首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Affinity of glucose, fructose and mannose for tumour hexokinase and their rates of phosphorylation at saturation concentration have been correlated with rates of glycogen synthesis by intact tumour cells at different concentrations of the three substrates. Competition experiments with one sugar labelled and the other sugar unlabelled indicate inhibition of glycogen synthesis by the sugar with a low K(m) for hexokinase. Glycogen synthesis from glucose 1-phosphate in aged cells and from nucleoside in freshly prepared cells is stimulated by fructose and inhibited by glucose. The decrease in glycogen formation from glucose 1-phosphate by oligomycin is partially overcome by increased fructose concentrations. These results are explained by an activation of alpha-glucan phosphorylase by fructose and an inhibition of this enzyme by glucose. It is suggested that differences in localization of glucose 6-phosphate, available to the intact cell in various ways, determine its transformation into glycogen by either the UDP-glucose-alpha-glucan glucosyltransferase reaction or by the alpha-glucan phosphorylase reaction.  相似文献   

2.
The mechanism for glycogen synthesis stimulation produced by adenosine, fructose, and glutamine has been investigated. We have analyzed the relationship between adenine nucleotides and glycogen metabolism rate-limiting enzymes upon hepatocyte incubation with these three compounds. In isolated hepatocytes, inhibition of AMP deaminase with erythro-9-(2-hydroxyl-3nonyl)adenine further increases the accumulation of AMP and the activation of glycogen synthase and phosphorylase by fructose. This ketose does not increase cyclic AMP or the activity of cyclic AMP-dependent protein kinase. Adenosine raises AMP and ATP concentration. This nucleotide also activates glycogen synthase and phosphorylase by covalent modification. The correlation coefficient between AMP and glycogen synthase activity is 0.974. Nitrobenzylthioinosine, a transport inhibitor of adenosine, blocks (by 50%) the effect of the nucleoside on AMP formation and glycogen synthase but not on phosphorylase. 2-Chloroadenosine and N6-phenylisopropyladenosine, nonmetabolizable analogues of adenosine, activate phosphorylase (6-fold) without increasing the concentration of adenine nucleotides or the activity of glycogen synthase. Cyclic AMP is not increased by adenosine in hepatocytes from starved rats but is in cells from fed animals. [Ethylenebis (oxyethylenenitrilo)]tetraacetic acid (EGTA) blocks by 60% the activation of phosphorylase by adenosine but not that of glycogen synthase. Glutamine also increases AMP concentration and glycogen synthase and phosphorylase activities, and these effects are blocked by 6-mercaptopurine, a purine synthesis inhibitor. Neither adenosine nor glutamine increases glucose 6-phosphate. It is proposed that the observed efficient glycogen synthesis from fructose, adenosine, and glutamine is due to the generation of AMP that activates glycogen synthase probably through increases in synthase phosphatase activity. It is also concluded that the activation of phosphorylase by the above-mentioned compounds can be triggered by metabolic changes.  相似文献   

3.
Glycogen synthesis by rat hepatocytes.   总被引:8,自引:0,他引:8       下载免费PDF全文
J Katz  S Golden    P A Wals 《The Biochemical journal》1979,180(2):389-402
1. Hepatocytes from starved rats or fed rats whose glycogen content was previously depleted by phlorrhizin or by glucagon injections, form glycogen at rapid rates when incubated with 10mM-glucose, gluconeogenic precursors (lactate, glycerol, fructose etc.) and glutamine. There is a net synthesis of glucose and glycogen. 14C from all three types of substrate is incorporated into glycogen, but the incorporation from glucose represents exchange of carbon atoms, rather than net incorporation. 14C incorporation does not serve to measure net glycogen synthesis from any one substrate. 2. With glucose as sole substrate net glucose uptake and glycogen deposition commences at concentrations of about 12--15mM. Glycogen synthesis increases with glucose concentrations attaining maximal values at 50--60mM, when it is similar to that obtained in the presence of 10mM glucose and lactate plus glutamine. 3. The activities of the active (a) and total (a+b) forms of glycogen synthase and phosphorylase were monitored concomitant with glycogen synthesis. Total synthase was not constant during a 1 h incubation period. Total and active synthase activity increased in parallel with glycogen synthesis. 4. Glycogen phosphorylase was assayed in two directions, by conversion of glycose 1-phosphate into glycogen and by the phosphorylation of glycogen. Total phosphorylase was assyed in the presence of AMP or after conversion into the phosphorylated form by phosphorylase kinase. Results obtained by the various methods were compared. Although the rates measured by the procedures differ, the pattern of change during incubation was much the same. Total phosphorylase was not constant. 5. The amounts of active and total phosphorylase were highest in the washed cell pellet. Incubation in an oxygenated medium, with or without substrates, caused a prompt and pronounced decline in the assayed amounts of active and total enzyme. There was no correlation between phosphorylase activity and glycogen synthesis from gluconeogenic substrates. With fructose, active and total phosphorylase activities increased during glycogen syntheses. 6. In glycogen synthesis from glucose as sole substrate there was a decline in phosphorylase activities with increased glucose concentration and increased rates of glycogen deposition. The decrease was marked in cells from fed rats. 7. To determine whether phosphorolysis and glycogen synthesis occur concurrently, glycogen was prelabelled with [2-3H,1-14C]-galactose. During subsequent glycogen deposition there was no loss of activity from glycogen in spite of high amounts of assayable active phosphorylase.  相似文献   

4.
Hormonal regulation of glycogen metabolism in neonatal rat liver   总被引:5,自引:3,他引:2  
1. The development of active and inactive phosphorylase was determined in rat liver during the perinatal period. No inactive form could be found in tissues from animals less than 19 days gestation or older than the fifth postnatal day. 2. The regulation of phosphorylase in organ cultures of foetal rat liver was examined. None of the agents examined [glucagon, insulin or dibutyryl cyclic AMP (6-N,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate)] changed the amount of phosphorylase activity. 3. Glycogen concentration in these explants were nevertheless decreased more than twofold by 4h of incubation with glucagon or dibutyryl cyclic AMP. Incubation with insulin for 4h increased the glycogen content twofold. 4. Glycogen synthetase activity was examined in these explants. I-form activity (without glucose 6-phosphate) was found to decrease by a factor of two after 4h of incubation with dibutyryl cyclic AMP, whereas I+D activity (with glucose 6-phosphate) remained nearly constant. Incubation for 4h with insulin increased I-form activity threefold, with only a slight increase in I+D activity. 5. When explants were incubated with insulin followed by addition of dibutyryl cyclic AMP, the effects of insulin on glycogen concentration and glycogen synthetase activity were reversed. 6. These results indicate that the regulation of glycogen synthesis may be the major factor in the hormonal control of glycogen metabolism in neonatal rat liver.  相似文献   

5.
Treatment of nitrogen-starved cultures of Escherichia coli W4597(K) with sodium azide results in simultaneous changes in both glucose 6-phosphate and fructose 1,6-diphosphate as well as in the rate of glycogen synthesis. Based on these observations, a comprehensive equation was developed which relates the cellular levels of both of these hexose phosphates with the rate of glycogen synthesis. This relationship apparently represents the interaction in vivo between the rate-limiting enzyme of bacterial glycogen synthesis, glucose 1-phosphate adenylyltransferase (adenosine diphosphoglucose synthetase, EC 2.7.7.27), and its substrate glucose 1-phosphate (reflected by glucose 6-phosphate) and its major allosteric activator fructose diphosphate. The form of the equation that describes this relationship was determined from studies presented here of the kinetic properties of the E. coli W4597(K) enzyme in the presence of physiological concentrations of its substrates and modulators. We show here and in subsequent reports of this series that the comprehensive relationship between glycogen synthesis and hexose phosphates can serve as a reference to evaluate the possible participation of new factors in the regulation of glycogen synthesis. Treatment with NaN3 did not change the cellular level of glucose 1-phosphate adenylyltransferase. The value of the adenylate energy charge, (ATP + 1/2 ADP)/(ATP + ADP + AMP), was maintained despite losses of up to 35% in cellular adenylates. The quantitative co-variance between hexose phosphates and the cellular rate of glucose utilization that we previously described for other metabolic conditions was also observed in the azide-treated cultures. We integrate the new information into the system of coordinated regulation of glycogen synthesis, glycolysis, and glucose utilization that we proposed previously.  相似文献   

6.
The kinetic analysis of the glycogen chain growth reaction catalyzed by glycogen phosphorylase b from rabbit skeletal muscle has been carried out over a wide range of concentrations of AMP under the saturation of the enzyme by glycogen. The applicability of 23 different variants of the kinetic model involving the interaction of AMP and glucose 1-phosphate binding sites in the dimeric enzyme molecule is considered. A kinetic model has been proposed which assumes: (i) the independent binding of one molecule of glucose 1-phosphate in the catalytic site on the one hand, and AMP in both allosteric effector sites and both nucleoside inhibitor sites of the dimeric enzyme molecule bound by glycogen on the other hand; (ii) the binding of AMP in one of the allosteric effector sites results in an increase in the affinity of other allosteric effector site to AMP; (iii) the independent binding of AMP to the nucleoside inhibitor sites of the dimeric enzyme molecule; (iv) the exclusive binding of the second molecule of glucose 1-phosphate in the catalytic site of glycogen phosphorylase b containing two molecules of AMP occupying both allosteric effector sites; and (v) the catalytic act occurs exclusively in the complex of the enzyme with glycogen, two molecules of AMP occupying both allosteric effector sites, and two molecules of glucose 1-phosphate occupying both catalytic sites.  相似文献   

7.
Liver homogenates of avian species, but not of mammals, form glycogen from glucose, mannose, fructose and galactose. Incorporation of labelled glucose, fructose and mannose, but not of labelled galactose, into glycogen is diluted isotopically by unlabelled glucose. Except for fructose, glycogen formation from other substrates by pigeon liver homogenates compares favourably with that from the same substrates in pigeon liver slices. Optimum conditions for glycogen synthesis from glucose by pigeon liver homogenate are: medium of incubation, 0.175m-sucrose-45mm-potassium chloride-15mm-glycylglycine buffer, pH7.5; concentration of substrate, 15mm; concentration of tissue, less than 120mg./ml.; temperature of incubation, 37-43 degrees ; atmosphere, oxygen. Uncouplers of oxidative phosphorylation, Ca(2+), EDTA, PP(i), 2-deoxyglucose 6-phosphate and microsomal fraction of rat liver are inhibitory to glycogen synthesis from glucose. Starvation of pigeons for 24 and 48hr. leads to a slight stimulation of glycogen synthesis in their liver homogenates as compared with fed controls. Pigeon liver homogenates can be separated into subcellular fractions that on reconstitution can synthesize glycogen. All the enzymes of the glycogen pathway except soluble high-K(m) glucokinase are present in pigeon liver.  相似文献   

8.
Glycogen synthase (UDP glucose: glycogen α-4-glucosyltransferase, EC 2.4. 1.11) from rat kidney was stimulated 4- to 5-fold by glucose 6-phosphate. The for glucose 6-phosphate stimulation was about 0.45 mM. Glycogen synthase was not evenly distributed throughout the kidney. Total synthase activity was greatest in the outer cortex and cortico-medullary junction and least in the inner medulla. Glucose 6-phosphate stimulation was greatest in the outer cortex and least in the inner medulla. Glycogen synthase in crude homogenates was not complexed with glycogen and eluted from Sepharose 6-B with an apparent molecular weight of about 390 000.Renal glycogen synthase appeared to exist in two interconvertible forms, synthase I (activity in the absence of glucose 6-phosphate) and synthase D (requires glucose 6-phosphate for activity). The conversion of synthase D to I (synthase D phosphatase) was inhibited by F, glycogen, ATP, Mn2+, and Co2+. The conversion was not altered by mercaptoethanol, AMP, Mg2+, or Ca2+. The conversion of synthase I to D (synthase I kinase) required ATP-Mg and was stimulated by cyclic AMP.It was suggested that the interconversion of renal glycogen synthase involved a phosphorylation-dephosphorylation. The significance of glycogen synthase interconversion to the regulation of renal glycogen synthesis is discussed.  相似文献   

9.
1. The interaction of rabbit muscle glycogen phosphorylase b with pairs of ligands has been examined. 2. The electron spin resonance spectrum of a spin label, covalently attached to the protein, provided information about dissociation constants, formation of ternary complexes and both negative and positive interactions between different ligand pairs. 3. AMP competes with a series of nucleotides (ADP, ATP, CMP aand cytosine) but with adenosine a ternary enzyme - AMP - adenosine complex can be formed. 4. ADP binding is tight and ADP inhibits the AMP activation of phosphorylase b in a physiologically important concentration range. 5. The substrates glucose 1-phosphate and glycogen tighten AMP binding in the ternary complex as does the competitive inhibitor UDPG. Inorganic phosphate is different in this respect. Gluconolactone, a transition state analogue, competes with glucose 1-phosphate (but not with glycogen) but does not prevent completely the binding of the sugar phosphate. 6. The effect of glucose b-phosphate on phosphorylase is rather complex as it 'formally competes' with both AMP and UDPG probably mediated by a conformational changes and not by 'direct' interactions with these two ligands. Glycerol 2-phosphate, a commonly used buffer for phosphorylase, also shows complex interactions.  相似文献   

10.
B Christ  K Jungermann 《FEBS letters》1987,221(2):375-380
[14C]Glucose release either from endogenous 14C-prelabelled glycogen or from added 14C-labelled glucose 6-phosphate was measured in filipin-treated, permeabilized hepatocytes in 48 h culture. [14C]Glucose output from prelabelled glycogen was not altered by the addition of 5 mM glucose 6-phosphate to the incubation medium. Conversely, [14C]glucose release from 5 mM labelled glucose 6-phosphate was not influenced by different glycogen concentrations in the cells. Moreover, in the permeabilized cells the anion transport inhibitor DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid) inhibited only the liberation of [14C]glucose from labelled glucose 6-phosphate but not from glycogen. It is therefore concluded that there exist at least 2 separate, mutually non-accessible glucose 6-phosphate pools in cultured rat hepatocytes, one linked to glycogenolysis and the other to gluconeogenesis.  相似文献   

11.
1. The influence of ATP on glucose metabolism was studied in the isolated rat diaphragm; it was shown that ATP increases the oxidation of glucose and the aerobic conversion of glucose into lactate, whereas it decreases glycogen synthesis. There was no influence of ATP on the anaerobic formation of lactate from glucose. 2. A maximum effect of ATP on the oxidation of glucose (about 160% increase) was obtained in the presence of 10mm-ATP; in the presence of 2mm-ATP the effect was about 65%, and was approximately constant from 10 to 90min. incubation period. 3. In a phosphate-free tris-buffered medium the oxidation of glucose was considerably decreased, but the percentage stimulation by ATP was about the same as in a phosphate-buffered medium. 4. ATP was shown to increase the oxidation of fructose, glucose 6-phosphate, glucose 1-phosphate, fructose 1,6-diphosphate and, to a much smaller extent, pyruvate. 5. ADP stimulated the oxidation of glucose to the same extent as ATP at a concentration of 2mm and the effect with AMP was only slightly less; IMP and adenosine had only a small stimulatory effect at this concentration, whereas inosine had no effect.  相似文献   

12.
The effects of adenosine on glycogen metabolism have been studied in isolated fat-pads from epididymal adipose tissue. Adenosine caused a sustained short-term increase in the incorporation of [U-14C]glucose into glycogen, as well as a stimulation of both basal and insulin-induced [1-14C]glucose oxidation. Adenosine produced changes also in the activity of glycogen synthase and phosphorylase, these effects being apparent only when glucose was present in the incubation medium. The addition of adenosine prevented the depressed synthesis of glycogen observed in the presence of dibutyryl cyclic AMP. In the presence of adenosine deaminase, the stimulation by insulin of glycogen synthesis was markedly decreased. The results suggest that adenosine may have a regulatory role on glycogen synthesis by facilitating the glucose transport.  相似文献   

13.
Two interconvertible forms of glycogen synthase and glycogen phosphorylase, one active (a) or the other less active (b), were predominantly present in a thermosensitive adenylate-cyclase-deficient mutant that had been preincubated at the restrictive temperature of 35 degrees C, either in the presence or in the absence of glucose. Glycogen phosphorylase was at least 20-fold less active after incubation of the cells in the presence of glucose, but this residual activity had kinetic properties identical to those of the active form of enzyme, obtained after incubation in the absence of glucose; this suggests that the b form might be completely inactive and that the low activity measured after glucose treatment must be attributed to a residual amount of phosphorylase a. By contrast, the kinetic properties of the two forms of glycogen synthase were very different. When measured in the absence of glucose 6-phosphate, the two forms of enzyme had a similar affinity for UDP-Glc but differed essentially by their Vmax. Glucose 6-phosphate had no effect on synthase a, but increased both Vmax and Km of synthase b; these effects, however, were in great part counteracted by sulfate and by inorganic phosphate, the latter also having the property of increasing the Km of the a form, without affecting Vmax. It was estimated that at physiological concentrations of substrates and effectors, synthase a was about 20-fold more active than synthase b. When an extract of cells that had been preincubated in the absence of glucose was gel-filtered and then incubated at 30 degrees C, phosphorylase was progressively fully inactivated and synthase was partially activated; these reactions were severalfold faster and, in the case of glycogen synthase, more complete in the presence of 10 mM glucose 6-phosphate. When a gel-filtered extract of cells that had been preincubated in the presence of glucose was incubated at 30 degrees C in the presence of ATP-Mg and EGTA, phosphorylase became activated and synthase was inactivated; the first of these two reactions was severalfold stimulated by micromolar concentrations of Ca2+, whereas both reactions were completely inhibited by 10 mM glucose 6-phosphate and only slightly and irregularly stimulated by cyclic AMP.  相似文献   

14.
The crystal structure of glycogen phosphorylase b in the presence of the weak activator 2 mm-inosine 5′-phosphate has been solved at 3 Å resolution. The binding interactions of the substrate, glucose 1-phosphate, at the catalytic site are described. The nearby presence (6 Å) of the essential co-factor, pyridoxal phosphate, is consistent with biochemical studies but an analysis of the way in which this group might act in catalysis leads to results that are inconsistent with solution studies. Moreover it is difficult to accommodate a glycogen substrate with its terminal glucose in the position defined by glucose 1-phosphate. Model-building studies show that an alternative binding mode for glucose 1-phosphate is possible and that this alternative mode allows a glycogen substrate to be fitted with ease. The alternative binding site leads directly to proposals for the mechanism in which the phosphate group of pyridoxal phosphate acts as a nucleophile and the imidazole of histidine 376 functions as a general acid. It is suggested that these are the essential features of the catalytic mechanism and that, in the absence of the second substrate, glycogen, and in the absence of AMP, the enzyme binds glucose 1-phosphate in a non-productive mode. Conversion of the enzyme to the active conformation through association with AMP may result in conformational changes that direct the binding to the productive mode.  相似文献   

15.
Purified glycogen synthase is contaminated with traces of two protein kinases that can phosphorylate the enzyme. One is protein kinase dependent on adenosine 3':5'-monophosphate (cyclic AMP) and the second is an activity termed glycogen synthase kinase-2 [Nimmo, H.G. and Cohen P, (1974)]. Glycogen synthase kinase-2 has been found to be localized relatively specifically in the protein-glycogen complex. It has been purified 4000-fold by two procedures, both of which involve disruption of the complex, followed by the DEAE-cellulose and phosphocellulose chromatographies. However the salt concentration at which glycogen synthase kinase-2 is eluted from DEAE-cellulose depends on the method that is used to disrupt the complex. The results indicate that glycogen synthase kinase-2 is firmly attached to a protein component of the complex. The isolation procedures separate glycogen synthase kinase-2 from phosphorylase kinase, cyclic AMP-dependent protein kinase and other glycogen-metabolising enzymes. Glycogen synthase kinase-2 is the major phosvitin kinase in skeletal muscle, although glycogen synthase is a six to eight-fold better substrate than phosvitin under the standard assay conditions. Phosphorylase kinase and phosphorylase b are not substrates for glycogen synthase kinase 2. Following incubation with cyclic-AMP-dependent protein kinase, cyclic AMP and Mg-ATP, the phosphorylation of glycogen synthase reaches a plateau at 1.0 molecules of phosphate incorporated per subunit and the activity ratio measured in the absence and presence of glucose 6-phosphate falls from 0.8 to a plateau of 0.18. The Ka for glucose 6-phosphate of this phosphorylated species, termed glycogen synthase b1, is the 0.6 mM. Following incubation with glycogen synthase kinase-2 and Mg-ATP, the phosphorylation reaches a plateau of 0.92 molecules of phosphate incorporated per subunit and the activity ratio decreases to a plateau of 0.08. The Ka for glucose 6-phosphate of this phosphorylated species, termed glycogen synthetase b2, is 4 mM. In the presence of both cyclic-AMP-dependent protein kinase and glycogen synthase kinase-2, the phosphorylation of glycogen synthase reaches a plateau when 1.95 molecules of phoshophate have been incorporated per subunit. The activity ratio is 0.01 and the Ka for glucose 6-phosphate is 10 mM. The results indicate that glycogen synthase can be regulated by two distinct phosphorylation-dephosphorylation cycles. The implication of these findings for the regulation of glycogen synthase in vivo are discussed.  相似文献   

16.
Comparative time-course studies of glycogen synthesis from glucose 6-phosphate, glucose 1-phosphate and UDP-glucose show that glucose 1-phosphate forms glycogen at an initial rate faster than that obtained with glucose 6-phosphate and UDP-glucose. After 5min. the rates from glucose monophosphates are considerably slower. 2,4-Dinitrophenol decreases glycogen synthesis from both glucose monophosphates, whereas arsenate and EDTA increase glycogen synthesis from glucose 1-phosphate and inhibit the reaction from glucose 6-phosphate, galactose and galactose 1-phosphate. Mitochondria-free pigeon liver cytoplasmic fraction forms less glycogen from glucose monophosphates than does the whole homogenate. 2-Deoxyglucose 6-phosphate inhibits glycogen synthesis from glucose monophosphates. Glycogen formation from UDP-glucose is relatively unaffected by dinitrophenol, by arsenate, by EDTA, by 2-deoxyglucose 6-phosphate and by the removal of mitochondria from the whole homogenate.  相似文献   

17.
To identify the factors which control glycogen synthesis in Saccharomyces cerevisiae, we have studied the regulation of glycogen metabolism during sporulation, since in vivo glycogen has been reported to undergo significant changes in concentration during this process. We examined the concentration of a number of key glycolytic intermediates and enzymes in strains that sporulate at different rates and those that are deficient in sporulation. There were no significant changes found in the adenylate energy charge or cyclic AMP levels throughout sporulation. Although significant alterations occurred in the levels of glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate, phosphoenolpyruvate, and ATP during sporulation, only the fourfold increase in fructose-1,6-bisphosphate appeared to correlate with glycogen synthesis in all of the strains examined. Only limited changes occurred in the level of a number of glycolytic and gluconeogenic enzymes which were examined during this process. Intracellular glucose content underwent a dramatic 30- to 40-fold increase in sporulating cells. Comparison of strains with different rates of sporulation demonstrated that this increase in glucose content coincides with the time of glycogen degradation in each strain. Both the increase in glucose content and the degradation of accumulated glycogen were not observed in nonsporulating alpha/alpha strains, or in cells incubated in NH(4) (+) supplemented sporulation medium. Although glucose appears to be the direct product of glycogen degradation, a 10-fold increase in a nonspecific alkaline phosphatase occurs at this time, which may be degrading phosphorylated sugars to glucose. All of the strains examined released extracellular glucose while suspended in acetate sporulation medium. It is concluded that most of the changes in the glycolytic pathway that occur during sporulation, with the exception of glycogen degradation and the concomitant increase in intracellular glucose pools, are a response to the transfer to sporulation medium and are independent of sporulation-specific processes. Inhibition of sporulation with ammonium ions resulted in a different pattern of change in all of the glycolytic intermediates examined, including a twofold increase in cyclic AMP levels. Ammonia did not interfere with glycogen synthesis, but prevented sporulation-specific glycogen degradation. The levels of the glycolytic enzymes examined were not affected by ammonia.  相似文献   

18.
Chick embryo neuroretinal (NR) cells transdifferentiate extensively into lens when cultured for several weeks in low-glucose (FH) medium, but fail to do so when high levels of supplementary glucose (FHG) are present. We show here that most aspects of glucose metabolism are promoted in high-glucose cultures, including lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G-6-PDH) activities, 2-deoxyglucose uptake, pentose shunt activity and lactate production. Continuous supplementation of high-glucose cultures with low levels of ouabain (FHGO) significantly lowers 2-deoxyglucose uptake, from FHG levels down towards FH levels, especially during the early stages of NR culture. Much later, extensive transdifferentiation into lentoids (with concomitant delta-crystallin accumulation) occurs in these FHGO cultures, which thus resemble FH rather than FHG controls. Another parameter strongly affected by ambient glucose levels is the accumulation of glycogen. Both glycogen itself and glycogen synthetase activity increase steadily in FHG cultures, but decrease slightly under FH conditions. Glycogen accumulation in FHG cultures is largely confined to glial-like cells, particularly those underlying clusters of neurones. Other studies have shown that glial differentiation in vitro is promoted by histotypic interactions with retinal neurones. Thus high glucose may act in concert with neuronal influences to stimulate or stabilize the normal differentiation of retinal glial cells, whose characteristic features in vivo include glycogen synthesis and storage. Furthermore, we show that supplementation of high-glucose cultures with forskolin or dibutyryl cyclic AMP (both of which promote glycogenolysis) results in a slower rate of glycogen accumulation and in enhanced transdifferentiation into lens. In both respects, the forskolin- and dibutyryl cAMP-supplemented FHG cultures are intermediate between FH and FHG controls. Thus the enhancement of normal glial differentiation in NR cultures by high glucose may inhibit or preclude subsequent transdifferentiation into lens.  相似文献   

19.
1. Phytohaemagglutinin induced early changes in the catabolism of glucose by normal human lymphocytes suspended in a bicarbonate buffer. During 4hr. incubation glucose utilization was almost doubled. 2. The rates of several reactions in the metabolism of glucose were estimated. Total pyruvate formation, lactate production and fatty acid synthesis were stimulated to the same degree as was glucose utilization. The pentose cycle and the glycogen synthesis were also stimulated but less than was glucose utilization. The pentose cycle was found to account for 1.4% and 0.9% of the total glucose utilization without and with phytohaemagglutinin respectively. In these cells rates of triose phosphate iso-merization were at least six to seven times the rate of glucose phosphorylation. On an average 55-60% of the total carbon dioxide evolved was derived from decarboxylation of pyruvate, 25-30% from the tricarboxylic acid cycle and about 15% from the pentose cycle. Observed ratios of (14)C specific yields in glycogen from [1-(14)C]- and [6-(14)C]-glucose could possibly be explained by assuming the existence of two separate glucose 6-phosphate pools. 3. During 4hr. incubation in bicarbonate buffer (14)C from [U-(14)C]serine was incorporated into perchloric acid-insoluble material. This incorporation was stimulated by phytohaemagglutinin but was almost completely inhibited by puromycin. Puromycin also abolished phytohaemagglutinin-induced stimulation of glycolysis.  相似文献   

20.
BackgroundKinetic modeling and control analysis of a metabolic pathway may identify the steps with the highest control in tumor cells, and low control in normal cells, which can be proposed as the best therapeutic targets.MethodsEnzyme kinetic characterization, pathway kinetic modeling and control analysis of the glucose central metabolism were carried out in rat (hepatoma AS-30D) and human (cervix HeLa) cancer cells and normal rat hepatocytes.ResultsThe glycogen metabolism enzymes in AS-30D, HeLa cells and hepatocytes showed similar kinetic properties, except for higher AS-30D glycogen phosphorylase (GP) sensitivity to AMP. Pathway modeling indicated that fluxes of glycogen degradation and PPP were mainly controlled by GP and NADPH consumption, respectively, in both hepatocytes and cancer cells. Likewise, hexose-6-phosphate isomerase (HPI) and phosphoglucomutase (PGM) exerted significant control on glycolysis and glycogen synthesis fluxes in cancer cells but not in hepatocytes. Modeling also indicated that glycolytic and glycogen synthesis fluxes could be strongly decreased when HPI and PGM were simultaneously inhibited in AS-30D cells but not in hepatocytes. Experimental assessment of these predictions showed that both the glycolytic and glycogen synthesis fluxes of AS-30D cells, but not of hepatocytes, were inhibited by oxamate, by inducing increased Fru1,6BP levels, a competitive inhibitor of HPI and PGM.ConclusionHPI and PGM seem suitable targets for decreasing glycolytic and glycogen synthesis fluxes in AS-30D cells but not in hepatocytes.General significanceThe present study identified new therapeutic targets within glucose central metabolism in the analyzed cancer cells, with no effects on non-cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号