首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Release and refixation of ammonia during photorespiration   总被引:1,自引:0,他引:1  
Photorespiratory ammonia metabolism in isolated spinach ( Spinacia oleracea L. cv. Viking II) mitochondria was measured using a selective ammonia electrode. The mitochondria showed high rates of ammonia production in the presence of glycine. The isolated mitochondria contained less than 0.02% of the glutamine synthetase activity present in the original homogenate and no significant reassimilation of the released ammonia could be observed with added glutamate or α-ketogluterate. Exogenous added glutamine synthetase did reassimilate the released ammonia. In a recombinated system, with a chlorophyll to mitochondrial protein ratio equal to the ratio in vivo, chloroplasts could very effectively reassimilate the ammonia released in the mitochondria during oxidation of glycine.  相似文献   

2.
It is well established that the plastidic isoform of glutamine synthetase (GS2) is the enzyme in charge of photorespiratory ammonium reassimilation in plants. The metabolic events associated to photorespiratory NH4+ accumulation were analyzed in a Lotus japonicus photorespiratory mutant lacking GS2. The mutant plants accumulated high levels of NH4+ when photorespiration was active, followed by a sudden drop in the levels of this compound. In this paper it was examined the possible existence of enzymatic pathways alternative to GS2 that could account for this decline in the photorespiratory ammonium. Induction of genes encoding for cytosolic glutamine synthetase (GS1), glutamate dehydrogenase (GDH) and asparagine synthetase (ASN) was observed in the mutant in correspondence with the diminishment of NH4+. Measurements of gene expression, polypeptide levels, enzyme activity and metabolite levels were carried out in leaf samples from WT and mutant plants after different periods of time under active photorespiratory conditions. In the case of asparagine synthetase it was not possible to determine enzyme activity and polypeptide content; however, an increased asparagine content in parallel with the induction of ASN gene expression was detected in the mutant plants. This increase in asparagine levels took place concomitantly with an increase in glutamine due to the induction of cytosolic GS1 in the mutant, thus revealing a major role of cytosolic GS1 in the reassimilation and detoxification of photorespiratory NH4+ when the plastidic GS2 isoform is lacking. Moreover, a diminishment in glutamate levels was observed, that may be explained by the induction of NAD(H)-dependent GDH activity.  相似文献   

3.
Spinach leaf (Spinacia oleracea L.) discs infiltrated with [15N]glycine were incubated at 25°C in the light and in darkness for 0, 30, 60 and 90 minutes. The kinetics of 15N-incorporation into glutamine, glutamate, asparagine, aspartate, and serine from [15N]glycine was determined. At the beginning of the experiment, just after infiltration (0 min incubation) serine, and the amido-N of glutamine and asparagine were the only compounds significantly labeled in both light- and dark-treated leaf discs. Incorporation of 15N-label into the other amino acids was observed at longer incubation time. The per cent 15N-enrichment in all amino acids was found to increase with incubation. However, serine and the amido-N of glutamine remained the most highly labeled products in all treatments. The above pattern of 15N-labeling suggests that glutamine synthetase was involved in the initial refixation of 15NH3 derived from [15N]glycine oxidation in spinach leaf discs.

The 15N-enrichment of the amino-N of glutamine was found to increase rapidly from 0 to 19% during incubation in the light. There was a comparatively smaller increase (4-9%) in the 15N-label of the amino-N of glutamine in tissue incubated in darkness. Furthermore the total flux of 15N-label into each of the amino acids examined was found to be greater in tissue incubated in the light than those in the dark. The above evidence indicates the involvement of the glutamine synthetase/glutamate synthase pathway in the recycling of photorespiratory NH3 during glycine oxidation in spinach leaves.

  相似文献   

4.
In this study the interplay of mitochondria and peroxisomes in photorespiration was simulated in a reconstituted system of isolated mitochondria and peroxisomes from spinach (Spinacia oleracea L.) leaves. The mitochondria oxidizing glycine produced serine, which was reduced in the peroxisomes to glycerate. The required reducing equivalents were provided by the mitochondria via the malate-oxaloacetate (OAA) shuttle, in which OAA was reduced in the mitochondrial matrix by NADH generated during glycine oxidation. The rate of peroxisomal glycerate formation, as compared with peroxisomal protein, resembled the corresponding rate required during leaf photosynthesis under ambient conditions. When the reconstituted system produced glycerate at this rate, the malate-to-OAA ratio was in equilibrium with a ratio of NADH/NAD of 8.8 × 10−3. This low ratio is in the same range as the ratio of NADH/NAD in the cytosol of mesophyll cells of intact illuminated spinach leaves, as we had estimated earlier. This result demonstrates that in the photorespiratory cycle a transfer of redox equivalents from the mitochondria to peroxisomes, as postulated from separate experiments with isolated mitochondria and peroxisomes, can indeed operate under conditions of the very low reductive state of the NADH/NAD system prevailing in the cytosol of mesophyll cells in a leaf during photosynthesis.  相似文献   

5.
Infection by the fungal endophyte Acremonium coenophialum affected the accumulation of inorganic and organic N in leaf blades and leaf sheaths of KY 31 tall fescue (Festuca arundinacea Schreb.) grown under greenhouse conditions. Total soluble amino acid concentrations were increased in either the blade or sheath of the leaf from infected plants. A number of amino acids were significantly increased in the sheath, but only asparagine increased in the blade. Infection resulted in higher sheath NH4+ concentrations, whereas NO3 concentrations decreased in both leaf parts. The effects on amino acid, NO3, and NH4+ concentrations were dependent upon the level of N fertilization and were usually apparent only at the high rate (10 millimolar) of application. Administration of 14CO2 to the leaf blades increased the accumulation of 14C in their amino acid fraction but not in the sheaths of infected plants. This may indicate that infection increased amino acid synthesis in the blade but that translocation to the sheath, which is the site of fungal colonization, was not affected. Glutamine synthetase activity was greater in leaf blades of infected plants at high and low N rates of fertilization, but nitrate reductase activity was not affected in either part of the leaf. Increased activities of glutamine synthetase together with the other observed changes in N accumulation and metabolism in endophyte-infected tall fescue suggest that NH4+ reassimilation could also be affected in the leaf blade.  相似文献   

6.
The amination of α-ketoglutarate (α-KG) by NADH-glutamate dehydrogenase (GDH) obtained from Sephadex G-75 treated crude extracts from shoots of 5-day-old seedlings was stimulated by the addition of Ca2+. The NADH-GDH purified 161-fold with ammonium sulfate, DEAE-Toyopearl, and Sephadex G-200 was also activated by Ca2+ in the presence of 160 micromolar NADH. However, with 10 micromolar NADH, Ca2+ had no effect on the NADH-GDH activity. The deamination reaction (NAD-GDH) was not influenced by the addition of Ca2+.

About 25% of the NADH-GDH activity was solubilized from purified mitochondria after a simple osmotic shock treatment, whereas the remaining 75% of the activity was associated with the mitochondrial membrane fraction. When the lysed mitochondria, mitochondrial matrix, or mitochondrial membrane fraction was used as the source of NADH-GDH, Ca2+ had little effect on its activity. The mitochondrial fraction contained about 155 nanomoles Ca per milligram of mitochondrial protein, suggesting that the NADH-GDH in the mitochondria is already in an activated form with regard Ca2+. In a simulated in vitro system using concentrations of 6.4 millimolar NAD, 0.21 millimolar NADH, 5 millimolar α-KG, and 5 millimolar glutamate thought to occur in the mitochondria, together with 1 millimolar Ca2+, 10 and 50 millimolar NH4+, and purified enzyme, the equilibrium of GDH was in the direction of glutamate formation.

  相似文献   

7.
The incorporation of 15N into washed cells of Derxia gummosa from labelled-(NH4)2SO4 and -KNO3 respectively was inhibited by both L-methionine-DL-sulphoximine and azaserine. Glutamine synthetase purified to homogeneity from this bacterium had a molecular weight of 708 000 and was composed of 12 similar subunits each of 59 000. The enzyme assayed by γ-glutamyltransferase method had Km values for L-glutamine and hydroxylamine of 12.5 and 1.2 mM, respectively. Optimal pH values for adenylylated and deadenylylated forms were pH 7.0 and pH 8.0, respectively. The adenylylated enzyme was deadenylylated by treatment with snake venom phosphodiesterase. The inhibitions by both glutamate and ammonia were competitive. The activity was markedly inhibited by L-methionine-DL-sulphoximine, alanine, glycine and serine and to a lesser extent by aspartate, phenylalanine and lysine. Various tri-, di- and mono-phosphate nucleotides, organic acids (pyruvate, oxalate and oxaloacetate) were also inhibitory. Glutamate synthase purified 167-fold had specific requirements for NADH, L-glutamine and 2-ketoglutarate. The Km values for NADH, glutamine and 2-ketoglutarate were 9.6, 270 and 24 μM respectively. Optimal pH range was 7.2–8.2. The enzyme was inhibited by azaserine, methionine, aspartate, AMP, ADP and ATP.  相似文献   

8.
Ammonia production and assimilation1 were examined in photorespiratory mutants of Arabidopsis thaliana L. lacking ferredoxin-dependent glutamate synthase (Fd-GluS) activity. Although photosynthesis was rapidly inhibited in these mutants in normal air, NH4+ continued to accumulate. The accumulation of NH4+ was also seen after an initial lag of 30 minutes in 2% O2, 350 microliters per liter of CO2 and after 90 minutes in 2% O2, 900 microliters per liter of CO2. The accumulation of NH4+ in normal air and low O2 was also associated with an increase in the total pool of amino acid-N and glutamine, and a decrease in the pools of glutamate, aspartate, alanine, and serine. Upon return to dark conditions, or to 21% O2, 1% CO2 in the light, the NH4+ which had accumulated in the leaves was reassimilated into amino acids. The addition of methionine sulfoximine (MSO) resulted in higher accumulations of NH4+ in glutamate synthase mutants and prevented the reassimilation of NH4+ upon return to the dark. The addition of MSO also resulted in the accumulation of NH4+ in glutamate synthase mutants in the light and in 21% O2, 1% CO2. These results indicate that glutamine synthetase is essential for the reassimilation of photorespiratory NH4+ and for primary N assimilation in the leaves and strongly suggest that glutamate dehydrogenase plays only a minimal role in the assimilation of ammonia. Levels of NADH-dependent glutamate synthase (NADH-GluS) appear to be sufficient to account for the assimilation of NH4+ by a GS/NADH-GluS cycle.  相似文献   

9.
Ammonia (NH3) fluxes between beech leaves (Fagus sylvatica) and the atmosphere were investigated in a 90-year-old forest canopy and related to leaf nitrogen (N) pools and glutamine synthetase (GS) activities. The stomatal ammonia compensation point, ?? NH3, was measured by both a twig cuvette and bioassay techniques involving measurements of pH and ammonium (NH 4 + ) concentration in the leaf apoplastic solution. The ?? NH3 determined on the basis of the gas exchange measurements followed a seasonal variation with early-season peaks during leaf expansion (9.6 nmol NH3 mol?1 air) and late-season peaks during leaf senescence (7.3 nmol NH3 mol?1 air). In the mid-season, the ?? NH3 of mature green leaves was much lower (around 3 nmol NH3 mol?1 air) and dropped below the NH3 concentration in the ambient atmosphere. For comparison, ?? NH3 obtained by the apoplastic bioassay were 7.0, 3.7 and 6.4 nmol NH3 mol?1 air in early-, mid-, and late -season, thus agreeing reasonably well with ?? NH3 values derived from the gas exchange measurements. Potential NH3 emission fluxes during early and late season were 1.31 and 0.51 nmol m?2 leaf surface area s?1, respectively, while leaves were a sink for NH3 during mid-season. During leaf establishment and senescence, both apoplastic and bulk tissue NH 4 + concentrations were relatively high coinciding with low activities of glutamine synthetase, which is a key enzyme in leaf N metabolism. In conclusion, the exchange of NH3 between beech leaves and the atmosphere followed a seasonal variation with NH3 emission peaks being related to N mobilization during early leaf establishment and remobilization during late leaf senescence.  相似文献   

10.
Glutamine synthetase (EC 6.3.1.2) has been purified from a collagenolytic Vibrio alginolyticus strain. The apparent molecular weight of the glutamine synthetase subunit was approximately 62,000. This indicates a particle weight for the undissociated enzyme of 744,000, assuming the enzyme is the typical dodecamer. The glutamine synthetase enzyme had a sedimentation coefficient of 25.9 S and seems to be regulated by a denylylation and deadenylylation. The pH profiles assayed by the -glutamyltransferase method were similar for NH4-shocked and unshocked cell extracts and isoactivity point was not obtained from these eurves. The optimum pH for purified and crude cell extracts was 7.9. Cell-free glutamine synthetase was inhibited by some amino acids and AMP. The transferase activity of glutamine synthetase from mid-exponential phase cells varied greatly depending on the sources of nitrogen or carbon in the growth medium. Glutamine synthetase level was regulated by nitrogen catabolite repression by (NH4)2SO4 and glutamine, but cells grown, in the presence of proline, leucine, isoleucine, tryptophan, histidine, glutamic acid, glycine and arginine had enhanced levels of transferase activity. Glutamine synthetase was not subject to glucose, sucrose, fructose, glycerol or maltose catabolite repression and these sugars had the opposite effect and markedly enhanced glutamine synthetase activity.Abbreviations GS glutamine synthetase - SMM succinate minimal medium - ASMM ammonium/succinate minimal medium - GT -glutamyl transferase - SVP snake venom phosphodiesterase  相似文献   

11.
Nitrogen metabolism was examined in senescent flag leaves of 90- to 93-day-old wheat (Triticum aestivum L. cv Yecora 70) plants. CO2 assimilation and the levels of protein, chlorophyll, and nitrogen in the leaves decreased with age. Glutamine synthetase activity decreased to one-eighth of the level in young flag leaves. Detached leaves were incubated (with the cut base) in 15N-labeled NH3, glutamate, or glycine in the light (1.8 millieinstein per square meter per second) at 25°C in an open gas exchange system under normal atmospheric conditions for up to 135 minutes. The 15N-enrichment of various amino acids derived from these 15N-substrates were examined. The amido-N of glutamine was the first 15N-labeled product in leaves incubated with 15NH4Cl whereas serine, closely followed by the amido- and amino-N of glutamine, were the most highly 15N-labeled products during incubation with [15N]glycine. In contrast, aspartate and alanine were the first 15N-labeled products when [15N] glutamate was used. These results indicate that NH3 was assimilated via glutamine synthetase and glutamate synthase activities and the photorespiratory nitrogen cycle remained functional in these senescent wheat flag leaves. In contrast, an involvement of glutamate dehydrogenase in the assimilation of ammonia could not be detected in these tissues.  相似文献   

12.
A release of ammonium by non-nitrogen-fixing Anabaena cylindrica (grown on NH4Cl) in the presence of MSX (methionine sulfoximine) and absence of any external nitrogen source was found. In the light the release was maximal at 0.2 mM MSX, a concentration which did not affect net CO2 fixation nor the glycollate excretion, but inhibited the glutamine synthetase activity and the reassimilation of ammonium. It is suggested that the major source of the ammonium released is the photorespiratory conversion of glycine to serine as (1) the release was stimulated by increase in light intensity, (2) high CO2 (3%) lowered the release, if not given as a longer pretreatment (as CO2 or HCO 3 - ) when a stimulation was observed, (3) glyoxylate and glutamate stimulated the release, the latter compound particularly under nitrogen-deficient conditions and (4) isonicotinic acid hydrazide caused a reduced release of ammonium. Furthermore, a substantial part of the ammonium released by N2-fixing A. cylindrica in presence of MSX may thus originate from the glycollate pathway. The data show that in the light the glycine to serine conversion is active in cyanobacteria with a concomitant production of ammonium which is assimilated by glutamine synthetase.Abbreviations MSX L-methionine-Dl-sulfoximine - INH isonicotinic acid hydrazide - RuDP ribulose 1,5-diphosphate - Hepes N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - GS glutamine synthetase - GOGAT glutamate synthase - DTT Dl-dithiothreitol  相似文献   

13.
Glutamate dehydrogenase in Acanthamoeba castellanii is an NAD-dependent cytosolic enzyme. This is similar to glutamate dehydrogenases in Phycomycetes, but very different from the dual coenzyme-specific enzymes located in mitochondria in animals and in mitochondria and chloroplasts in higher plants. Pyrroline-5-carboxylate (P-5-C) reductase occurs also in the cytoplasm in A. castellanii and has very high affinities for L-P-5-C (Km= 12 μM) and NADH (Km= 15 μM). In contrast, ornithine aminotransferase and proline oxidase are mitochondrial enzymes. No proline-inhibited γ-glutamyl kinase was detected while an active glutamine synthetase was found in the cytosolic compartment. Evidence for a mitochondrial transport system for L-proline was obtained. Two possible pathways for proline biosynthesis in A. castellanii are discussed based on information obtained about activities and subcellular compartmentation of enzymes.  相似文献   

14.
Phosphinothricin (glufosinate), an irreversible inhibitor of glutamine synthetase, causes an inhibition of photosynthesis in C3 (Sinapis alba) and C4 (Zea mays) plants under atmospheric conditions (400 ppm CO2, 21% O2). This photosynthesis inhibition is proceeding slower in C4 leaves. Under non-photorespiratory conditions (1000 ppm CO2, 2% O2) there is no inhibition of photosynthesis. The inhibition of glutamine synthetase by phosphinothricin results in an accumulation of NH4 +. The NH4 +-accumulation is lower in C4 plants than in C3 plants. The inhibition of glutamine synthetase through phosphinothricin in mustard leaves results in a decrease in glutamine, glutamate, aspartate, asparagine, serine, and glycine. In contrast to this, a considerable increase in leucine and valine following phosphinothricin treatment is measured. With the addition of either glutamine, glutamate, aspartate, glycine or serine, photosynthesis inhibition by phosphinothricin can be reduced, although the NH4 +-accumulation is greatly increased. This indicates that NH4 +-accumulation cannot be the primary cause for photosynthesis inhibition by phosphinothricin. The investigations demonstrate the inhibition of transmination of glyoxylate to glycine in photorespiration through the total lack of amino donors. This could result in a glyoxylate accumulation inhibiting ribulose-1,5-bisphosphate-carboxylase and consequently CO2-fixation.Abbreviations GOGAT glutamine-2-oxoglutarate-amidotransferase - GS glutamine synthetase - PPT phosphinothricin - MSO methionine sulfoximine - RuBP ribulose-1,5-bisphosphate  相似文献   

15.
Glutamine synthetase was localized in nodules, roots, stems, and leaves of red kidney bean (Phaseolus vulgaris L.) by immunocytochemistry. Affinity purified antibodies reactive with glutamine synthetase were prepared using purified nodule-enhanced glutamine synthetase. Immunogold labeling was observed in the cell cytoplasm in each plant organ. In nodules, the labeling was more intense in the infected cells than in the uninfected cells. No labeling was observed in nodule bacteroids, peribacteroid spaces, or in peribacteroid membranes, while previous reports of glutamine synthetase immunolabeling of legume nodules showed labeling in the bacteroid fraction. Significant labeling was observed in nodule proplastids which contained starch granules. Substantial labeling was also observed in leaf chloroplasts. No labeling was observed in other organelles including mitochondria, peroxisomes, and endoplasmic reticulum. Preimmune IgGs did not bind to any structure in the tissues examined.  相似文献   

16.
A relatively rapid five-step procedure was used in purifying to apparent homogeneity the glutamine synthetase from roots and one form of the enzyme (GSI) from leaves of rice. The steps were: preparation of crude extracts, ammonium sulfate precipitation, filtration on Sepharose 4B, fractionation on DEAE-Sephadex A25, and affinity chromatography on ADP-Sepharose 4B. The purified protein appeared as a single band on polyacrylamide gel electrophoresis. Leaf GSI and the second type of leaf glutamine synthetase (GSII) formed distinct peaks when eluted from DEAE-Sephadex (step 4). The root enzyme and leaf GSI were similar in all the properties which were examined. Both enzymes bound to ADP-Sepharose, had similar biosynthetic (18 μmol P/img protein/min) and transferase (1324 and 1156 μmol γ-glutamyl hydroxamate/mg protein/min) activities, and the same or nearly the same Km values for glutamate (2.17 mm), Mg2+ (4.5 and 5.0 mm), ATP (286 μm), NH4+ (210 and 135 μm), and ADP (3.8 and 5.3 μm). In contrast, leaf GSII did not bind to ADP-Sepharose and had much higher Km values for glutamate (8.3 mm), Mg2+ (15 mm), NH4+ (684 μm), and ADP (33 μm).  相似文献   

17.
Anion exchange chromatography and immunoprecipitation have been used to demonstrate the presence of two forms (GS1, and GS2) of glutamine synthetase in the leaves of nine species of Panicum representative of C3, C4 and C3-C4 intermediate-type photosynthesis. GS2 from the Panicum species, P. miliaceum and P. maximum was more thermostable than GS1, GS1, and GS2 from P. laxum were equally thermostable but GS2 from all the Panicum species examined was more sensitive to inhibition by N-ethylmaleimide than GS1. GS1, and GS2 were characterised as being cytoplasmic and chloroplastic isoforms respectively by their reaction with N-ethylmaleimide and by immunoprecipitation with antibodies raised against the cytosolic isoform in barley and the chloroplastic form in tobacco. C3 species were found to have higher activity of the chloroplastic isoform of glutamine synthetase than C4 species. C3-C4 intermediate species had total leaf glutamine synthetase activities similar to those in C3 species but were found to have a lower chloroplastic isoform content. The results are consistent with the reassimilation of photorespiratory ammonia by chloroplastic glutamine synthetase.  相似文献   

18.
All the glutamate dehydrogenase activity in developing castor bean endosperm is shown to be located in the mitochondria. The enzyme can not be detected in the plastids, and this is probably not due to the inactivation of an unstable enzyme, since a stable enzyme can be isolated from castor bean leaf chloroplasts. The endosperm mitochondrial glutamate dehydrogenase consists of a series of differently charged forms which stain on polyacrylamide gel electrophoresis with both NAD+ and NADP+. The chloroplast and root enzymes differ from the endosperm enzyme on polyacrylamide gel electrophoresis. The amination reaction of all the enzymes is affected by high salt concentrations. For the endosperm enzyme, the ratio of activity with NADH to that with NADPH is 6.3 at 250 millimolar NH4Cl and 1.5 at 12.5 millimolar NH4Cl. Km values for NH4+ and NAD(P)H are reduced at low salt concentrations. The low Km values for the nucleotides may favor a role for glutamate dehydrogenase in ammonia assimilation in some situations.  相似文献   

19.
In samples from nitrogen-fixing continuous cultures of strain CB756 of the cowpea type rhizobia (Rhizobium sp.), newly fixed NH4+ is in equilibrium with the medium, from where it is assimilated by the glutamine synthetase/glutamate synthase pathway. In samples from steady state cultures with different degrees of oxygen-limitation, nitrogenase activity was positively correlated with the biosynthetic activity of glutamine synthetase in cell free extracts. Also, activities in biosynthetic assays were positively correlated with activities in γ-glutamyl transferase assays containing 60 mM Mg2+. Relative adenylylation of glutamine synthetase was conveniently measured in cell free extracts as the ratio of γ-glutamyl transferase activities without and with addition of 60 mM Mg2+.Automatic control of oxygen supply was used to facilitate the study of transitions between steady-state continuous cultures with high and low nitrogenase activities. Adenylylation of glutamine synthetase and repression of nitrogenase activity in the presence of excess NH4+, were masked when oxygen strongly limited culture yield. Partial relief of the limitation in cultures supplied with 10 mM NH4+ produced early decline in nitrogenase activity and increase in relative adenylylation of glutamine synthetase. Decreased oxygen supply produced a rapid decline in relative adenylylation, followed by increased nitrogenase activity, supporting the concept that control of nitrogenase synthesis is modulated by glutamine synthetase adenylylation in these bacteria.  相似文献   

20.
The complete cDNA sequence of CPS I obtained from the liver of the hylid tree frog, Litoria caerulea, consisted of 4,485?bp which coded for 1,495 amino acids with an estimated molecular mass of 163.7?kDa. The deduced CPS I consisted of a mitochondrial targeting sequence of 33 amino acid residues, a glutaminase amidotransferase component spanning from tyrosine 95 to leucine 425, and a methylglyoxal synthetase-like component spanning from valine 441 to lysine 1566. It also comprised two cysteine residues (cysteine 1360 and cysteine 1370) that are characteristic of N-acetyl-l-glutamate dependency. Similar to the CPS I of Rana catesbeiana and Cps III of lungfishes and teleosts, it contained the Cys?CHis?CGlu catalytic triad (cysteine 304, histidine 388 and glutamate 390). All Cps III contain methionine 305 and glutamine 308, which are essential for the Cys?CHis?CGlu triad to react with glutamine, but the CPS I of R. catesbeiana contains lysine 305 and glutamate 308, and therefore cannot effectively utilize glutamine as a substrate. However, the CPS I of L. caerulea, unlike that of R. catesbeiana, contained besides glutamate 308, methionine 305 instead of lysine 305, and thus represented a transitional form between Cps III and CPS I. Indeed, CPS I of L. caerulea could utilize glutamine or NH4 + as a substrate in vitro, but the activity obtained with glutamine?+?NH4 + reflected that obtained with NH4 + alone. Furthermore, only?<5?% of the glutamine synthetase activity was present in the hepatic mitochondria, indicating that CPS I of L. caerulea did not have an effective supply of glutamine in vivo. Hence, our results confirmed that the evolution of CPS I from Cps III occurred in amphibians. Since L. caerulea contained high levels of urea in its muscle and liver, which increased significantly in response to desiccation, its CPS I had the dual functions of detoxifying ammonia to urea and producing urea to reduce evaporative water loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号