can induce ROS production and vice versa, and their reciprocal modulation in terms of intensity and timing seems to be crucial in determining PCD activation and in controlling HR development (Delledonne et al., 2001; Zhao, 2007; Yun et al., 2011).In previous papers, we demonstrated that heat shock (HS) at 55°C and treatment with 50 mm H2O2 promote PCD in tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells (Vacca et al., 2004; de Pinto et al., 2006; Locato et al., 2008). In both experimental conditions, NO production and decrease in cytosolic ascorbate peroxidase (cAPX) were observed as early events in the PCD pathway, and cAPX decrease has been suggested to contribute to determining the redox environment required for PCD (de Pinto et al., 2006; Locato et al., 2008).In this study, the production of nitrosylating agents (NO and GSNO) in the first hours of PCD induction by HS or H2O2 treatment in tobacco BY-2 cells and their role in PCD were studied. The possibility that S-nitrosylation could be a first step in regulating cAPX activity and turnover as part of the signaling pathway leading to PCD was also investigated.  相似文献   

18.
On the Inside     
Cellulose synthase complexes (CSCs) at the plasma membrane (PM) are aligned with cortical microtubules (MTs) and direct the biosynthesis of cellulose. The mechanism of the interaction between CSCs and MTs, and the cellular determinants that control the delivery of CSCs at the PM, are not yet well understood. We identified a unique small molecule, CESA TRAFFICKING INHIBITOR (CESTRIN), which reduces cellulose content and alters the anisotropic growth of Arabidopsis (Arabidopsis thaliana) hypocotyls. We monitored the distribution and mobility of fluorescently labeled cellulose synthases (CESAs) in live Arabidopsis cells under chemical exposure to characterize their subcellular effects. CESTRIN reduces the velocity of PM CSCs and causes their accumulation in the cell cortex. The CSC-associated proteins KORRIGAN1 (KOR1) and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1 (CSI1) were differentially affected by CESTRIN treatment, indicating different forms of association with the PM CSCs. KOR1 accumulated in bodies similar to CESA; however, POM2/CSI1 dissociated into the cytoplasm. In addition, MT stability was altered without direct inhibition of MT polymerization, suggesting a feedback mechanism caused by cellulose interference. The selectivity of CESTRIN was assessed using a variety of subcellular markers for which no morphological effect was observed. The association of CESAs with vesicles decorated by the trans-Golgi network-localized protein SYNTAXIN OF PLANTS61 (SYP61) was increased under CESTRIN treatment, implicating SYP61 compartments in CESA trafficking. The properties of CESTRIN compared with known CESA inhibitors afford unique avenues to study and understand the mechanism under which PM-associated CSCs are maintained and interact with MTs and to dissect their trafficking routes in etiolated hypocotyls.Plant cell expansion and anisotropic cell growth are driven by vacuolar turgor pressure and cell wall extensibility, which in a dynamic and restrictive manner direct cell morphogenesis (Baskin, 2005). Cellulose is the major load-bearing component of the cell wall and is thus a major determinant for anisotropic growth (Baskin, 2001). Cellulose is made up of β-1,4-linked glucan chains that may aggregate to form microfibrils holding 18 to 36 chains (Somerville, 2006; Fernandes et al., 2011; Jarvis, 2013; Newman et al., 2013; Thomas et al., 2013). In contrast to cell wall structural polysaccharides, including pectin and hemicellulose, which are synthesized by Golgi-localized enzymes, cellulose is synthesized at the plasma membrane (PM) by cellulose synthase complexes (CSCs; Somerville, 2006; Scheller and Ulvskov, 2010; Atmodjo et al., 2013). The cellulose synthases (CESAs) are the principal catalytic units of cellulose biosynthesis and in higher plants are organized into globular rosettes (Haigler and Brown, 1986). For their biosynthetic function, each primary cell wall CSC requires a minimum of three catalytic CESA proteins (Desprez et al., 2007; Persson et al., 2007).On the basis of observations that cellulose microfibrils align with cortical microtubules (MTs) and that MT disruption leads to a loss of cell expansion, it was hypothesized that cortical MTs guide the deposition and, therefore, the orientation of cellulose (Green, 1962; Ledbetter and Porter, 1963; Baskin, 2001; Bichet et al., 2001; Sugimoto et al., 2003; Baskin et al., 2004; Wasteneys and Fujita, 2006). Confocal microscopy of CESA fluorescent fusions has advanced our understanding of CESA trafficking and dynamics. CSCs are visualized as small particles moving within the plane of the PM, with an average velocity of approximately 200 to 400 nm min−1. Their movement in linear tracks along cortical MTs (Paredez et al., 2006) supports the MT-cellulose alignment hypothesis.Our current understanding of cellulose synthesis suggests that CESAs are assembled into CSCs in either the endoplasmic reticulum (ER) or the Golgi apparatus and trafficked by vesicles to the PM (Bashline et al., 2014; McFarlane et al., 2014). The presence of CESAs in isolated Golgi and vesicles from the trans-Golgi network (TGN) has been established by proteomic studies (Dunkley et al., 2006; Drakakaki et al., 2012; Nikolovski et al., 2012; Parsons et al., 2012; Groen et al., 2014). Their localization at the TGN has been corroborated by electron microscopy and colocalization with TGN markers, such as vacuolar H+-ATP synthase subunit a1 (VHA-a1), and the Soluble NSF Attachment Protein Receptor (SNARE) protein SYNTAXIN OF PLANTS41 (SYP41), SYP42, and SYP61 (Crowell et al., 2009; Gutierrez et al., 2009; Drakakaki et al., 2012). A population of post-Golgi compartments carrying CSCs, referred to as microtubule-associated cellulose synthase compartments (MASCs) or small cellulose synthase compartments (SmaCCs), may be associated with MTs or actin filaments and are thought to be directly involved in either CSC delivery to, or internalization from, the PM (Crowell et al., 2009; Gutierrez et al., 2009).In addition to the CESAs, auxiliary proteins have been identified that play a vital role in the cellulose-synthesizing machinery. These include COBRA (Roudier et al., 2005), the endoglucanase KORRIGAN1 (KOR1; Lane et al., 2001; Lei et al., 2014b; Vain et al., 2014), and the recently identified POM-POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1 (POM2/CSI1; Gu et al., 2010; Bringmann et al., 2012). The latter protein functions as a linker between the cortical MTs and CSCs, as genetic lesions in POM2/CSI1 result in a lower incidence of coalignment between CSCs and cortical MTs (Bringmann et al., 2012). Given the highly regulated process of cellulose biosynthesis and deposition, it can be expected that many more accessory proteins participate in the delivery of CSCs and their interaction with MTs. Identification of these unique CSC-associated proteins can ultimately provide clues for the mechanisms behind cell growth and cell shape formation.Arabidopsis (Arabidopsis thaliana) mutants with defects in the cellulose biosynthetic machinery exhibit a loss of anisotropic growth, which results in organ swelling. This phenotype may be used as a diagnostic tool in genetic screens to identify cellulose biosynthetic and CSC auxiliary proteins (Mutwil et al., 2008). Chemical inhibitors complement genetic lesions to perturb, study, and control the cellular and physiological function of proteins (Drakakaki et al., 2009). A plethora of bioactive small molecules have been identified, and their analytical use contributes to our understanding of cellulose biosynthesis and CESA subcellular behavior (for review, see Brabham and Debolt, 2012). Small molecule treatment can induce distinct characteristic subcellular CESA patterns that can be broadly grouped into three categories (Brabham and Debolt, 2012). The first is characterized by the depletion of CESAs from the PM and their accumulation in cytosolic compartments, as observed for the herbicide isoxaben {N-[3-(1-ethyl-1-methylpropyl)-5-isoxazolyl]-2,6-dimethyoxybenzamide}, CGA 325615 [1-cyclohexyl-5-(2,3,4,5,6-pentafluorophe-noxyl)-1λ4,2,4,6-thiatriazin-3-amine], thaxtomin A (4-nitroindol-3-yl containing 2,5-dioxopiperazine), AE F150944 [N2-(1-ethyl-3-phenylpropyl)-6-(1-fluoro-1-methylethyl)-1,3,5-triazine-2,4-di-amine], and quinoxyphen [4-(2-bromo-4,5-dimethoxyphenyl)-3,4-dihydro-1H-benzo-quinolin-2-one]; (Paredez et al., 2006; Bischoff et al., 2009; Crowell et al., 2009; Gutierrez et al., 2009; Harris et al., 2012). The second displays hyperaccumulation of CESAs at the PM, as seen for the herbicides dichlobenil (2,6-dichlorobenzonitrile) and indaziflam {N-[(1R,2S)-2,3-dihydro-2,6-dimethyl-1H-inden-1-yl)-6-(1-fluoroethyl]-1,3,5-triazine-2,4-diamine} (Herth, 1987; DeBolt et al., 2007b; Brabham et al., 2014). The third exhibits disturbance of both CESAs and MTs and alters CESA trajectories at the PM, as exemplified by morlin (7-ethoxy-4-methylchromen-2-one; DeBolt et al., 2007a). Unique compounds inducing a phenotype combining CESA accumulation in intermediate compartments and disruption of CSC-MT interactions can contribute to both the identification of the accessory proteins linking CSCs with MTs and the vesicular delivery mechanisms of CESAs.In this study, we identified and characterized a unique cellulose deposition inhibitor, the small molecule CESA TRAFFICKING INHIBITOR (CESTRIN), which affects the localization pattern of CSCs and their interacting proteins in a unique way. The induction of cytoplasmic CESTRIN bodies might provide further clues for trafficking routes that carry CESAs to the PM.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号