首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Acute respiratory distress syndrome (ARDS) is characterized by increased pulmonary inflammation and endothelial barrier permeability. Omentin has been shown to benefit obesity-related systemic vascular diseases; however, its effects on ARDS are unknown. In the present study, the level of circulating omentin in patients with ARDS was assessed to appraise its clinical significance in ARDS. Mice were subjected to systemic administration of adenoviral vector expressing omentin (Ad-omentin) and one-shot treatment of recombinant human omentin (rh-omentin) to examine omentin''s effects on lipopolysaccharide (LPS)-induced ARDS. Pulmonary endothelial cells (ECs) were treated with rh-omentin to further investigate its underlying mechanism. We found that a decreased level of circulating omentin negatively correlated with white blood cells and procalcitonin in patients with ARDS. Ad-omentin protected against LPS-induced ARDS by alleviating the pulmonary inflammatory response and endothelial barrier injury in mice, accompanied by Akt/eNOS pathway activation. Treatment of pulmonary ECs with rh-omentin attenuated inflammatory response and restored adherens junctions (AJs), and cytoskeleton organization promoted endothelial barrier after LPS insult. Moreover, the omentin-mediated enhancement of EC survival and differentiation was blocked by the Akt/eNOS pathway inactivation. Therapeutic rh-omentin treatment also effectively protected against LPS-induced ARDS via the Akt/eNOS pathway. Collectively, these data indicated that omentin protects against LPS-induced ARDS by suppressing inflammation and promoting the pulmonary endothelial barrier, at least partially, through an Akt/eNOS-dependent mechanism. Therapeutic strategies aiming to restore omentin levels may be valuable for the prevention or treatment of ARDS.Acute respiratory distress syndrome (ARDS) is a devastating condition with a 30–60% mortality rate.1, 2 Although the pathogenesis of ARDS is complex, the inflammatory response and endothelial barrier disruption play important roles in the development of ARDS.3, 4, 5 Therefore, in addition to conventional anti-inflammatory treatments, therapeutic strategies aim to restore pulmonary endothelial barrier integrity and function through regulating inter-endothelial AJs and the endothelial cytoskeleton to minimize protein leakage and leukocyte infiltration under ARDS conditions.6, 7Obesity, especially visceral obesity, has clearly been shown to impair systemic vasculature and to lead to the initiation and progression of vascular disorders.8, 9, 10 Although different from the well-documented impacts of obesity on cardiovascular disease, the relationships between obesity and ARDS have not been well elucidated. Clinical and experimental data focused on pertinent physiological changes in obesity indicate that the obesity may alter ARDS pathogenesis by ‘priming'' the pulmonary endothelial barrier for insult and amplifying the early inflammatory response, thus lowering the threshold to initiate ARDS.11, 12 Contrary to conventional dogma, adipose tissue is now appreciated as an important endocrine tissue that secretes various bioactive molecules called adipokines, which contribute to the progression of diverse vascular diseases, including hypertension, cardiovascular disease and atherosclerosis.13, 14, 15, 16 Although ARDS is not a classified pulmonary vascular disease, it is a severe inflammatory lung condition with widespread pulmonary endothelial breakdown. Clinical evidence has indicated that the obesity might be an emerging risk factor for ARDS and that circulating adipokines levels are associated with the initiation and progression of ARDS.11, 12, 17, 18 Moreover, experimental studies have suggested that some anti-inflammatory adipokines, such as adiponectin and apelin, exert beneficial actions on ARDS.19, 20, 21Omentin is an anti-inflammatory adipokine that is abundant in human visceral fat tissue.22, 23 Paradoxically, higher circulating omentin-1 levels are present in lean and healthy individuals compared with the obese and diabetic patients. Moreover, as a novel biomarker of endothelial dysfunction, reduced circulating omentin levels are related to the pathological mechanism of obesity-linked vascular disorders, including type 2 diabetes, atherosclerosis, hypertension and cardiovascular disease.24, 25, 26, 27, 28 Furthermore, experimental studies have found that omentin stimulates vasodilation in isolated blood vessels and suppresses cytokine-stimulated inflammation in endothelial cells (ECs).29, 30, 31 Thus, these data suggest that omentin may protect against obesity-related vascular complications through its anti-inflammatory and vascular-protective properties; however, little is known regarding its role in lung tissue. It was reported that decreased circulating omentin-1 levels could be regarded as an independent predictive marker for the obstructive sleep apnea syndrome and that omentin protects against pulmonary arterial hypertension through inhibiting vascular structure remodeling and abnormal contractile reactivity.32, 33, 34 However, to our knowledge, no study has assessed the impact of omentin on ARDS.Akt-related signaling pathways function as an endogenous negative feedback mechanism in response to the injurious stimulus. Our prior studies have demonstrated that Akt-related signaling contributes to protection against ARDS.35, 36 Moreover, omentin has been reported to exert anti-inflammatory, pro-survival and pro-angiogenic functions in various cells via an Akt-dependent mechanism.30, 31, 37, 38, 39, 40, 41, 42Collectively, given that ARDS is ultimately an obesity-related disorder of vascular function and that omentin is a favorable pleiotropic adipokine capable of anti-inflammatory, pro-angiogenic and anti-apoptotic abilities; omentin may exert beneficial effects on ARDS. In the present study, we first aimed to appraise the clinical significance of omentin in ARDS and then specifically evaluated its impact on inflammation and the endothelial barrier. Furthermore, we mechanistically investigated the role of Akt-related signaling pathways in these effects induced by omentin in vivo and in vitro.  相似文献   

4.
Our previous studies have demonstrated that inhibition of glycogen synthase kinase 3β (GSK3β) activity protects mice from acute liver failure (ALF), whereas its protective and regulatory mechanism remains elusive. Autophagy is a recently recognized rudimentary cellular response to inflammation and injury. The aim of the present study was to test the hypothesis that inhibition of GSK3β mediates autophagy to inhibit liver inflammation and protect against ALF. In ALF mice model induced by d-galactosamine (d-GalN) and lipopolysaccharide (LPS), autophagy was repressed compared with normal control, and d-GalN/LPS can directly induce autophagic flux in the progression of ALF mice. Autophagy activation by rapamycin protected against liver injury and its inhibition by 3-methyladenine (3-MA) or autophagy gene 7 (Atg7) small interfering RNA (siRNA) exacerbated liver injury. The protective effect of GSK3β inhibition on ALF mice model depending on the induction of autophagy, because that inhibition of GSK3β promoted autophagy in vitro and in vivo, and inhibition of autophagy reversed liver protection and inflammation of GSK3β inhibition. Furthermore, inhibition of GSK3β increased the expression of peroxisome proliferator-activated receptor α (PPARα), and the downregulated PPARα by siRNA decreased autophagy induced by GSK3β inhibition. More importantly, the expressions of autophagy-related gene and PPARα are significantly downregulated and the activity of GSK3β is significantly upregulated in liver of ALF patients with hepatitis B virus. Thus, we have demonstrated the new pathological mechanism of ALF that the increased GSK3β activity suppresses autophagy to promote the occurrence and development of ALF by inhibiting PPARα pathway.Acute liver failure (ALF), an inflammation-mediated hepatocellular injury process, is a clinical syndrome that results from hepatocellular apoptosis and hemorrhagic necrosis.1 ALF frequently results from viral hepatitis, ingestion of drugs or toxic substances, or hepatic ischemia-reperfusion injury, among others. The prognosis for ALF is extremely poor, and there is currently no effective therapy for the end stage of the disease other than liver transplantation.2 Although the nature of ALF has been extensively studied, the mechanisms by which organ damage occurs are not completely understood.Glycogen synthase kinases 3 are a group of ubiquitously expressed serine/threonine kinases that are initially found to regulate glycogen synthesis. There are two highly homologous isoforms, designated as glycogen synthase kinase 3 (GSK3)α and GSK3β, respectively. Constitutively active in resting cells, GSK3β has a broad range of substrates, and regulates cell activation, differentiation and survival.3, 4 Among the diverse functions that are regulated by GSK3β, inflammation has recently emerged as one of the major interesting focuses. Studies showed that GSK3β is an important positive regulator in inflammatory process.5, 6, 7, 8 GSK3β deletion results in embryonic lethality caused by severe liver degeneration during development.9 Particularly, GSK3β-deficient cells become more sensitive to tumor necrosis factor α (TNF-α)-induced apoptosis.10 Our studies have shown that the activity of GSK3β is promoted in the progression of ALF and inhibition of GSK3β mitigates liver inflammation to ameliorate ALF model of mice,11, 12 but its protective mechanisms are not well defined.Macroautophagy (referred to hereafter as autophagy) is a highly evolutionarily conserved process found in virtually all types of eukaryotic cells. Autophagy involves the sequestration of regions of cytosol within double-membrane-bound compartments followed by lysosome-based degradation of the contents. Previous studies have suggested that autophagy represents an adaptive strategy by which cells can remove damaged organelles and enhance survival following bioenergetics-induced stress, and have multiple roles of autophagy in the regulation of cell death, differentiation and the anti-microbial response in mammals.13, 14, 15 In recent years, emerging evidence has indicated that the autophagy process may have an essential role for the host during bacterial clearance and may also interact with inflammatory processes, which consequently may impact the outcomes of disease progression.16, 17 There is a complex reciprocal relationship between autophagy pathway/proteins and inflammation.18, 19 Recent observations have revealed a relationship between autophagy and inflammasome-associated pro-inflammatory cytokine maturation in macrophages.20, 21Given the above information, we speculated that autophagy activation may serve a protective function to restrain liver inflammation in cases of ALF. The study has also showed that inhibition of hepatocyte autophagy increases TNFα-dependent liver injury by promoting caspase-8 activation.22 So, we hypothesized that inhibition of GSK3β may promote autophagy to protect mice from ALF. To test these hypotheses, we used the ALF model induced by the co-injection of d-galactosamine (d-GalN) and lipopolysaccharide (LPS), which has been widely used to examine the underlying mechanisms of ALF,23, 24 to explore the protective mechanisms of GSK3β inhibition and its regulatory pathway in the context of ALF, and further measure the expression of autophagic gene in human liver samples from patients with ALF. Our findings demonstrate that inhibition of GSK3β increase autophagy to alleviate liver inflammation and protect mice from ALF mediated by peroxisome proliferator-activated receptor α (PPARα).  相似文献   

5.
A 5.5-y-old intact male cynomolgus macaque (Macaca fasicularis) presented with inappetence and weight loss 57 d after heterotopic heart and thymus transplantation while receiving an immunosuppressant regimen consisting of tacrolimus, mycophenolate mofetil, and methylprednisolone to prevent graft rejection. A serum chemistry panel, a glycated hemoglobin test, and urinalysis performed at presentation revealed elevated blood glucose and glycated hemoglobin (HbA1c) levels (727 mg/dL and 10.1%, respectively), glucosuria, and ketonuria. Diabetes mellitus was diagnosed, and insulin therapy was initiated immediately. The macaque was weaned off the immunosuppressive therapy as his clinical condition improved and stabilized. Approximately 74 d after discontinuation of the immunosuppressants, the blood glucose normalized, and the insulin therapy was stopped. The animal''s blood glucose and HbA1c values have remained within normal limits since this time. We suspect that our macaque experienced new-onset diabetes mellitus after transplantation, a condition that is commonly observed in human transplant patients but not well described in NHP. To our knowledge, this report represents the first documented case of new-onset diabetes mellitus after transplantation in a cynomolgus macaque.Abbreviations: NODAT, new-onset diabetes mellitus after transplantationNew-onset diabetes mellitus after transplantation (NODAT, formerly known as posttransplantation diabetes mellitus) is an important consequence of solid-organ transplantation in humans.7-10,15,17,19,21,25-28,31,33,34,37,38,42 A variety of risk factors have been identified including increased age, sex (male prevalence), elevated pretransplant fasting plasma glucose levels, and immunosuppressive therapy.7-10,15,17,19,21,25-28,31,33,34,37,38,42 The relationship between calcineurin inhibitors, such as tacrolimus and cyclosporin, and the development of NODAT is widely recognized in human medicine.7-10,15,17,19,21,25-28,31,33,34,37,38,42 Cynomolgus macaques (Macaca fasicularis) are a commonly used NHP model in organ transplantation research. Cases of natural and induced diabetes of cynomolgus monkeys have been described in the literature;14,43,45 however, NODAT in a macaque model of solid-organ transplantation has not been reported previously to our knowledge.  相似文献   

6.
7.
8.
9.
Neuropeptides induce signal transduction across the plasma membrane by acting through cell-surface receptors. The dynorphins, endogenous ligands for opioid receptors, are an exception; they also produce non-receptor-mediated effects causing pain and neurodegeneration. To understand non-receptor mechanism(s), we examined interactions of dynorphins with plasma membrane. Using fluorescence correlation spectroscopy and patch-clamp electrophysiology, we demonstrate that dynorphins accumulate in the membrane and induce a continuum of transient increases in ionic conductance. This phenomenon is consistent with stochastic formation of giant (~2.7 nm estimated diameter) unstructured non-ion-selective membrane pores. The potency of dynorphins to porate the plasma membrane correlates with their pathogenic effects in cellular and animal models. Membrane poration by dynorphins may represent a mechanism of pathological signal transduction. Persistent neuronal excitation by this mechanism may lead to profound neuropathological alterations, including neurodegeneration and cell death.Neuropeptides are the largest and most diverse family of neurotransmitters. They are released from axon terminals and dendrites, diffuse to pre- or postsynaptic neuronal structures and activate membrane G-protein-coupled receptors. Prodynorphin (PDYN)-derived opioid peptides including dynorphin A (Dyn A), dynorphin B (Dyn B) and big dynorphin (Big Dyn) consisting of Dyn A and Dyn B are endogenous ligands for the κ-opioid receptor. Acting through this receptor, dynorphins regulate processing of pain and emotions, memory acquisition and modulate reward induced by addictive substances.1, 2, 3, 4 Furthermore, dynorphins may produce robust cellular and behavioral effects that are not mediated through opioid receptors.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 As evident from pharmacological, morphological, genetic and human neuropathological studies, these effects are generally pathological, including cell death, neurodegeneration, neurological dysfunctions and chronic pain. Big Dyn is the most active pathogenic peptide, which is about 10- to 100-fold more potent than Dyn A, whereas Dyn B does not produce non-opioid effects.16, 17, 22, 25 Big Dyn enhances activity of acid-sensing ion channel-1a (ASIC1a) and potentiates ASIC1a-mediated cell death in nanomolar concentrations30, 31 and, when administered intrathecally, induces characteristic nociceptive behavior at femtomolar doses.17, 22 Inhibition of endogenous Big Dyn degradation results in pathological pain, whereas prodynorphin (Pdyn) knockout mice do not maintain neuropathic pain.22, 32 Big Dyn differs from its constituents Dyn A and Dyn B in its unique pattern of non-opioid memory-enhancing, locomotor- and anxiolytic-like effects.25Pathological role of dynorphins is emphasized by the identification of PDYN missense mutations that cause profound neurodegeneration in the human brain underlying the SCA23 (spinocerebellar ataxia type 23), a very rare dominantly inherited neurodegenerative disorder.27, 33 Most PDYN mutations are located in the Big Dyn domain, demonstrating its critical role in neurodegeneration. PDYN mutations result in marked elevation in dynorphin levels and increase in its pathogenic non-opioid activity.27, 34 Dominant-negative pathogenic effects of dynorphins are not produced through opioid receptors.ASIC1a, glutamate NMDA (N-methyl-d-aspartate) and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate ion channels, and melanocortin and bradykinin B2 receptors have all been implicated as non-opioid dynorphin targets.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 30, 31, 35, 36 Multiplicity of these targets and their association with the cellular membrane suggest that their activation is a secondary event triggered by a primary interaction of dynorphins with the membrane. Dynorphins are among the most basic neuropeptides.37, 38 The basic nature is also a general property of anti-microbial peptides (AMPs) and amyloid peptides that act by inducing membrane perturbations, altering membrane curvature and causing pore formation that disrupts membrane-associated processes including ion fluxes across the membrane.39 The similarity between dynorphins and these two peptide groups in overall charge and size suggests a similar mode of their interactions with membranes.In this study, we dissect the interactions of dynorphins with the cell membrane, the primary event in their non-receptor actions. Using fluorescence imaging, correlation spectroscopy and patch-clamp techniques, we demonstrate that dynorphin peptides accumulate in the plasma membrane in live cells and cause a profound transient increase in cell membrane conductance. Membrane poration by endogenous neuropeptides may represent a novel mechanism of signal transduction in the brain. This mechanism may underlie effects of dynorphins under pathological conditions including chronic pain and tissue injury.  相似文献   

10.
In the central nervous system (CNS), hyperglycemia leads to neuronal damage and cognitive decline. Recent research has focused on revealing alterations in the brain in hyperglycemia and finding therapeutic solutions for alleviating the hyperglycemia-induced cognitive dysfunction. Adiponectin is a protein hormone with a major regulatory role in diabetes and obesity; however, its role in the CNS has not been studied yet. Although the presence of adiponectin receptors has been reported in the CNS, adiponectin receptor-mediated signaling in the CNS has not been investigated. In the present study, we investigated adiponectin receptor (AdipoR)-mediated signaling in vivo using a high-fat diet and in vitro using neural stem cells (NSCs). We showed that AdipoR1 protects cell damage and synaptic dysfunction in the mouse brain in hyperglycemia. At high glucose concentrations in vitro, AdipoR1 regulated the survival of NSCs through the p53/p21 pathway and the proliferation- and differentiation-related factors of NSCs via tailless (TLX). Hence, we suggest that further investigations are necessary to understand the cerebral AdipoR1-mediated signaling in hyperglycemic conditions, because the modulation of AdipoR1 might alleviate hyperglycemia-induced neuropathogenesis.Adiponectin secreted by the adipose tissue1, 2 exists in either a full-length or globular form.3, 4, 5, 6 Adiponectin can cross the blood–brain barrier, and various forms of adiponectin are found in the cerebrospinal fluid.7, 8, 9, 10, 11 Adiponectin exerts its effect by binding to the adiponectin receptor 1 (AdipoR1) and adiponectin receptor 2 (AdipoR2)12, 13 that have different affinities for the various circulating adiponectins.12, 14, 15, 16, 17 Several studies reported that both receptor subtypes are expressed in the central nervous system (CNS).7, 12, 18 As adiponectin modulates insulin sensitivity and inflammation,19 its deficiency induces insulin resistance and glucose intolerance in animals fed a high-fat diet (HFD).19, 20, 21 In addition, adiponectin can ameliorate the glucose homeostasis and increase insulin sensitivity.22, 23, 24 Adiponectin, which is the most well-known adipokine, acts mainly as an anti-inflammatory regulator,25, 26 and is associated with the onset of neurological disorders.27 In addition, a recent study reported that adiponectin promotes the proliferation of hippocampal neural stem cells (NSCs).28 Considering that adiponectin acts by binding to the adiponectin receptors, investigation of the adiponectin receptor-mediated signaling in the brain is crucial to understand the cerebral effects of adiponectin and the underlying cellular mechanisms.The prevalence of type II diabetes mellitus (DM2) and Alzheimer''s disease increases with aging.29 According to a cross-sectional study, in people with DM2, the risk of dementia is 2.5 times higher than that in the normal population.30, 31 A study performed between 1980 and 2002 suggested that an elevated blood glucose level is associated with a greater risk for dementia in elderly patients with DM2.32 In addition, according to a 9-year-long longitudinal cohort study, the risk of developing Alzheimer''s disease was 65% higher in people with diabetes than in control subjects.33 A community-based cohort study also reported that higher plasma glucose concentrations are associated with an increased risk for dementia, because the higher glucose level has detrimental effects on the brain.31 High blood glucose level causes mitochondria-dependent apoptosis,34, 35, 36 and aggravates diverse neurological functions.37, 38 Inflammation and oxidative stress, which are commonly observed in people with diabetes, inhibit neurogenesis.39, 40, 41 Similarly, neurogenesis is decreased in mice and rats with genetically induced type I diabetes.42, 43 In addition, diabetic rodents have a decreased proliferation rate of neural progenitors.43, 44 Furthermore, several studies suggested that an HFD leads to neuroinflammation, the impairment of synaptic plasticity, and cognitive decline.45, 46Here, we investigated whether AdipoR1-mediated signaling is associated with cell death in the brain of mice on a HFD, and whether high glucose level modifies the proliferation and differentiation capacity of NSCs in vitro. Our study provides novel findings about the role of AdipoR1-mediated signaling in hyperglycemia-induced neuropathogenesis.  相似文献   

11.
Q Xia  Q Hu  H Wang  H Yang  F Gao  H Ren  D Chen  C Fu  L Zheng  X Zhen  Z Ying  G Wang 《Cell death & disease》2015,6(3):e1702
Neuroinflammation is a striking hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Previous studies have shown the contribution of glial cells such as astrocytes in TDP-43-linked ALS. However, the role of microglia in TDP-43-mediated motor neuron degeneration remains poorly understood. In this study, we show that depletion of TDP-43 in microglia, but not in astrocytes, strikingly upregulates cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production through the activation of MAPK/ERK signaling and initiates neurotoxicity. Moreover, we find that administration of celecoxib, a specific COX-2 inhibitor, greatly diminishes the neurotoxicity triggered by TDP-43-depleted microglia. Taken together, our results reveal a previously unrecognized non-cell-autonomous mechanism in TDP-43-mediated neurodegeneration, identifying COX-2-PGE2 as the molecular events of microglia- but not astrocyte-initiated neurotoxicity and identifying celecoxib as a novel potential therapy for TDP-43-linked ALS and possibly other types of ALS.Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by the degeneration of motor neurons in the brain and spinal cord.1 Most cases of ALS are sporadic, but 10% are familial. Familial ALS cases are associated with mutations in genes such as Cu/Zn superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TARDBP) and, most recently discovered, C9orf72. Currently, most available information obtained from ALS research is based on the study of SOD1, but new studies focusing on TARDBP and C9orf72 have come to the forefront of ALS research.1, 2 The discovery of the central role of the protein TDP-43, encoded by TARDBP, in ALS was a breakthrough in ALS research.3, 4, 5 Although pathogenic mutations of TDP-43 are genetically rare, abnormal TDP-43 function is thought to be associated with the majority of ALS cases.1 TDP-43 was identified as a key component of the ubiquitin-positive inclusions in most ALS patients and also in other neurodegenerative diseases such as frontotemporal lobar degeneration,6, 7 Alzheimer''s disease (AD)8, 9 and Parkinson''s disease (PD).10, 11 TDP-43 is a multifunctional RNA binding protein, and loss-of-function of TDP-43 has been increasingly recognized as a key contributor in TDP-43-mediated pathogenesis.5, 12, 13, 14Neuroinflammation, a striking and common hallmark involved in many neurodegenerative diseases, including ALS, is characterized by extensive activation of glial cells including microglia, astrocytes and oligodendrocytes.15, 16 Although numerous studies have focused on the intrinsic properties of motor neurons in ALS, a large amount of evidence showed that glial cells, such as astrocytes and microglia, could have critical roles in SOD1-mediated motor neuron degeneration and ALS progression,17, 18, 19, 20, 21, 22 indicating the importance of non-cell-autonomous toxicity in SOD1-mediated ALS pathogenesis.Very interestingly, a vital insight of neuroinflammation research in ALS was generated by the evidence that both the mRNA and protein levels of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) are upregulated in both transgenic mouse models and in human postmortem brain and spinal cord.23, 24, 25, 26, 27, 28, 29 The role of COX-2 neurotoxicity in ALS and other neurodegenerative disorders has been well explored.30, 31, 32 One of the key downstream products of COX-2, prostaglandin E2 (PGE2), can directly mediate COX-2 neurotoxicity both in vitro and in vivo.33, 34, 35, 36, 37 The levels of COX-2 expression and PGE2 production are controlled by multiple cell signaling pathways, including the mitogen-activated protein kinase (MAPK)/ERK pathway,38, 39, 40 and they have been found to be increased in neurodegenerative diseases including AD, PD and ALS.25, 28, 32, 41, 42, 43, 44, 45, 46 Importantly, COX-2 inhibitors such as celecoxib exhibited significant neuroprotective effects and prolonged survival or delayed disease onset in a SOD1-ALS transgenic mouse model through the downregulation of PGE2 release.28Most recent studies have tried to elucidate the role of glial cells in neurotoxicity using TDP-43-ALS models, which are considered to be helpful for better understanding the disease mechanisms.47, 48, 49, 50, 51 Although the contribution of glial cells to TDP-43-mediated motor neuron degeneration is now well supported, this model does not fully suggest an astrocyte-based non-cell autonomous mechanism. For example, recent studies have shown that TDP-43-mutant astrocytes do not affect the survival of motor neurons,50, 51 indicating a previously unrecognized non-cell autonomous TDP-43 proteinopathy that associates with cell types other than astrocytes.Given that the role of glial cell types other than astrocytes in TDP-43-mediated neuroinflammation is still not fully understood, we aim to compare the contribution of microglia and astrocytes to neurotoxicity in a TDP-43 loss-of-function model. Here, we show that TDP-43 has a dominant role in promoting COX-2-PGE2 production through the MAPK/ERK pathway in primary cultured microglia, but not in primary cultured astrocytes. Our study suggests that overproduction of PGE2 in microglia is a novel molecular mechanism underlying neurotoxicity in TDP-43-linked ALS. Moreover, our data identify celecoxib as a new potential effective treatment of TDP-43-linked ALS and possibly other types of ALS.  相似文献   

12.
13.
Necroptosis is a form of regulated necrotic cell death mediated by receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3. Necroptotic cell death contributes to the pathophysiology of several disorders involving tissue damage, including myocardial infarction, stroke and ischemia-reperfusion injury. However, no inhibitors of necroptosis are currently in clinical use. Here we performed a phenotypic screen for small-molecule inhibitors of tumor necrosis factor-alpha (TNF)-induced necroptosis in Fas-associated protein with death domain (FADD)-deficient Jurkat cells using a representative panel of Food and Drug Administration (FDA)-approved drugs. We identified two anti-cancer agents, ponatinib and pazopanib, as submicromolar inhibitors of necroptosis. Both compounds inhibited necroptotic cell death induced by various cell death receptor ligands in human cells, while not protecting from apoptosis. Ponatinib and pazopanib abrogated phosphorylation of mixed lineage kinase domain-like protein (MLKL) upon TNF-α-induced necroptosis, indicating that both agents target a component upstream of MLKL. An unbiased chemical proteomic approach determined the cellular target spectrum of ponatinib, revealing key members of the necroptosis signaling pathway. We validated RIPK1, RIPK3 and transforming growth factor-β-activated kinase 1 (TAK1) as novel, direct targets of ponatinib by using competitive binding, cellular thermal shift and recombinant kinase assays. Ponatinib inhibited both RIPK1 and RIPK3, while pazopanib preferentially targeted RIPK1. The identification of the FDA-approved drugs ponatinib and pazopanib as cellular inhibitors of necroptosis highlights them as potentially interesting for the treatment of pathologies caused or aggravated by necroptotic cell death.Programmed cell death has a crucial role in a variety of biological processes ranging from normal tissue development to diverse pathological conditions.1, 2 Necroptosis is a form of regulated cell death that has been shown to occur during pathogen infection or sterile injury-induced inflammation in conditions where apoptosis signaling is compromised.3, 4, 5, 6 Given that many viruses have developed strategies to circumvent apoptotic cell death, necroptosis constitutes an important, pro-inflammatory back-up mechanism that limits viral spread in vivo.7, 8, 9 In contrast, in the context of sterile inflammation, necroptotic cell death contributes to disease pathology, outlining potential benefits of therapeutic intervention.10 Necroptosis can be initiated by death receptors of the tumor necrosis factor (TNF) superfamily,11 Toll-like receptor 3 (TLR3),12 TLR4,13 DNA-dependent activator of IFN-regulatory factors14 or interferon receptors.15 Downstream signaling is subsequently conveyed via RIPK116 or TIR-domain-containing adapter-inducing interferon-β,8, 17 and converges on RIPK3-mediated13, 18, 19, 20 activation of MLKL.21 Phosphorylated MLKL triggers membrane rupture,22, 23, 24, 25, 26 releasing pro-inflammatory cellular contents to the extracellular space.27 Studies using the RIPK1 inhibitor necrostatin-1 (Nec-1) 28 or RIPK3-deficient mice have established a role for necroptosis in the pathophysiology of pancreatitis,19 artherosclerosis,29 retinal cell death,30 ischemic organ damage and ischemia-reperfusion injury in both the kidney31 and the heart.32 Moreover, allografts from RIPK3-deficient mice are better protected from rejection, suggesting necroptosis inhibition as a therapeutic option to improve transplant outcome.33 Besides Nec-1, several tool compounds inhibiting different pathway members have been described,12, 16, 21, 34, 35 however, no inhibitors of necroptosis are available for clinical use so far.2, 10 In this study we screened a library of FDA approved drugs for the precise purpose of identifying already existing and generally safe chemical agents that could be used as necroptosis inhibitors. We identified the two structurally distinct kinase inhibitors pazopanib and ponatinib as potent blockers of necroptosis targeting the key enzymes RIPK1/3.  相似文献   

14.
15.
Spontaneous neoplasms in Mongolian gerbils have an incidence of 20% to 26.8%, but osteosarcomas occur at a much lower rate. Here we report a 1-y-old Mongolian gerbil with a spontaneous osteosarcoma at the level of the proximal tibia, with metastases to the pectoral muscles and lungs. Grossly, the tibial mass obliterated the tibia and adjacent muscles, and an axillary mass with a bloody, cavitary center expanded the pectoral muscles. Microscopically, the tibial mass was an infiltrative, osteoblastic mesenchymal neoplasm, and the axillary mass was an anaplastic mesenchymal neoplasm with hemorrhage. The lung contained multiple metastatic foci. Immunohistochemistry for osteonectin was strongly positive in the tibial, axillary, and pulmonary metastases. Although osteosarcoma is the most common primary malignant bone neoplasm that occurs spontaneously in all laboratory and domestic animal species and humans, it arises less frequently than does other neoplasms. The current case of spontaneous osteoblastic osteosarcoma of the proximal tibia and metastases to the pectoral muscles and lung in a Mongolian gerbil is similar in presentation, histology, and predilection site of both osteoblastic and telangiectatic osteosarcomas in humans. In addition, this case is an unusual manifestation of osteosarcoma in the appendicular skeleton of a Mongolian gerbil.Mongolian gerbils are used frequently in biologic research,1,2,4,9,10,12-14 particularly in oncogenic studies and filariasis research studying Brugia malayi.2 There have been several reports1,6,10,11,13-15 of spontaneous neoplasms, particularly in gerbils 2 y of age and older, typically occurring with the highest incidences in the skin, reproductive tract, and adrenal glands; however, neoplasms have also been reported in the thyroid, thymus, liver, kidney, pancreas, and bone.1,6,10,11,13-15 The incidence of spontaneous neoplasms occurring in the subfamily Gerbillinae ranges from 20% to 26.8%,1,6,10,11,13-15 depending on the study, age, and sex of the animals.With a lower incidence than those reported for other neoplasms, osteosarcomas in gerbils have been described in the ramus of the mandible and as an extraskeletal mass throughout the peritoneum.10,11 The usual age of onset for osteosarcomas in Mongolian gerbils is approximately 3 y (36 to 39 mo); however, no tumor type has been reported at less than 2 y of age in this species.10,11 Here we report a spontaneous osteosarcoma that occurred at the level of the proximal tibia, with metastases to the pectoral muscles and lung, in a 1-y-old Mongolian gerbil.  相似文献   

16.
Amyloidosis is a progressive and ultimately fatal disease in which amyloid, an insoluble fibrillar protein, is deposited inappropriately in multiple organs, eventually leading to organ dysfunction. Although this condition commonly affects macaques, there is currently no reliable method of early diagnosis. Changes in clinical pathology parameters have been associated with amyloidosis but occur in late stages of disease, are nonspecific, and resemble those seen in chronic, idiopathic enterocolitis. A review of animal records revealed that amyloidosis was almost always diagnosed postmortem, with prevalences of 15% and 25% in our rhesus and pig-tailed macaque colonies, respectively. As a noninvasive, high-throughput diagnostic approach to improve antemortem diagnosis of amyloidosis in macaques, we evaluated serum amyloid A (SAA), an acute-phase protein and the precursor to amyloid. Using necropsy records and ELISA analysis of banked serum, we found that SAA is significantly elevated in both rhesus and pig-tailed macaques with amyloid compared with those with chronic enterocolitis and healthy controls. At necropsy, 92% of rhesus and 83% of pig-tailed had amyloid deposition in either the intestines or liver. Minimally invasive biopsy techniques including endoscopy of the small intestine, mucosal biopsy of the colon, and ultrasound-guided trucut biopsy of the liver were used to differentiate macaques in our colonies with similar clinical presentations as either having amyloidosis or chronic, idiopathic enterocolitis. Our data suggest that SAA can serve as an effective noninvasive screening tool for amyloidosis and that minimally invasive biopsies can be used to confirm this diagnosis.Abbreviations: SAA, serum amyloid AAmyloidosis is a pathologic condition that occurs spontaneously in humans, mammals, birds, and reptiles.47 Secondary systemic amyloidosis, also referred to as reactive amyloidosis, is the most common form described in domestic animals.46 It is a progressive disease in which an insoluble fibrillar protein consisting of β pleated sheets, amyloid, is deposited inappropriately in multiple organs, eventually leading to dysfunction.40,46 Secondary amyloidosis is most often the result of chronic infections or inflammatory disease. In humans, it occurs with a wide variety of conditions including inflammatory bowel disease,3 osteoarthritis including rheumatoid and juvenile forms,20,25 chronic infections such as tuberculosis, and hereditary disease such as familial Mediterranean fever.43 Similarly, in nonhuman primates, the disease has been described with several conditions of chronic infection or inflammation including bacterial enterocolitis,4,19,30,37 chronic indwelling catheters,9 parasitism,2,4 respiratory disease,30,37 trauma,37 and rheumatoid arthritis.6Despite reported prevalences as high as 30% in rhesus (Macaca mulatta)4 and 47% in pig-tailed macaques (Macaca nemestrina),19 amyloidosis remains a challenge to diagnose. The current diagnostic ‘gold standard’ in macaques is histopathology of the affected organ;19 however, amyloid can be deposited in tissues for as long as 3 y before the development of clinical signs.16 Histologic diagnoses of amyloidosis typically are confirmed with Congo red staining, in which amyloid proteins appear apple-green and birefringent under polarized light. In addition, electron microscopy can detect the fibrillar amyloid proteins in tissues, and other histologic stains including methyl violet, sulphonated Alcian blue, and thioflavin S and T can be used but are less specific than is Congo red.33 Although changes in clinical pathology parameters such as decreases in serum albumin and total protein have been associated with amyloidosis,19,29 they are often nonspecific and resemble those seen in the frequently comorbid conditions chronic anorexia and chronic, idiopathic enterocolitis. Furthermore, imaging techniques such as abdominal X-ray and ultrasonography have been shown to be nondiagnostic in macaques with amyloidosis.19 Consequently, at our institution and in other macaque colonies, diagnosis of amyloidosis is often made at necropsy.The current standard of diagnosis in humans is biopsy with histopathology of affected organs, but unlike in nonhuman primates, minimally invasive tissue sampling has been extensively explored.17 Aspiration or biopsy of the subcutaneous abdominal fat pad has currently replaced many biopsy techniques as the preliminary diagnostic, with reported sensitivities ranging from 66% to 92%.5,24,28,39,44 Rectal biopsy was previously the preferred minimally invasive approach and is now often used adjunctively when subcutaneous abdominal fat is negative for amyloid but the clinical suspicion for amyloidosis remains high.5,17 Additional tissue biopsy sites with limited morbidity such as skin, gingiva, and stomach have been reported with lesser sensitivities.5,34,39,44 In contrast, limited information is published on the usefulness of minimally invasive biopsy techniques for diagnosing amyloidosis in macaques. One report found endoscopic biopsy of the stomach and colon to be of limited utility in diagnosing amyloidosis in a colony of pig-tailed macaques.19 Similarly, a single publication reported colonoscopy to be noninformative and labor-intensive in a colony of rhesus macaques.15 Retrospective studies of macaque colonies have shown a predilection for amyloid deposition in the intestines and liver,4,30,38 suggesting that endoscopic or percutaneous biopsy of these tissues may reliably provide definitive antemortem diagnosis for amyloidosis.In addition to biopsy, identification of the relevant amyloid precursor protein within the blood is an integral part of the diagnosis of amyloidosis in human patients17 and holds promise as a screening tool in macaque colonies because of its high throughput potential in comparison to biopsy. Serum amyloid A (SAA), an acute-phase protein, can be found circulating in the blood and is the precursor for amyloid formation and deposition in secondary systemic amyloidosis. Specifically, when elevated SAA persists in the bloodstream, it ultimately progresses to amyloid deposition in tissues.13,45 Profound elevations in SAA occur in the bloodstream as a result of acute inflammation, but these elevations are transient as SAA then is rapidly degraded and removed from the peripheral circulation.7,45 Although the exact role of chronic inflammation and SAA in the pathogenesis of secondary, systemic amyloidosis is not well understood, SAA is pathologically persistently elevated in human patients with chronic inflammatory disease that develop secondary systemic amyloidosis. In contrast, serum SAA remains at normal lower levels in human patients without amyloidosis but ongoing chronic inflammatory disease.13,14,26 Furthermore, quantification of SAA is more effective than are organ function tests as a prognostic measure of amyloid disease and is routinely used to monitor disease progression and response to treatment in humans.14 In rhesus and pig-tailed macaques, SAA is elevated in subjects with amyloidosis as compared with those that are clinically normal.8,19 The ability to distinguish between healthy animals and those with subclinical amyloidosis would be clinically useful. Human studies indicate that establishing a diagnosis of secondary amyloidosis in its early stages followed by prompt treatment of the inciting chronic inflammatory process can arrest the progression of amyloidosis and can even result in disease remission in some cases.21,23,31,32,36 Of equal interest would be the ability to distinguish amyloidosis from chronic, idiopathic enterocolitis, a common disease among macaque colonies12,35 that has considerable clinical overlap with the late stages of amyloidosis but different therapeutic options and prognosis than does systemic amyloidosis. Although there is no definitive treatment for amyloidosis in humans or macaques, recent human case reports suggest that antiinflammatory therapy with newer targeted monocolonal antibody medications, such as IL6 receptor antagonists, can successfully reverse the disease. This outcome has been demonstrated in several cases by both the reduction of circulating SAA to normal levels and by the histologic disappearance of amyloid proteins in biopsies of affected tissues.21,23,31,32,36 Accurate antemortem diagnosis of amyloidosis in macaques potentially would support further investigations into the novel application of these drugs for the treatment of amyloidosis in both human and macaque patients.We hypothesize that SAA, in addition to being a useful screening method for identifying animals with amyloidosis, can be used to distinguish between macaques with this disease and those with chronic, idiopathic enterocolitis. We further hypothesize that, in agreement with retrospective studies from macaques at other institutions, the intestines and liver will be commonly affected in amyloidotic macaques in our own colonies and that minimally invasive biopsy of these tissues can provide definitive, antemortem diagnosis of amyloidosis.  相似文献   

17.
To grant faithful chromosome segregation, the spindle assembly checkpoint (SAC) delays mitosis exit until mitotic spindle assembly. An exceedingly prolonged mitosis, however, promotes cell death and by this means antimicrotubule cancer drugs (AMCDs), that impair spindle assembly, are believed to kill cancer cells. Despite malformed spindles, cancer cells can, however, slip through SAC, exit mitosis prematurely and resist killing. We show here that the Fcp1 phosphatase and Wee1, the cyclin B-dependent kinase (cdk) 1 inhibitory kinase, play a role for this slippage/resistance mechanism. During AMCD-induced prolonged mitosis, Fcp1-dependent Wee1 reactivation lowered cdk1 activity, weakening SAC-dependent mitotic arrest and leading to mitosis exit and survival. Conversely, genetic or chemical Wee1 inhibition strengthened the SAC, further extended mitosis, reduced antiapoptotic protein Mcl-1 to a minimum and potentiated killing in several, AMCD-treated cancer cell lines and primary human adult lymphoblastic leukemia cells. Thus, the Fcp1-Wee1-Cdk1 (FWC) axis affects SAC robustness and AMCDs sensitivity.The spindle assembly checkpoint (SAC) delays mitosis exit to coordinate anaphase onset with spindle assembly. To this end, SAC inhibits the ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C) to prevent degradation of the anaphase inhibitor securin and cyclin B, the major mitotic cyclin B-dependent kinase 1 (cdk1) activator, until spindle assembly.1 However, by yet poorly understood mechanisms, exceedingly prolonging mitosis translates into cell death induction.2, 3, 4, 5, 6, 7 Although mechanistic details are still missing on how activation of cell death pathways is linked to mitosis duration, prolongation of mitosis appears crucial for the ability of antimicrotubule cancer drugs (AMCDs) to kill cancer cells.2, 3, 4, 5, 6, 7 These drugs, targeting microtubules, impede mitotic spindle assembly and delay mitosis exit by chronically activating the SAC. Use of these drugs is limited, however, by toxicity and resistance. A major mechanism for resistance is believed to reside in the ability of cancer cells to slip through the SAC and exit mitosis prematurely despite malformed spindles, thus resisting killing by limiting mitosis duration.2, 3, 4, 5, 6, 7 Under the AMCD treatment, cells either die in mitosis or exit mitosis, slipping through the SAC, without or abnormally dividing.2, 3, 4 Cells that exit mitosis either die at later stages or survive and stop dividing or proliferate, giving rise to resistance.2, 3, 4 Apart from a role for p53, what dictates cell fate is still unknown; however, it appears that the longer mitosis is protracted, the higher the chances for cell death pathway activation are.2, 3, 4, 5, 6, 7Although SAC is not required per se for killing,6 preventing SAC adaptation should improve the efficacy of AMCD by increasing mitosis duration.2, 3, 4, 5, 6, 7 Therefore, further understanding of the mechanisms by which cells override SAC may help to improve the current AMCD therapy. Several kinases are known to activate and sustain SAC, and cdk1 itself appears to be of primary relevance.1, 8, 9 By studying mitosis exit and SAC resolution, we recently reported a role for the Fcp1 phosphatase to bring about cdk1 inactivation.10, 11 Among Fcp1 targets, we identified cyclin degradation pathway components, such as Cdc20, an APC/C co-activator, USP44, a deubiquitinating enzyme, and Wee1.10, 11 Wee1 is a crucial kinase that controls the G2 phase by performing inhibitory phosphorylation of cdk1 at tyr-15 (Y15-cdk1). Wee1 is also in a feedback relationship with cdk1 itself that, in turn, can phosphorylate and inhibit Wee1 in an autoamplification loop to promote the G2-to-M phase transition.12 At mitosis exit, Fcp1 dephosphorylated Wee1 at threonine 239, a cdk1-dependent inhibitory phosphorylation, to dampen down the cdk1 autoamplification loop, and Cdc20 and USP44, to promote APC/C-dependent cyclin B degradation.10, 11, 12 In this study we analysed the Fcp1 relevance in SAC adaptation and AMCD sensitivity.  相似文献   

18.
The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes.Drought and salinity cause osmotic stress in plants and severely affect crop productivity throughout the world. Plants respond to osmotic stress by changing a number of cellular processes (Xiong et al., 1999; Xiong and Zhu, 2002; Bartels and Sunkar, 2005; Boudsocq and Lauriére, 2005). Some of these changes include activation of stress-responsive genes, regulation of membrane transport at both plasma membrane (PM) and vacuolar membrane (tonoplast) to maintain water and ionic homeostasis, and metabolic changes to produce compatible osmolytes such as Pro (Stewart and Lee, 1974; Krasensky and Jonak, 2012). It has been well established that a specific calcium (Ca2+) signature is generated in response to a particular environmental stimulus (Trewavas and Malhó, 1998; Scrase-Field and Knight, 2003; Luan, 2009; Kudla et al., 2010). The Ca2+ changes are primarily perceived by several Ca2+ sensors such as calmodulin (Reddy, 2001; Luan et al., 2002), Ca2+-dependent protein kinases (Harper and Harmon, 2005), calcineurin B-like proteins (CBLs; Luan et al., 2002; Batistič and Kudla, 2004; Pandey, 2008; Luan, 2009; Sanyal et al., 2015), and other Ca2+-binding proteins (Reddy, 2001; Shao et al., 2008) to initiate various cellular responses.Plant CBL-type Ca2+ sensors interact with and activate CBL-interacting protein kinases (CIPKs) that phosphorylate downstream components to transduce Ca2+ signals (Liu et al., 2000; Luan et al., 2002; Batistič and Kudla, 2004; Luan, 2009). In several plant species, multiple members have been identified in the CBL and CIPK family (Luan et al., 2002; Kolukisaoglu et al., 2004; Pandey, 2008; Batistič and Kudla, 2009; Weinl and Kudla, 2009; Pandey et al., 2014). Involvement of specific CBL-CIPK pair to decode a particular type of signal entails the alternative and selective complex formation leading to stimulus-response coupling (D’Angelo et al., 2006; Batistič et al., 2010).Several CBL and CIPK family members have been implicated in plant responses to drought, salinity, and osmotic stress based on genetic analysis of Arabidopsis (Arabidopsis thaliana) mutants (Zhu, 2002; Cheong et al., 2003, 2007; Kim et al., 2003; Pandey et al., 2004, 2008; D’Angelo et al., 2006; Qin et al., 2008; Tripathi et al., 2009; Held et al., 2011; Tang et al., 2012; Drerup et al., 2013; Eckert et al., 2014). A few CIPKs have also been functionally characterized by gain-of-function approach in crop plants such as rice (Oryza sativa), pea (Pisum sativum), and maize (Zea mays) and were found to be involved in osmotic stress responses (Mahajan et al., 2006; Xiang et al., 2007; Yang et al., 2008; Tripathi et al., 2009; Zhao et al., 2009; Cuéllar et al., 2010).In this report, we examined the role of the Arabidopsis CIPK21 gene in osmotic stress response by reverse genetic analysis. The loss-of-function mutant plants became hypersensitive to salt and mannitol stress conditions, suggesting that CIPK21 is involved in the regulation of osmotic stress response in Arabidopsis. These findings are further supported by an enhanced tonoplast targeting of the cytoplasmic CIPK21 through interaction with the vacuolar Ca2+ sensors CBL2 and CBL3 under salt stress condition.  相似文献   

19.
In the oxidative stress hypothesis of aging, the aging process is the result of cumulative damage by reactive oxygen species. Humans and chimpanzees are remarkably similar; but humans live twice as long as chimpanzees and therefore are believed to age at a slower rate. The purpose of this study was to compare biomarkers for cardiovascular disease, oxidative stress, and aging between male chimpanzees and humans. Compared with men, male chimpanzees were at increased risk for cardiovascular disease because of their significantly higher levels of fibrinogen, IGF1, insulin, lipoprotein a, and large high-density lipoproteins. Chimpanzees showed increased oxidative stress, measured as significantly higher levels of 5-hydroxymethyl-2-deoxyuridine and 8-iso-prostaglandin F, a higher peroxidizability index, and higher levels of the prooxidants ceruloplasmin and copper. In addition, chimpanzees had decreased levels of antioxidants, including α- and β-carotene, β-cryptoxanthin, lycopene, and tocopherols, as well as decreased levels of the cardiovascular protection factors albumin and bilirubin. As predicted by the oxidative stress hypothesis of aging, male chimpanzees exhibit higher levels of oxidative stress and a much higher risk for cardiovascular disease, particularly cardiomyopathy, compared with men of equivalent age. Given these results, we hypothesize that the longer lifespan of humans is at least in part the result of greater antioxidant capacity and lower risk of cardiovascular disease associated with lower oxidative stress.Abbreviations: 5OHmU, 5-hydroxymethyl-2-deoxyuridine; 8isoPGF, 8-iso-prostaglandin F; HDL, high-density lipoprotein; IGF1, insulin-like growth factor 1; LDL, low-density lipoprotein; ROS, reactive oxygen speciesAging is characterized as a progressive reduction in the capacity to withstand the stresses of everyday life and a corresponding increase in risk of mortality. According to the oxidative stress hypothesis of aging, much of the aging process can be accounted for as the result of cumulative damage produced by reactive oxygen species (ROS).6,21,28,41,97 Endogenous oxygen radicals (that is, ROS) are generated as a byproduct of normal metabolic reactions in the body and subsequently can cause extensive damage to proteins, lipids, and DNA.6,41 Various prooxidant elements, in particular free transition metals, can catalyze these destructive reactions.6 The damage caused by ROS can be counteracted by antioxidant defense systems, but the imbalance between production of ROS and antioxidant defenses, over time, leads to oxidative stress and may contribute to the rate of aging.28,97Oxidative stress has been linked to several age-related diseases including neurodegenerative diseases, ophthalmologic diseases, cancer, and cardiovascular disease.21,28,97 Of these, cardiovascular disease remains the leading cause of adult death in the United States and Europe.71 In terms of cardiovascular disease, oxidative stress has been linked to atherosclerosis, hypertension, cardiomyopathy, and chronic heart failure in humans.55,78,84 Increases in oxidant catalysts (prooxidants)—such as copper, iron, and cadmium—have been associated with hypertension, coronary artery disease, atherosclerosis, and sudden cardiac death.98,102,106 Finally, both endogenous and exogenous antioxidants have been linked to decreased risk of cardiovascular disease, although the mechanisms behind this relationship are unclear.11,52,53 However, the oxidative stress hypothesis of aging aims to explain not only the mechanism of aging and age-related diseases (such as cardiovascular disease) in humans but also the differences between aging rates and the manifestations of age-related diseases across species.The differences in antioxidant and ROS levels between animals and humans offer promise for increasing our understanding of human aging. Additional evidence supporting the oxidative stress hypothesis of aging has come from comparative studies linking differences in aging rates across taxa with both antioxidant and ROS levels.4,17-21,58,71,86,105 In mammals, maximum lifespan potential is positively correlated with both serum and tissue antioxidant levels.17,18,21,71,105 Research has consistently demonstrated that the rate of oxidative damage varies across species and is negatively correlated with maximum lifespan potential.4,19,20,58,71,86 However, few studies involved detailed comparisons of hypothesized biochemical indicators of aging and oxidative stress between humans and animals.6 This type of interspecies comparison has great potential for directly testing the oxidative stress hypothesis of aging.Much evolutionary and genetic evidence supports remarkable similarity between humans and chimpanzees.95,100 Despite this similarity, humans have a lifespan of almost twice that of chimpanzees.3,16,47 Most comparative primate aging research has focused on the use of a macaque model,62,81,88 and several biochemical markers of age-related diseases have been identified in both humans and macaque monkeys.9,22,28,81,93,97 Several other species of monkeys have also been used in research addressing oxidative stress, antioxidant defenses, and maximum lifespan potential.18,21,58,105 However, no study to date has examined biochemical indicators of oxidative stress and aging in chimpanzees and humans as a test of the oxidative stress hypothesis for aging. The purpose of this study is to compare biochemical markers for cardiovascular disease, oxidative stress, and aging directly between male chimpanzees and humans. Given the oxidative stress hypothesis for aging and the known role of oxidative stress in cardiovascular disease, we predict that chimpanzees will show higher levels of cardiovascular risk and oxidative stress than humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号