首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
5-methyl-2'-deoxycytidine (5-Me-dC) is formed by the enzymatic methylation of dC, primarily in CpG sequences in DNA, and is involved in the regulation of gene expression. In the present study, 5-Me-dC and double-stranded DNA fragments containing 5-Me-dC were either gamma-irradiated or aerobically treated with Fenton-type reagents, Fe(II)-EDTA, Fe(II)-nitrilotriacetic acid, Fe(III)-EDTA-H(2)O(2)-catechol or ascorbic acid-H(2)O(2) under neutral conditions. The formation of 5-formyl-2'-deoxycytidine (5-CHO-dC) was observed upon treatment of both 5-Me-dC and DNA fragments containing 5-Me-dC. The yields of 5-CHO-dC from 5-Me-dC and those of 5-formyl-2'-deoxyuridine from dT were comparable. These results suggest that 5-Me-dC in DNA is as susceptible to oxidation as dT in cells, and raise the possibility that 5-CHO-dC may contribute to the high mutagenic rate observed in CpG sequences in genomic DNA.  相似文献   

2.
This work has undertaken liquid chromatographic separation of nucleosides and deoxynucleosides. Two different columns with three mobile phases (A, deionized water; B, 50 mM phosphate buffer (pH 4.0); C, methanol) and slightly different gradient programs were used. The elution order was as follows: cytidine (C), 2′-deoxycytidine (dC), uridine (U), 5-methyl-2′-cytidine (5mC), 5-methyl-2′-deoxycytidine (5mdC), guanosine (G), deoxyguanosine (dG), 2′-deoxythymidine (dT), adenosine (A), and 2′-deoxyadenine (dA). Using a Luna C18 Phenomenex column (150 × 4.6 mm, 5 μm), the separation was performed at 40 °C with a total flow rate of 1 ml/min and a run time of 10 min. The second column was an Agilent C18 (50 × 3 mm, 1.8 μm), for which the run time was 4.5 min with a flow rate of 0.6 ml/min (25 °C). In application to the DNA digests from human THP-1 cells, the quantification of C, dC, U, 5mC, 5mdC, G, dG, and A was performed. The percentages of global methylation were evaluated based on the 5mdC and dC concentrations (c5mdC / [c5mdC + cdC], where c is concentration in μg/ml) and compared with those calculated from the respective peak areas (A5mdC / [A5mdC + AdC], where A is peak area at 254 nm). For peak area measurements, excellent agreement was obtained with the results reported previously in the same cell line. In the quantitative approach, the results of DNA methylation were higher but consistent with the previous data obtained using mass spectrometric detection. Comparing the analytical features of the two procedures, the use of a smaller column could be recommended because it provides efficient separation (capacity factors in the range of 1.29-10.66), a short run time, and feasibility of nucleoside and deoxynucleoside quantification in real-world samples and because it also minimizes the use of reagents.  相似文献   

3.
A Jekunen 《Medical biology》1987,65(4):203-208
Enzymatic deamination activity was determined with tritium-labelled substrates in seven established hematopoietic cell lines, in order to compare deamination rates in intact vs. broken cells with cytosine arabinoside, deoxycytidine and 5-methyldeoxycytidine. Deaminase activity was found in all the cell lines, although it was very low in mouse leukemia L1210 cells. The deamination activity of intact cells varied from 1.0 to 38.3 pmoles/micrograms protein/30 min, being highest in the human null-cell ALL line (NALL-1), the human promyelocytic leukaemia line (HL-60) and the human T-ALL line (JM). The variation in specific activities in the broken cells was between 0.9 and 30.2 pmoles/micrograms protein/30 min. The deamination rate of deoxycytidine was in general higher than that of 5-methyldeoxycytidine or cytosine arabinoside.  相似文献   

4.
The triphosphate of the nucleoside deoxyribosyl dihydropyrimido[4,5-c][1,2]oxazin-7-one (dP) is known to be incorporated into DNA efficiently by Taq polymerase and is a useful tool for polymerase-mediated in vitro mutagenesis. It is shown here that dP is a potent mutagen in Escherichia coli and Salmonella typhimurium . In E.coli , this deoxycytidine analog induces both GC-->AT and AT-->GC transitions. No induced transversions are observed. It is highly mutagenic in wild-type E.coli, but this is much reduced in a strain lacking thymidine kinase. Mutagenesis induced by dP is efficiently inhibited by the addition of thymidine. Partially purified thymidine kinase from E.coli catalyzes phosphorylation of dP to its 5'-monophosphate. When E.coli was grown in the presence of dP, the nucleoside analog was incorporated into its DNA. The content of dP in DNA was dependent on the concentration of dP added to the medium. The incorporation characteristics of the 5'-triphosphate of dP (dPTP) were also studied using E.coli DNA polymerase I large fragment. The results confirm that this triphosphate can be incorporated opposite A and G in the template with similar efficiencies. This indicates that dP is metabolized as a thymidine analog and that the resulting triphosphate induces a high rate of mutagenesis through replicational errors.  相似文献   

5.
6.
S Li  A Haces  L Stupar  G Gebeyehu    R C Pless 《Nucleic acids research》1993,21(11):2709-2714
Taq DNA polymerase, Sequenase, and the large fragment of E.coli polymerase I effectively utilize N4-methyl-2'-deoxycytidine 5'-triphosphate (N4-methyl-dCTP) in the place of dCTP in dideoxynucleotide terminator sequencing reactions on single-stranded templates. When the resulting fragment mixtures are resolved on sequencing gels, they are found to be free of band compressions even in cases where such compressions remain unresolved by the substitution of 7-deaza-dGTP for dGTP. Sequencing reactions using N4-methyl-dCTP instead of dCTP are somewhat more prone to false stops than are sequencing reactions using 7-deaza-dGTP instead of dGTP; this difference is more pronounced when sequencing with Sequenase at 37 degrees C than when sequencing with Taq DNA polymerase at 72 degrees C. For the three polymerases investigated, replacement of dCTP by N4-methyl-dCTP does not fundamentally change the characteristic variations in band intensities seen in the C-lane. N4-methyl-dCTP can also be used for sequencing double-stranded DNA and for DNA amplification by the polymerase chain reaction.  相似文献   

7.
8.
9.
10.
11.
The access of bone morphogenetic protein (BMP) to the BMP receptors on the cell surface is regulated by its antagonist noggin, which binds to heparan-sulfate proteoglycans on the cell surface. Noggin is encoded by NOG and mutations in the gene are associated with aberrant skeletal formation, such as in the autosomal dominant disorders proximal symphalangism (SYM1), multiple synostoses syndrome, Teunissen–Cremers syndrome, and tarsal–carpal coalition syndrome. NOG mutations affecting a specific function may produce a distinct phenotype. In this study, we investigated a Japanese pedigree with SYM1 and conductive hearing loss and found that it carried a novel heterozygous missense mutation of NOG (c.406C > T; p.R136C) affecting the heparin-binding site of noggin. As no mutations of the heparin-binding site of noggin have previously been reported, we investigated the crystal structure of wild-type noggin to investigate molecular mechanism of the p.R136C mutation. We found that the positively charged arginine at position 136 was predicted to be important for binding to the negatively charged heparan-sulfate proteoglycan (HSPG). An in silico docking analysis showed that one of the salt bridges between noggin and heparin disappeared following the replacement of the arginine with a non-charged cysteine. We propose that the decreased binding affinity of NOG with the p.R136C mutation to HSPG leads to an excess of BMP signaling and underlies the SYM1 and conductive hearing loss phenotype of carriers.  相似文献   

12.
13.
Recently, we have found a transient intermediate on the folding pathway of src SH3. Intending to investigate the structure of the transient intermediate, we tested a mutant of src SH3, named A45G, using circular dichroism, fluorescence and X-ray solution scattering, and incidentally found that it forms a stable alpha-helix-rich intermediate (I(eq)) (different from the native beta-sheet-based secondary structure) at pH 3.0, but contains only beta-sheets at pH 6.0, whereas wild-type SH3 forms only beta-sheets at both pH 3.0 and pH 6.0. The intermediate I(eq) shows a circular dichroism measured at theta(222)=-10,300 deg.cm(2) dmol(-1), indicating a 31% alpha-helix proportion, as estimated by the CONTIN program. X-ray scattering gave the radius of gyration for I(eq) as 19.1 A at pH 3.0 and 15.4 A at pH 6.0, and Kratky plots showed a clear peak at pH 3.0, 4.0 and 6.0, indicating that I(eq) too is compact. In these parameters, I(eq) closely resembles the kinetically-obtained intermediate I(kin) which we found on the folding pathway of wild-type SH3 at pH 3.0 (radius of gyration 18.7 A and theta(222)=-8700 deg.cm(2)dmol(-1)), indicating a 26% alpha-helix proportion in our previous paper. Refolding experiments with A45G were done at pH 6.0 by stopped-flow apparatus monitored by circular dichroism, and compared to kinetic experiments with wild-type SH3 at pH 6.0. The result showed an alpha-helix-rich intermediate at the same dichroism amplitude, but nine times slower in formation-rate. A pH-jump experiment from pH 3.0 to pH 5.9 on A45G was also performed. This showed no bursts, and the rate of conformation-change was almost as fast as the refolding rate of A45G at pH 6.0. These kinetic experiment data would be consistent with I(eq) being nearly identical to the I(kin), which appeared on the folding pathways of both wild-type SH3 and A45G at pH 3.  相似文献   

14.
During aflatoxin biosynthesis, 5'-hydroxyaverantin (HAVN) is converted to averufin (AVR). Although we had previously suggested that this occurs in one enzymatic step, we demonstrate here that this conversion is composed of two enzymatic steps by showing that the two enzyme activities in the cytosol fraction of Aspergillus parasiticus were clearly separated by Mono Q column chromatography. An enzyme, HAVN dehydrogenase, catalyzes the first reaction from HAVN to a novel intermediate, another new enzyme catalyzes the next reaction from the intermediate to AVR, and the intermediate is a novel substance, 5'-oxoaverantin (OAVN), which was determined by physicochemical methods. We also purified both of the enzymes, HAVN dehydrogenase and OAVN cyclase, from the cytosol fraction of A. parasiticus by using ammonium sulfate fractionation and successive chromatographic steps. The HAVN dehydrogenase is a homodimer composed of 28-kDa subunits, and it requires NAD, but not NADP, as a cofactor for its activity. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis of tryptic peptides of the purified HAVN dehydrogenase revealed that this enzyme coincides with a protein deduced from the adhA gene in the aflatoxin gene cluster of A. parasiticus. Also, the OAVN cyclase enzyme is a homodimer composed of 79-kDa subunits which does not require any cofactor for its activity. Further characterizations of both enzymes were performed.  相似文献   

15.
16.
To date very few G protein-coupled receptors (GPCRs) have been shown to be connected to the Janus kinase (JAK)/STAT pathway. Thus our understanding of the mechanisms involved in the activation of this signaling pathway by GPCRs remains limited. In addition, little is known about the role of the JAK pathway in the physiological or pathophysiological functions of GPCRs. Here, we described a new mechanism of JAK activation that involves Galpha(q) proteins. Indeed, transfection of a constitutively activated mutant of Galpha(q) (Q209L) in COS-7 cells demonstrated that Galpha(q) is able to associate and activate JAK2. In addition, we showed that this mechanism is used to activate JAK2 by a GPCR principally coupled to G(q), the CCK2 receptor (CCK2R), and involves a highly conserved sequence in GPCRs, the NPXXY motif. In a pancreatic tumor cell line expressing the endogenous CCK2R, we demonstrated the activation of the JAK2/STAT3 pathway by this receptor and the involvement of this signaling pathway in the proliferative effects of the CCK2R. In addition, we showed in vivo that the targeted CCK2R expression in pancreas of Elas-CCK2 mice leads to the activation of JAK2 and STAT3. This process may contribute to the increase of pancreas growth as well as the formation of preneoplastic lesions leading to pancreatic tumor development observed in these transgenic animals.  相似文献   

17.
In experiment on anesthetized dogs and cats in was shown that the new water-soluble copolymer initiated depressive reaction characteristic for beta-adrenomimetics. This effect was levelled with the help of non-selective adrenoblockator--propranololum. In experiment on dogs the preliminary treatment with propranololum decreased the therapeutic antiradiation efficiency of the copolymer from 68.4 to 8.3%.  相似文献   

18.
Electrostatic interactions are important for molecular recognition processes including Ca2+-binding and cell adhesion. To understand these processes, we have successfully introduced a novel Ca2+-binding site into the non-Ca2+-dependent cell adhesion protein CD2 using our criteria that are specifically tailored to the structural and functional properties of the protein environment and charged adhesion surface. This designed site with ligand residues exclusively from the beta-sheets selectively binds to Ca2+ and Ln3+ over other mono- and divalent cations. While Ca2+ and Ln3+ binding specifically alters the local environment of the designed Ca2+-binding site, the designed protein undergoes a significantly smaller conformation change compared with those observed in naturally occurring Ca2+-binding sites that are composed of at least part of the flexible loop and helical regions. In addition, the CD2-CD48-binding affinity increased approximately threefold after protein engineering, suggesting that the cell adhesion of CD2 can be modulated by altering the local electrostatic environment. The study provides site-specific information for regulating cell adhesion within CD2 and gives insight into the structural factors required for Ca2+-modulated biological processes.  相似文献   

19.
20.
Proteorhodopsin, a retinal protein of marine proteobacteria similar to bacteriorhodopsin of the archaea, is a light-driven proton pump. Absorption of a light quantum initiates a reaction cycle (turnover time of ca. 50 ms), which includes photoisomerization of the retinal from the all-trans to the 13-cis form and transient deprotonation of the retinal Schiff base, followed by recovery of the initial state. We report here that in addition to this fast cyclic conversion, illumination at high pH results in accumulation of a long-lived photoproduct absorbing at 362 nm. This photoconversion is much more efficient in the D227N mutant in which the anionic Asp227, which together with Asp97 constitutes the Schiff base counterion, is replaced with a neutral residue. Upon illumination at pH 8.5, most of the D227N pigment is converted to the 362 nm species, with a quantum efficiency of ca. 0.2. The pK(a) for this transition in the wild type is 9.6, but decreased to 7.5 after mutation of Asp227. The short wavelength of the absorption maximum of the photoproduct indicates that it has a deprotonated Schiff base. In the dark, this photoproduct is converted back to the initial pigment with a time constant of 30 min (in D227N, at pH 8.5), but it can be reconverted more rapidly by illumination with near-UV light. Experiments with "locked" retinal analogues which selectively exclude rotation around either the C9=C10, C11=C12, or C13=C14 bond show that formation of the 362 nm species involves isomerization around the C13=C14 bond. In agreement with this, retinal extraction indicates that the 362 nm photoproduct is 13-cis whereas the initial state is predominantly all-trans. A rapid shift of the pH from 8.5 to 4 greatly accelerates thermal reconversion of the 362 nm species to the initial pigment, suggesting that its recovery involving the thermal isomerization of the chromophore is controlled by ionizable residues, primarily the Schiff base and Asp97. The transformation to the long-lived 362 nm photoproduct is apparently a side reaction of the photocycle, a response to high pH, caused by alteration of the normal reprotonation and reisomerization pathway of the Schiff base.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号