首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The effect of phosphorylation by cyclic GMP-dependent protein kinase (G-kinase) on the activity of the plasmalemmal Ca2+-transport ATPase was studied on isolated plasma membranes and on the ATPase purified from pig erythrocytes and from the smooth muscle of pig stomach and pig aorta. Incubation with G-kinase resulted, in both smooth-muscle preparations, but not in the erythrocyte ATPase, in a higher Ca2+ affinity and in an increase in the maximal rate of Ca2+ uptake. Cyclic AMP-dependent protein kinase (A-kinase) did not exert such an effect. The stimulation of the (Ca2+ + Mg2+)-dependent ATPase activity of the purified Ca2+ pump reconstituted in liposomes depended on the phospholipid used for reconstitution. The stimulation of the (Ca2+ + Mg2+)-ATPase activity by G-kinase was only observed in the presence of phosphatidylinositol (PI). G-kinase, but not A-kinase, stimulated the phosphorylation of PI to phosphatidylinositol phosphate (PIP) in a preparation of (Ca2+ + Mg2+)-ATPase obtained by calmodulin affinity chromatography from smooth muscle, but not in a similar preparation from erythrocytes. Adenosine inhibited both the phosphorylation of PI and the stimulation of the (Ca2+ + Mg2+)-ATPase by G-kinase. In the absence of G-kinase the (Ca2+ + Mg2+)-ATPase was stimulated by the addition of PIP, but not by PI. In contrast with previous results of Furukawa & Nakamura [(1987) J. Biochem (Tokyo) 101, 287-290], no convincing evidence for a phosphorylation of the (Ca2+ + Mg2+)-ATPase was found. Evidence is presented showing that the apparent phosphorylation occurs in a contaminant protein, possibly myosin light-chain kinase. It is proposed that G-kinase stimulates the plasmalemmal Ca2+ pump of smooth-muscle cells indirectly via the phosphorylation of an associated PI kinase.  相似文献   

2.
A monoclonal antibody (2B3) directed against the calmodulin-binding (Ca2+ + Mg2+)-dependent ATPase from pig stomach smooth muscle was prepared. This antibody reacts with a 130,000-Mr protein that co-migrates on SDS/polyacrylamide-gel electrophoresis with the calmodulin-binding (Ca2+ + Mg2+)-ATPase purified from smooth muscle by calmodulin affinity chromatography. The antibody causes partial inhibition of the (Ca2+ + Mg2+)-ATPase activity in plasma membranes from pig stomach smooth muscle, in pig erythrocytes and human erythrocytes. It appears to be directed against a specific functionally important site of the plasmalemmal Ca2+-transport ATPase and acts as a competitive inhibitor of ATP binding. Binding of the antibody does not change the Km of the ATPase for Ca2+ and its inhibitory effect is not altered by the presence of calmodulin. No inhibition of (Ca2+ + Mg2+)-ATPase activity or of the oxalate-stimulated Ca2+ uptake was observed in a pig smooth-muscle vesicle preparation enriched in endoplasmic reticulum. These results confirm the existence in smooth muscle of two different types of Ca2+-transport ATPase: a calmodulin-binding (Ca2+ + Mg2+)-ATPase located in the plasma membrane and a second one confined to the endoplasmic reticulum.  相似文献   

3.
Highly purified pig myocardium sarcolemma vesicles possess the Ca2+,Mg2+-ATPase activity (4.1 mumol Pi/mg protein/hour) and induce the ATP-dependent accumulation of 45Ca2+ (6.0 nmol/mg protein/min). This reaction is not stimulated by oxalate; Ca2+ are released from the vesicles by saponin and Na+ treatment, which suggests that Ca2+ transport against the concentration gradient is induced by myocardium sarcolemma vesicles and not by sarcoplasmic reticulum fragments. The phorbol ester possessing a biological activity of a growth-promoting factor and activating membrane-bound protein kinase C stimulates the Ca2+,Mg2+-ATPase activity and the ATP-dependent accumulation of Ca2+, whereas its counterpart devoid of biological activity does not influence Ca2+ transport. Polymixin B, a specific inhibitor of protein kinase C, prevents the activating effect of phorbol esters on Ca2+ accumulation inside the vesicles. It is suggested that the ATP-dependent transport of Ca2+ in myocardium sarcolemma is controlled by Ca2+-phospholipid-dependent phosphorylation catalyzed by protein kinase C.  相似文献   

4.
The only known cellular action of AlF4- is to stimulate the G-proteins. The aim of the present work is to demonstrate that AlF4- also inhibits 'P'-type cation-transport ATPases. NaF plus AlCl3 completely and reversibly inhibits the activity of the purified (Na+ + K+)-ATPase (Na+- and K+-activated ATPase) and of the purified plasmalemmal (Ca2+ + Mg2+)-ATPase (Ca2+-stimulated and Mg2+-dependent ATPase). It partially inhibits the activity of the sarcoplasmic-reticulum (Ca2+ + Mg2+)-ATPase, whereas it does not affect the mitochondrial H+-transporting ATPase. The inhibitory substances are neither F- nor Al3+ but rather fluoroaluminate complexes. Because AlF4- still inhibits the ATPase in the presence of guanosine 5'-[beta-thio]diphosphate, and because guanosine 5'-[beta gamma-imido]triphosphate does not inhibit the ATPase, it is unlikely that the inhibition could be due to the activation of an unknown G-protein. The time course of inhibition and the concentrations of NaF and AlCl3 required for this inhibition differ for the different ATPases. AlF4- inhibits the (Na+ + K+)-ATPase and the plasmalemmal (Ca2+ + Mg2+)-ATPase noncompetitively with respect to ATP and to their respective cationic substrates, Na+ and Ca2+. AlF4- probably binds to the phosphate-binding site of the ATPase, as the Ki for inhibition of the (Na+ + K+)-ATPase and of the plasmalemmal (Ca2+ + Mg2+)-ATPase is shifted in the presence of respectively 5 and 50 mM-Pi to higher concentrations of NaF. Moreover, AlF4- inhibits the K+-activated p-nitrophenylphosphatase of the (Na+ + K+)-ATPase competitively with respect to p-nitrophenyl phosphate. This AlF4- -induced inhibition of 'P'-type cation-transport ATPases warns us against explaining all the effects of AlF4- on intact cells by an activation of G-proteins.  相似文献   

5.
It is shown that in case of antioxidant insufficiency (AOI) activation of NADPH- and ascorbate-dependent lipid peroxidation (LPO) in sarcoplasmic reticulum (SR) of skeletal muscles proceeds 1.7 and 4.1 times faster, respectively. Activation of lipid peroxidation in AOI leads to damage of Ca2+ transport processes in SR of skeletal muscles. Under these conditions ATP-dependent accumulation of 45Ca (by 88%) and Ca(2+)-ATPase (by 14%) activity in SR of skeletal muscles falls. In case of AOI a significant disturbance of passive Ca2+ transport in SR of skeletal muscles takes place, being characterized by an increased passive 45Ca output from vesicles due to breakage of the biomembrane permeability as a result of lipid peroxidation of membranes. Treatment of animals with ionol, a synthetic antioxidant, causes a decrease of activated NADPH- and ascorbate-dependent LPO in SR of skeletal muscles and stabilization of Ca2+ transport processes.  相似文献   

6.
Studies were undertaken to determine whether factors which affect insulin secretion may exert their effects by altering the activity of an islet-cell plasma membrane Ca2+ extrusion pump. The insulin secretagogue, D-glucose, and a variety of phosphorylated hexoses, glucose 6-P, glucose 1,6-P, fructose 6-P, and fructose 2,6-P, were evaluated for their effect on an islet-cell plasma membrane (Ca2+ + Mg2+)-ATPase and were found to be ineffective in altering enzyme activity. D-Glucose also did not alter the rate of ATP-dependent Ca2+ uptake into plasma membrane vesicles. Similarly, cAMP, the catalytic subunit of cAMP-dependent protein kinase, arachidonic acid, or prostaglandin E2 did not affect either the plasma membrane (Ca2+ + Mg2+)-ATPase or the rate of ATP-dependent Ca2+ uptake into plasma membrane vesicles. Whereas previous studies have suggested that D-glucose and/or cAMP may inhibit ATPase activities in islets, these results indicate that the agents, i.e., D-glucose and cAMP, which stimulate and/or potentiate insulin secretion from the islet cell, do not modify Ca2+ fluxes by directly regulating the islet-cell plasma membrane (Ca2+ + Mg2+)-ATPase. In contrast, the acidic phospholipids, phosphatidic acid and phosphatidylserine, stimulated the enzyme activity in a concentration-dependent manner whereas phosphatidylcholine had only a minimal effect. The diacylglycerol, dilinolein, stimulated the (Ca2+ + Mg2+)-ATPase activity in the presence of phosphatidylserine, but not in the absence of phospholipids. These effects were independent of phospholipid-stimulated protein phosphorylation in the islet-cell plasma membrane under the conditions of the ATPase assay.  相似文献   

7.
The dependence of the (Ca2+ + Mg2+)-ATPase activity of sarcoplasmic reticulum vesicles upon the concentration of pentobarbital shows a biphasic pattern. Concentrations of pentobarbital ranging from 2 to 8 mM produce a slight stimulation, approximately 20-30%, of the ATPase activity of sarcoplasmic reticulum vesicles made leaky to Ca2+, whereas pentobarbital concentrations above 10 mM strongly inhibit the activity. The purified ATPase shows a higher sensitivity to pentobarbital, namely 3-4-fold shift towards lower values of the K0.5 value of inhibition by this drug. These effects of pentobarbital are observed over a wide range of ATP concentrations. In addition, this drug shifts the Ca2+ dependence of the (Ca2+ + Mg2+)-ATPase activity towards higher values of free Ca2+ concentrations and increases several-fold the passive permeability to Ca2+ of the sarcoplasmic reticulum membranes. At the concentrations of pentobarbital that inhibit this enzyme in the sarcoplasmic reticulum membrane, pentobarbital does not significantly alter the order parameter of these membranes as monitored with diphenylhexatriene, whereas the temperature of denaturation of the (Ca2+ + Mg2+)-ATPase is decreased by 4-5 C degrees, thus, indicating that the conformation of the ATPase is altered. The effects of pentobarbital on the intensity of the fluorescence of fluorescein-labeled (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum also support the hypothesis of a conformational change in the enzyme induced by millimolar concentrations of this drug. It is concluded that the inhibition of the sarcoplasmic reticulum ATPase by pentobarbital is a consequence of its binding to hydrophobic binding sites in this enzyme.  相似文献   

8.
Antibodies directed against the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase [(Ca2+ + Mg2+)-dependent ATPase] from pig erythrocytes and from smooth muscle of pig stomach (antral part) were raised in rabbits. Both the IgGs against the erythrocyte (Ca2+ + Mg2+)-ATPase and against the smooth-muscle (Ca2+ + Mg2+)-ATPase inhibited the activity of the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase from smooth muscle. Up to 85% of the total (Ca2+ + Mg2+)-ATPase activity in a preparation of KCl-extracted smooth-muscle membranes was inhibited by these antibodies. The (Ca2+ + Mg2+)-ATPase activity and the Ca2+ uptake in a plasma-membrane-enriched fraction from this smooth muscle were inhibited to the same extent, whereas in an endoplasmic-reticulum-enriched membrane fraction the (Ca2+ + Mg2+)-ATPase activity was inhibited by only 25% and no effect was observed on the oxalate-stimulated Ca2+ uptake. This supports the hypothesis that, in pig stomach smooth muscle, two separate types of Ca2+-transport ATPase exist: a calmodulin-binding ATPase located in the plasma membrane and a calmodulin-independent one present in the endoplasmic reticulum. The antibodies did not affect the stimulation of the (Ca2+ + Mg2+)-ATPase activity by calmodulin.  相似文献   

9.
Sidedness of synaptic plasma membrane vesicles isolated from brain synaptosomes has been assessed by two distinct experimental approaches: first, analysis of (Na+ + K+)-ATPase, Mg2+-ATPase, and (Ca2+ + Mg2+)-ATPase activities before and after permeabilization of vesicles; second, analysis of Ca2+ fluxes via the Na+/Ca2+ exchanger, before and after modification of an imposed Na+ gradient by penetrating or nonpenetrating Na+ channel-modifying drugs. 0.05% saponin, which completely permeabilizes the vesicles, increases digitoxigenin-sensitive (Na+ + K+)-ATPase, basal Mg2+-ATPase, and (Ca2+ + Mg2+)-ATPase activities by 51.0, 47.4, and 83.6%, respectively. Saponin increases only the Vmax of the latter activity, the Km for Ca2+ (0.13 microM; the same as that for Ca2+-pumping) being unaltered by saponin. An increment of 20.5% in the Vmax of (Ca2+ + Mg2+)-ATPase activity with 10 microM A23187, reveals that the enzyme activity in nonpermeabilized vesicles is limited by the formation of a Ca2+ gradient. Thus, the saponin-induced increment in (Ca2+ + Mg2+)-ATPase due only to exposure of occluded sites (as opposed to Ca2+ gradient dissipation) is actually 52%, which is similar to values for both other ATPases, and suggests that 32-35% of plasma membranes exist in an inverted orientation. Vesicle orientation was independently assessed by the differential actions of tetrodotoxin (a membrane impermeant blocker) and veratridine (a membrane permeant agonist) on Na+-channel opening measured indirectly by dissipation of an imposed Na+ gradient utilized to drive a large 45Ca2+ accumulation via the Na+/Ca2+ exchanger. Tetrodotoxin reverses 35-44% of veratridine-mediated Na+ gradient-dissipation, the relative membrane-permeability of the two channel modifiers, suggesting that 56-65% of sealed vesicles are inverted. The concurrence of these two independent measurements of vesicle orientation reinforces their validity.  相似文献   

10.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytoplasm, on ATP-dependent calcium transport in the plasma membrane vesicles of rat liver was investigated. (Ca2+-Mg2+)-ATPase activity in the liver plasma membranes was significantly increased by the presence of regucalcin (0.1-0.5 \sgmaelig;M) in the enzyme reaction mixture. This increase was completely inhibited by the presence of sulfhydryl group modifying reagent Nethylmaleimide (5.0 mM NEM) or digitonin (0.04%), which can solubilize the membranous lipids. When ATP-dependent calcium uptake by liver plasma membrane vesicles was measured by using 45CaCl2, the presence of regucalcin (0.1-0.5 \sgmaelig;M) in the reaction mixture caused a significant increase in the 45Ca2+ uptake. This increase was about 2-fold with 0.5 \sgmaelig;M regucalcin addition. An appreciable increase was seen by 5 min incubation with regucalcin addition. The regucalcin-enhanced ATP-dependent 45Ca2+ uptake by the plasma membrane vesicles was completely inhibited by the presence of NEM (5.0 mM) or digitonin (0.04%). These results demonstrate that regucalcin activates (Ca2+-Mg2+)-ATPase in the liver plasma membranes and that it can stimulate ATP-dependent calcium transport across the plasma membranes.  相似文献   

11.
L de Meis  G Inesi 《FEBS letters》1992,299(1):33-35
Ca2+ efflux can be studied conveniently following dilution of sarcoplasmic reticulum (SR) vesicles preloaded with 45Ca2+ by active transport. The rates of efflux are highly dependent on ATPase substrates and cofactors (Pi, Mg2+, Ca2+ and ADP) in the efflux medium. On the other hand, phenothiazines stimulate efflux through a passive permeability channel with no coupled catalytic events. Efflux activation by manipulation of catalytically active ATPase ligands, as well as by the catalytically inactive phenothiazines, can be prevented by thapsigargin, which is a highly specific inhibitor of the Ca(2+)-ATPase. This demonstrates that the passive channel activated by phenothiazines is an integral part of the ATPase, and can operate either uncoupled or coupled to catalytic events.  相似文献   

12.
The effect of fatty acid and acylcarnitine on Ca2+ and Na+ transporting enzymes and carriers was studied in sealed cardiac sarcolemma vesicles of mixed polarity. Palmitoylcarnitine markedly reduced the Na+ gradient-induced Ca2+ uptake. Half-maximal reduction was obtained at 15 microM of the carnitine derivative. In a same concentration range palmitoylcarnitine caused a rapid release of accumulated Ca2+ when added to Ca2+-filled vesicles, which suggests that palmitoylcarnitine increases the permeability of the sarcolemma vesicles to Ca2+. A rapid release of Ca2+ was also observed if Ca2+ was taken up by action of the Ca2+ pump. The (Ca2+ + Mg2+)-ATPase, which most likely drives this active Ca2+ uptake, was 90% increased by 50 microM palmitoylcarnitine and evidence was presented that the acylcarnitine effect again was linked to an alteration of Ca2+ permeability of the vesicles. At the same concentration acylcarnitine was not able to unmask the latent protein kinase, so that probably the sarcolemma ATP permeability was not affected. Palmitoylcarnitine at 25 microM did not affect the ouabain-sensitive (Na+ + K+) -ATPase in native sarcolemma vesicles, however, it inhibited markedly if the enzyme was measured in SDS-treated vesicles. The effect of increased free fatty acid concentration on some of the sarcolemma transporting properties was tested by adding oleate-albumin complexes with different molar ratios to the sarcolemma vesicles. In contrast to molar ratios 1 and 5, the ratio of 7 was able to induce a rapid Ca2+ release and to inhibit (Na+ + K+)-ATPase in either native or SDS-treated vesicles markedly. 22Na release from 22Na-preloaded sarcolemma vesicles was shown to be stimulated by either palmitoylcarnitine (50 microM) or oleate-albumin complex (with a molar ratio of 7). The possible significance of the observed effects of lipid intermediates on ion permeability and (Na+ + K+)-ATPase activity in isolated sarcolemma vesicles for the derangement of cardiac cell function in ischemia is discussed.  相似文献   

13.
The purified (Ca2+-Mg2+)-ATPase from rat liver plasma membranes (Lotersztajn, S., Hanoune, J., and Pecker, F. (1981) J. Biol. Chem. 256, 11209-11215) was incorporated into soybean phospholipid vesicles, together with its activator. In the presence of millimolar concentrations of Mg2+, the reconstituted proteoliposomes displayed a rapid, saturable, ATP-dependent Ca2+ uptake. Half-maximal Ca2+ uptake activity was observed at 13 +/- 3 nM free Ca2+, and the apparent Km for ATP was 16 +/- 6 microM. Ca2+ accumulated into proteoliposomes (2.8 +/- 0.2 nmol of Ca2+/mg of protein/90 s) was totally released upon addition of the Ca2+ ionophore A-23187. Ca2+ uptake into vesicles reconstituted with enzyme alone was stimulated 2-2.5-fold by the (Ca2+-Mg2+)-ATPase activator, added exogenously. The (Ca2+-Mg2+)-ATPase activity of the reconstituted vesicles, measured using the same assay conditions as for ATP-dependent Ca2+ uptake activity (e.g. in the presence of millimolar concentrations of Mg2+), was maximally activated by 20 nM free Ca2+, half-maximal activation occurring at 13 nM free Ca2+. The stoichiometry of Ca2+ transport versus ATP hydrolysis approximated 0.3. These results provide a direct demonstration that the high affinity (Ca2+-Mg2+)-ATPase identified in liver plasma membranes is responsible for Ca2+ transport.  相似文献   

14.
Calcium accumulation by purified vesicles derived from basolateral membranes of kidney proximal tubules was reversibly inhibited by micromolar concentrations of 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), an inhibitor of anion transport. The inhibitory effect of this compound on Ca2+ uptake cannot be attributed solely to the inhibition of anion transport: (Ca(2+)+Mg2+)ATPase and ATP-dependent Ca2+ transport, respectively. The rate constant of EGTA-induced Ca2+ efflux from preloaded vesicles was not affected by DIDS, indicating that this compound does not increase the permeability of the membrane vesicles to Ca2+. In the presence of DIDS, the effects of the physiological ligands Ca2+, Mg2+, and ATP on (Ca(2+)+Mg2+)ATPase activity were modified. The Ca2+ concentration that inhibited (Ca(2+)+Mg2+)ATPase activity in the low-affinity range decreased from 91 to 40 microM, but DIDS had no effect on the Km for Ca2+ in the high-affinity, stimulatory range. Free Mg2+ activated (Ca(2+)+Mg2+)ATPase activity at a low Ca2+ concentration, and DIDS impaired this stimulation in a noncompetitive fashion. The inhibition by DIDS was eliminated when the free ATP concentration of the medium was raised from 0.3 to 8 mM, possibly due to an increase in the turnover of the enzyme caused by free ATP accelerating the E2----E1 transition, and leading to a decrease in the proportion of E2 forms under steady-state conditions. Alkaline pH totally abolished the inhibition of the (Ca(2+)+Mg2+)ATPase activity by DIDS, with a half-maximal effect at pH 8.3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
It was found that the initial rate of passive KC1-stimulated Ca2+ influx into sarcoplasmic reticulum (SR) vesicles follows the saturation kinetics at Ca2+ concentrations of 8-10 mM. The inhibitory effect of Ca2+ channel blockers (La3+, Mn2+, Co2+, Cd2+, Mg2+) on passive Ca2+ influx into SR vesicles is competitive with respect to Ca2+. These blockers also inhibit the initial fast phase of Ca2+ efflux from Ca2+-loaded SR vesicles. Verapamil (0.1-0.5 mM) added to the incubation mixture has no effect on passive Ca2+ fluxes across the SR vesicle membrane or on Ca2+ binding and ATP-dependent Ca2+ accumulation. However, preincubation of SR vesicles with verapamil (18 hours, 4 degrees C) or its introduction into the medium for SR vesicle isolation leads to the inhibition of passive Ca2+ fluxes.  相似文献   

16.
The anti-calmodulin drugs calmidazolium (CMZ) and trifluoperazine (TFP) were shown to have a number of effects on 45Ca transport by plasmalemmal vesicles from gastric smooth muscle. Although these compounds produced the expected dose-dependent inhibition of the plasmalemmal ATP-dependent Ca2+ transport system, they also evoked a Ca2+ release comparable to that observed in the presence of the Ca2+ ionophore, ionomycin. This increased transmembrane Ca2+ flux was so large that it accounted for much of the apparent decrease in 45Ca uptake produced by these agents. Thus, direct effects of CMZ and TFP on ATP-dependent 45Ca uptake could only be reliably assessed for brief (less than or equal to 30 seconds) drug exposures. The explanation for the observed effects of CMZ and TFP on membrane Ca2+ permeability is unclear. The increased transmembrane Ca2+ flux may reflect nonspecific effects on membrane permeability or it may reflect a specific interaction of the anticalmodulin drugs with a Ca2+ release channel or with the Ca2+ transport ATPase. In any case, these results suggest the need for caution in the design and interpretation of studies using both CMZ and TFP as anticalmodulin agents.  相似文献   

17.
Rough endoplasmic reticulum membranes, purified from isolated rat pancreatic acini stimulated by carbachol, had a decreased Ca2+ content and increased (Ca2+ + Mg2+)-ATPase activity. Ca2+ was regained and ATPase activity reduced to control levels only after blockade by atropine. The (Ca2+ + Mg2+)-ATPase was activated by free Ca2+ (half-maximal at 0.17 microM; maximal at 0.7 microM) over the concentration range which occurs in the cell cytoplasm. Pretreatment with EGTA, at a high concentration (5 mM), inhibited ATPase activity which, our results suggest, was due to removal of a bound activator such as calmodulin. The rate of (Ca2+ + Mg2+)-ATPase actively declined during the 10-min period over which maximal active accumulation of Ca2+ by membrane vesicles occurs. In the presence of ionophore A23187, which released actively accumulated Ca2+ and stimulated the (Ca2+ + Mg2+)-ATPase, this time-dependent decline in activity was not observed. Our data provide evidence that the activity of the Ca2+-transporting ATPase of the rough endoplasmic reticulum is regulated by both extra and intravesicular Ca2+ and is consistent with a direct role of this enzyme in the release and uptake of Ca2+ during cholinergic stimulation of pancreatic acinar cells.  相似文献   

18.
AIF4- inhibits the (Ca2+ + Mg2+)-ATPase activity of the plasma-membrane and the sarcoplasmic-reticulum Ca2+-transport ATPase [Missiaen, Wuytack, De Smedt, Vrolix & Casteels (1988) Biochem. J. 253, 827-833]. The aim of the present work was to investigate this inhibition further. We now report that AIF4- inhibits not only the (Ca2+ + Mg2+)-ATPase activity, but also the ATP-dependent 45Ca2+ transport, and the formation of the phosphoprotein intermediate by these pumps. Mg2+ potentiated the effect of AIF4-, whereas K+ had no such effect. The plasma-membrane Ca2+-transport ATPase from erythrocytes was 20 times less sensitive to inhibition by AIF4- as compared with the Ca2+-transport ATPase from smooth muscle. The endoplasmic-reticulum Ca2+-transport ATPase from smooth muscle was inhibited to a greater extent than the sarcoplasmic-reticulum Ca2+-transport ATPase of slow and fast skeletal muscle.  相似文献   

19.
Oxytocin (10(-7) M) administered inside the myometrium sarcolemma vesicles closed outward by the cytoplasmic side is shown to inhibit Mg2+, ATP-dependent Ca2+ accumulation in these structures having no effect on the passive release of cation out of them. According to these results and to the data available in literature on the inhibitory action of the peptide hormone on Mg2+, Ca2+-ATPase of myometrium sarcolemma a conclusion is drawn that oxytocin inhibits the Ca pump activity in plasma membranes of the myometrium cells.  相似文献   

20.
The correlation between the ATP-dependent Ca2+ binding and the phosphorylation of the membranes from swine and bovine erythrocytes was studied. The Ca2+ binding was measured by using 45CaCl2, and the phosphorylation by [gamma-32P]ATP was studied with the technique of SDS polyacrylamide gel electrophoresis. 200 mM NaCl and KCl markedly repressed the Ca2+ binding of swine erythrocyte membranes. The radioactivity of 32P-labelled membranes was revealed mainly in 250,000 dalton protein and a lipid fraction. NaCl and KCl also repressed the phosphorylation of the lipid which was identified as triphosphoinositide by paper chromatography. The membranes prepared from trypsin-digested erythrocytes completely retained the Ca2+-binding activity, and lost 30% of (Ca2+ + Mg2+)-ATPase activity. The Ca2+-binding and ATPase activity of isolated membranes decreased to 55% and to 0%, respectively, by tryptic digestion. Neither the Ca2+ binding nor the phosphorylation of polyphosphoinositides were detected in bovine erythrocyte membranes. These results suggest that the formation of triphosphoinositide rather than the (C2+ + Mg2+)-ATPase of membranes is linked to the ATP-dependent Ca2+ binding of erythrocyte membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号