首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, an increasing application of so called advanced oxidation processes (AOPs) to industrial wastewater has been observed. In particular, an integrated approach of biological and chemical treatment of wastewater is advantageous conceptually. The subject of our study was synthetic wastewater, simulating effluents from knitting industry. The wastewater contained components that are very often used in Polish textile industry: an anionic detergent Awiwaz KG conc., a softening agent Tetrapol CLB and an anthraquinone dyestuff-Acid Blue 40, CI 2125. The toxicity of the detergents and the dye was determined in terms of effective concentration EC50 using mixed cultures of activated sludge as well as pure culture of luminescent bacteria Vibrio fischerii NRRLB-11177. The dye did not undergo biodegradation without AOPs pretreatment, therefore a degree of its removal (decolourisation) by the AOPs has been determined and its bio-sorption properties on the flocks of activated sludge have been studied. The dye adsorption onto flocks of activated sludge was described by Henry's isotherm. Our investigations focussed on the influence of various oxidants like O3, H2O2 and UV light on biodegradation of single components aqueous solution as well as of the whole textile wastewater. The results of kinetic measurements of the biodegradation (by means of acclimated activated sludge) was described by Monod type of kinetic equation. The experimental evidence of the positive effect of chemical oxidation pretreatment on the biodegradation of recalcitrant compounds was quantified by estimation of the kinetic parameters of the Monod equation. Due to the AOPs pretreatment a decrease of the Monod constant and an increase of maximal specific growth rate was observed. The activity of degradative enzymes of activated sludge was assayed by the methods of 2-[4-iodophenyl]-3-[4-nitrophenyl]-5-phenyltetrazolium chloride test.  相似文献   

2.
Degradation kinetics for the treatment of straw paper wastewater in an activated sludge process have been studied and a kinetic model has been derived for both batch and continuous experiments. These two methods are reasonably equivalent only when rather low concentrations of substrate are involved. In other cases batch and continuous results are quite different. Both models, however, show a dependence upon concentration corresponding to that which is typical of multicomponent substrate degradation. The kinetic model derived from continuous tests appears to be more suitable for designing industrial processes in that it avoids oversizing of the aeration unit.  相似文献   

3.
Characterization and biological treatment of pickling industry wastewater   总被引:2,自引:0,他引:2  
Pickling industry wastewaters present unique difficulties in biological treatment because of high salt content (3–6% salt). Conventional activated sludge cultures disintegrate or loose microbial activity as a result of plasmolysis at salt concentrations above 1%. In order to overcome adverse effects of salt in pickling wastewater, salt tolerant bacteria (Halobacter halobium) was added to activated sludge culture and used in biological treatment of the wastewater in an activated sludge unit. After characterization and nutrient balancing of the wastewater, an activated sludge unit was used in laboratory to investigate the effects of major process variables such as sludge age and hydraulic residence time on performance of the system. Single stage and two stage activated processes were used for the treatment of the pickling wastewater. More than 95% of COD removal was obtained with a single stage process at a sludge age of θc=10?d and hydraulic residence time of θH=30?h. Similar results were obtained with the two stage process, when sludge ages and hydraulic residence times for each stage were θc1c2=10?d, and θH1H2=15?h, respectively. Kinetic coefficients were determined and the design equations were developed by using the experimental data.  相似文献   

4.
In this work wine vinasses have been treated separately by means of a chemical ozonation and a biological aerobic degradation in an activated sludge system, and later by means of a combined process which consisted of an aerobic pretreatment followed by an ozonation treatment, in continuous reactors in all cases. In the ozonation experiments, the hydraulic retention time and the ozone partial pressure were varied leading to substrate removals in the range 4.4-16%, with increases in this removal when both operating variables were increased. A kinetic study, which combines mixed flow reactor model for the liquid phase and plug flow reactor model for the gas phase, allows to determine the rate constant for the ozone reaction and the consumption ratio, which are kO3 = 3.6 l/(g COD · h) and b = 22.5 g COD degraded/mol O3 consumed. The aerobic degradation experiments were conducted in the activated sludge system with variations in the retention time and influent organic substrate concentration in the wastewater. A modified Contois model applied to the experimental results leads to the determination of the kinetic parameters of that model: K1 = 5.43 l/g VSS and qmax = 6.29 g COD/(g VSS · h). Finally, the combined process reveals an improvement in the efficiency of the ozonation stage due to the previous aerobic treatment with increases in the substrate removal reached and in the rate constant obtained, the last one being kO3 = 5.6 l/(g COD · h).  相似文献   

5.
In recent years, a great deal of attention has been focused on the research of activated sludge processes, where the solid–liquid separation phase is frequently considered of critical importance, due to the different problems that severely affect the compaction and the settling of the sludge. Bearing that in mind, in this work, image analysis routines were developed in Matlab environment, allowing the identification and characterization of microbial aggregates and protruding filaments in eight different wastewater treatment plants, for a combined period of 2 years. The monitoring of the activated sludge contents allowed for the detection of bulking events proving that the developed image analysis methodology is adequate for a continuous examination of the morphological changes in microbial aggregates and subsequent estimation of the sludge volume index. In fact, the obtained results proved that the developed image analysis methodology is a feasible method for the continuous monitoring of activated sludge systems and identification of disturbances.  相似文献   

6.
This work studied the formation of molecular nitrogen by the microbial population of immobilized activated sludge of the domestic wastewater treatment plants (WWTP) that employ the technology developed by ZAO ECOS Company. The technology includes physicochemical water pretreatment and treated water recycling. A hard flexible fibrous brush carrier is used for the immobilization of microorganisms. The presence of both aerobic and anaerobic microorganisms and functioning of the methanogenic microbial community was shown in the biofilms developing on the carrier fibers and in suspended sludge. The high efficiency of nitrogen removal at a low C/N ratio was established to be due to the conjugated nitrification, denitrification, and anammox processes, whose functioning was demonstrated by laboratory cultivation methods and by studying the processes in batch and continuous reactors. Fluorescence in situ hybridization with 16S rRNA-targeted oligonucleotide probes (FISH) revealed bacteria belonging to the order Planctomycetales, particularly their anammox group. This work is the first evidence of the important role of the anammox process in the combined system of physicochemical and biological treatment of weak wastewater (BCDEAMOX).  相似文献   

7.
A rigorous approach to mathematical modeling of a continuous aerobic membrane bioreactor (MBR) for the treatment of wastewater is reported. The idea is to apply the activated sludge model ASM3 to the special configuration of a membrane bioreactor. Therefore, the biochemical processes modeled by the ASM3 were implemented together with mass balances typical of a MBR running at constant TSS. The model parameters were adapted to the properties of an artificial wastewater by using a global search algorithm. The model could be validated by comparing effluent chemical oxygen demand (COD), sludge production and CO2 concentration in the exhaust to the experimental data.  相似文献   

8.
The competition between filaments and floc formers in activated sludge has been historically described using kinetic selection. However, recent studies have suggested that bacterial storage may also be an important factor in microbial selection, since the dynamic nature of substrate flows into wastewater treatment plants elicit transient responses from microorganisms. Respirometry-based kinetic selection should thus be reevaluated by considering cell storage, and a more reliable method should be developed to include bacterial storage in the analysis of growth of filaments and floc formers in activated sludge. In this study, we applied substrate uptake tests combined with metabolic modeling to determine the growth rates, yields and maintenance coefficients of bulking and non-bulking activated sludge developed in lab scale reactors under feast and famine conditions. The results of quantitative fluorescence in situ hybridization (FISH) showed that the filaments Eikelboom Type 1851, Type 021N, and Thiothrix nivea were dominant in bulking sludge, comprising 42.0 % of mixed liquor volatile suspended solids (MLVSS), with 61.6% of the total filament length extending from flocs into bulk solution. Only low levels of Type 1851 filament length (4.9% of MLVSS) occurred in non-bulking sludge, 83.0% of which grew inside the flocs. The kinetic parameters determined from the substrate uptake tests were consistent with those from respirometry and showed that filamentous bulking sludge had lower growth rates and maintenance coefficients than non-bulking sludge. These results provide support for growth kinetic differences in explaining the competitive strategy of filamentous bacteria.  相似文献   

9.
A metabolic uncoupler, 3,3',4',5-tetrachlorosalicylanilide (TCS), was used to reduce excess sludge production in biological wastewater treatment processes. Batch experiments confirmed that 0.4 mg/l of TCS reduced the aerobic growth yield of activated sludge by over 60%. However, the growth yield remained virtually constant even at the increased concentrations of TCS when cultivations were carried out under the anoxic condition. Reduction of sludge production yield was confirmed in a laboratory-scale anoxic-oxic process operated for 6 months. However, it was found that ammonia oxidation efficiency was reduced by as much as 77% in the presence of 0.8 mg/l of TCS in the batch culture. Similar results were also obtained through batch inhibition tests with activated sludges and by bioluminescence assays using a recombinant Nitrosomonas europaea (pMJ217). Because of this inhibitory effect of TCS on nitrification, the TCS-fed continuous system failed to remove ammonia in the influent. When TCS feeding was stopped, the nitrification yield of the process was resumed. Therefore, it seems to be necessary to assess the nitrogen content of wastewater if TCS is used for reducing sludge generation.  相似文献   

10.
Performances of biological treatment processes of saline wastewater are usually low because of adverse effects of salt on microbial flora. High salt concentrations in wastewater cause plasmolysis and loss of activity of cells resulting in low COD removal efficiencies. In order to improve biological treatment performance of saline wastewater, a halophilic organism Halobacter halobium was used along with activated sludge culture.A synthetic wastewater composed of diluted molasses, urea, KH2PO4 and various concentrations of salt (1%–5% NaCl) was treated in an aerobic-biological reactor by fed-batch operation. Activated sludge culture with and without Halobacter were used as seed cultures. Variations of COD removal rate and efficiency with salt concentration were determined for both cultures and results were compared. Inclusion of Halobacter into activated sludge culture resulted in significant improvements in COD removal efficiency. A rate expression including salt inhibition effect was proposed and kinetic constants were determined by using experimental data.This study was supported by the Technical and Scientific Research Council of Turkey.  相似文献   

11.
12.
为探究造纸废水活性污泥中微生物群落结构多样性以及对造纸废水处理效果的影响,利用Illumina MiSeq 高通量测序方法,分析在处理造纸废水过程中,同一运行阶段两个并联氧化沟内活性污泥的微生物群落与多样性组成。结果表明,系统中处理造纸废水的活性污泥在同一废水条件下微生物群落结构总体稳定,优势细菌为绿弯菌门(Chloroflexi)、拟杆菌门(Bacteroidota)、变形菌门(Proteobacteria)、Myxococcota、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)等。最重要的优势细菌类群为Chloroflexi,相对丰度占比为47.67%~48.22%,远远高于其他废水中Chloroflexi的占比,其中厌氧绳菌纲(Anaerolineae)是其主要成员,占比84.39%~88.34%,可针对性地去除造纸废水中的污染物。造纸废水活性污泥样品中存在大量特殊功能菌群,其在废水中污染物尤其是木质素的去除中发挥着重要作用。  相似文献   

13.
The use of maize straw (MS) or cotton waste (CW) as bulking agents in the composting of olive mill wastewater (OMW) sludge was compared by studying the organic matter (OM) mineralisation and humification processes during composting and the characteristics of the end products. Both composts were prepared in a pilot-plant using the Rutgers static-pile system. The use of CW instead of MS to compost OMW sludge extended both the thermophilic and bio-oxidative phases of the process, with higher degradation of polymers (mainly lignin and cellulose), a greater formation of nitrates, higher total nitrogen losses and a lower biological nitrogen fixation. The CW produced a compost with a more stabilised OM and more highly polymerised humic-like substances. In the pile with CW and OMW sludge, OM losses followed a first-order kinetic equation, due to OM degradation being greater at the beginning of the composting and remaining almost constant until the end of the process. However, in the pile with MS and OMW sludge this parameter followed a zero-order kinetic equation, since OM degraded throughout the process. The germination index indicated the reduction of phytotoxicity during composting.  相似文献   

14.
Denitrification of synthetic high nitrate wastewater containing 40,000?ppm NO3 (9,032?ppm NO3-N) was achieved using immobilized activated sludge in a column reactor. Active anoxic sludge adsorbed onto Terry cloth was used in the denitrification of high nitrate wastewater. The operational stability of the immobilized sludge system was studied both in a batch reactor and in a continuous reactor. The immobilized sludge showed complete degradation of different concentrations of NO3-N (1,129, 1,693, 3,387, 6,774, and 9,032?ppm) in a batch process. The reactors were successfully run for 90?days without any loss in activity. The immobilized cell process has yielded promising results in attaining high denitrifying efficiency.  相似文献   

15.
活性污泥法随着技术的成熟,已应用在高氨氮污水/废水处理中,通过不断发展衍生出的很多新型工艺也成为研究热点,短程硝化反应作为代表已逐渐体现出优越性。短程硝化能达到高效净化污水的目的,其反应中的代谢产物羟胺也和微生物类群及反应产物之间有着至关重要的影响。反应器中活性污泥的微生物群落结构和动态密切相关,探究微生物群落结构能帮助生物强化、优化参数,提高脱氮效率。本文主要总结了近年来有关短程硝化/半短程硝化活性污泥微生物群落组成与结构及其与反应器处理效率之间的关系,以及羟胺代谢对短程硝化的影响等方面的研究进展,这些研究加深了对微生物群落结构和污水处理工艺之间的认识,但充分发掘生物信息、提高工艺效能之路仍然充满挑战,还需利用氮平衡方法、Real-time PCR法等多种生物技术手段对短程硝化进行全方位研究,为实践提供坚实的理论基础。  相似文献   

16.
Although biological nitrogen removal via nitrite is recognized as one of the cost-effective and sustainable biological nitrogen removal processes, nitrite accumulation has proven difficult to achieve in continuous processes treating low-strength nitrogenous wastewater. Partial nitrification to nitrite was achieved and maintained in a lab-scale completely stirred tank reactor (CSTR) treating real domestic wastewater. During the start-up period, sludge with ammonia-oxidizing bacteria (AOB) but no nitrite-oxidizing bacteria (NOB) was obtained by batch operation with aeration time control. The nitrifying sludge with the dominance of AOB was then directly switched into continuous operation. It was demonstrated that partial nitrification to nitrite in the continuous system could be repeatedly and reliably achieved using this start-up strategy. The ratio of dissolved oxygen to ammonium loading rate (DO/ALR) was critical to maintain high ammonium removal efficiency and nitrite accumulation ratio. Over 85% of nitrite accumulation ratio and more than 95% of ammonium removal efficiency were achieved at DO/ALR ratios in an optimal range of 4.0–6.0 mg O2/g N d, even under the disturbances of ammonium loading rate. Microbial population shift was investigated, and fluorescence in situ hybridization analysis indicated that AOB were the dominant nitrifying bacteria over NOB when stable partial nitrification was established.  相似文献   

17.
Respirometric techniques and an activated sludge model (ASM) were applied for the characterization of tannery wastewater and biomass in a pilot plant membrane bioreactor (MBR) operating at high sludge age. The traditional respirometric tests and the IWA-ASM1 were modified to take into account the specific operating conditions, the solid-liquid separation technology and the wastewater complexity. As a result the wastewater biodegradable COD was fractionated into four components: readily biodegradable, rapidly hydrolysable, slowly hydrolysable and inorganic (due to the presence of reduced sulphur compounds). The kinetic and stoichiometric parameters of the biomass (heterotrophic and nitrifying) were estimated through the integration of model simulations and respirometric tests results. In particular the ammonium and nitrite-oxidizing biomasses were separately characterized: the growth kinetics of ammonium and nitrite-oxidizing bacteria resulted noticeably lower than the traditional reference values (mu(max,AOB)=0.25d(-1)e mu(max,NOB)=0.23d(-1) at 20 degrees C, respectively). The ASM was finally used to confirm that the results of the wastewater and biomass characterization allow to properly simulate the mixed liquor suspended solids in the MBR pilot plant and the COD concentration in the effluent.  相似文献   

18.
Wastewater generated in the elaboration of table olives has been treated using activated sludge from a municipal wastewater plant after adequate acclimation. To avoid bactericide properties of some chemical structures present in this type of effluents, synthetic urban wastewater has been used to dilute the original wastewater. The main parameters affecting efficiency of biological processes have been studied. Thus, initial biomass concentration, temperature up to 303 K (upper working temperature limit = 313 K) and initial substrate concentration exerted a positive influence on COD degradation rate. The optimum pH was found to be around 7, experiencing a slight inhibition on cell activity at pH 4. Under the experimental conditions investigated other parameters like polyphenol content, absorbance at 254 nm and total organic carbon were also reduced to some extent. Only nitrates amount was increased after the biological process took place. A kinetic model based on Monod equation was proposed and applied to experimental results. The maximum specific growth rate was calculated by means of the aforementioned kinetic model. The value of this parameter as a function of temperature was fitted to an Arrhenius expression, wmax = 9.43 2 1010 exp(72021/RT) hу (R in J molу Kу283 K < T < 303 K, pH , 7-10).  相似文献   

19.
Sludge minimisation technologies   总被引:1,自引:0,他引:1  
The treatment and disposal of excess sludge represents a bottleneck of wastewater treatment plants all over the world, due to environmental, economic, social and legal factors. There is therefore a growing interest in developing technologies to reduce the wastewater sludge generation. The goal of this paper is to present the state-of-the-art of current minimisation techniques for reducing sludge production in biological wastewater treatment processes. An overview of the main technologies is given considering three different strategies: The first option is to reduce the production of sludge by introducing in the wastewater treatment stage additional stages with a lower cellular yield coefficient compared to the one corresponding to the activated sludge process (lysis-cryptic growth, uncoupling and maintenance metabolism, predation on bacteria, anaerobic treatment). The second choice is to act on the sludge stage. As anaerobic digestion is the main process in sewage sludge treatment for reducing and stabilising the organic solids, two possibilities can be considered: introducing a pre-treatment process before the anaerobic reaction (physical, chemical or biological pre-treatments), or modifying the digestion configuration (two-stage and temperature-phased anaerobic digestion, anoxic gas flotation). And, finally, the last minimisation strategy is the removal of the sludge generated in the activated sludge plant (incineration, gasification, pyrolysis, wet air oxidation, supercritical water oxidation).  相似文献   

20.
生物滴滤池在处理重油裂解制气废水中的应用   总被引:7,自引:0,他引:7  
用多孔填料填充废水处理系统缺氧/好氧(A/O)工艺中的缺氧滴滤池,微生物挂摸之后构成三维的生物膜,处理可生化性差的重油裂解制气废水,不但能显提高废水的可生物降解性,BOD5/COD从进水0.16-0.25提高到出水时的0.24-0.45,而且降低废水中的COD和氨氮分别为4.76%-44.21%和1.93%-44.20%,同时能增强缺氧池的抗冲击能力和减毒作用,有利于后续的活性污泥好氧处理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号