首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six non-conventional adenosine-2'- and 3'-triphosphate analogues of ATP were tested as potential phosphate donors for all four human, and D. melanogaster, deoxyribonucleoside kinases. With dCK (only dAdo as acceptor), TK1, TK2 and dNK only 3'-deoxyadenosine-2'-triphosphate was an effective donor (5-60% that for ATP). With dCK (dCyd as acceptor) and dGK (dGuo as acceptor), sharing 45% sequence identity, donor activities ranged from 13 to 119% that for ATP. Products were 5'-phosphates. In some instances, kinetics are dependent on the nature of the acceptor, and donor and acceptors properties are mutually interdependent. Results are highly relevant to studies on the modes of interaction with the enzymes, and to interpretations of reported crystal structures of dCK and dNK with bound ligands.  相似文献   

2.
Inorganic tripolyphosphate (PPP(i)) and pyrophosphate (PP(i)) were examined as potential phosphate donors for human deoxynucleoside kinase (dCK), deoxyguanosine kinase (dGK), cytosolic thymidine kinase (TK1), mitochondrial TK2, and the deoxynucleoside kinase (dNK) from Drosophila melanogaster. PPP(i) proved to be a good phosphate donor for dGK, as well as for dCK with dCyd, but not dAdo, as acceptor substrate, illustrating also the dependence of donor properties on acceptor. Products of phosphorylation were shown to be 5(')-phosphates. In striking contrast to ATP, the phosphorylation reaction follows strict Michaelis-Menten kinetics, with K(m) values of 74 and 92 microM for dCK and dGK, respectively, and V(max) values 40-50% that for ATP. With the other three enzymes, as well as for dCK with dAdo as acceptor, no, or only low levels (相似文献   

3.
4.
5.
6.
7.
Most of the kinase inhibitors that are approved for therapeutic uses or that are undergoing clinical trials are directed toward the adenosine triphosphate (ATP) binding site of protein kinases. 5'-Fluorosulfonylbenzoyl 5'-adenosine (FSBA) is an activitybased probe (ABP) that covalently modifies a conserved lysine present in the nucleotide binding site of most kinases. Here the authors describe synthesis of FSBA derivatives, 2'-biotinyl-FSBA and 3'-biotinyl-FSBA as kinase ABPs, and delineate a Western blot method to screen and validate ATP competitive protein kinase inhibitors using biotinyl-FSBA as a nonselective activity-based probe for protein kinases.  相似文献   

8.
9.
Enzyme fraction A from Chlorella which catalyzes the formation of adenosine 5'-phosphosulfate from adenosine 3'-phosphate 5'-phosphosulfate is further characterized. Fraction A is found to contain an Mg2+ -activated and Ca2+ -inhibited 3' (2')-nucleotidase specific for 3' (2'), 5'-biphosphonucleosides. This activity has been named 3' (2), 5'-biphosphonucleoside 3' (2')-phosphohydrolase. The A fraction is also found to contain an activity which catalyzes the formation of adenosine 3':5'-monophosphate (cyclic AMP) from adenosine 5'-phosphosulfate (adenosine 5'-phosphosulfate cyclase). Under the same conditions of assay, 5'-ATP and 5'-ADP are not substrated for cyclic AMP formation. Unlike the 3' (2'), 5'-biphosphonucleoside 3' (2')-phosphohydrolase activity, the adenosine 5'-phosphosulfate cyclase activity does not require Mg2+, requires NH+4 or Na+, and is not inhibited by Ca2+. The A fraction also contains an adenosine 5'-phospho sulfate sulfohydrolase activity which forms 5'-AMP and sulfate. The three activities remain together during purification and acrylamide gel electrophoresis of the purified preparation yields a pattern where only one protein band has all three activities. The phosphohydrolase can be separated from the other two activities by affinity chromatography on agarose-hexyl-adenosine 3'n5'-bisphosphate yielding a phosphohydrolase preparation showing a single band on gel electrophoresis. The adenosine 5'-phosphosulfate cyclase may provide an alternate route of cyclic AMP formation from sulfate via ATP sulfurylase, but its regulatory significance in Chlorella, if any, remains to be demonstrated. In sulfate reduction, the phosphohydrolase may serve to provide a readily utilized pool of adenosine 5'-phosphosulfate as needed by the adenosine 5'-phosphosulfate sulfotransferase. The cyclase and sulfohydrolase activities would be regarded as side reactions incidental to this pathway, but may be of importance in other metabolic and regulatory reactions.  相似文献   

10.
Adenyl ribonucleotides having unsymmetrical 2'-5',3'-5' phosphodiester linkage have been prepared in a general, regiodefined manner.  相似文献   

11.
2',3'-Dideoxythymidine (ddThd) and its 2',3'-unsaturated derivative 2',3'-dideoxythymidinene (ddeThd) are potent and selective inhibitors of human immunodeficiency virus (HIV) in vitro. When evaluated for their inhibitory effects on the cytopathogenicity of HIV in MT-4 cells, ddThd and ddeThd completely protected the cells against destruction by the virus at a concentration of 1 microM and 0.04 microM, respectively. In this aspect, ddeThd was about 5 times more potent than 2',3'-dideoxycytidine (ddCyd), one of the most potent and selective anti-HIV compounds now pursued for its therapeutic potential in the treatment of AIDS. ddThd and ddeThd also suppressed HIV antigen expression at 1 microM and 0.04 microM, respectively. Their selectivity indexes, as based on the ratio of the 50% cytotoxic dose to the 50% antiviral effective dose, were 120 (ddeThd) and greater than 625 (ddThd).  相似文献   

12.
13.
The 2',3'-dideoxyriboside of 2,6-diaminopurine (ddDAPR) and its 2',3'-didehydro derivative (ddeDAPR) are poor substrates for adenosine deaminase (ADA) but potent inhibitors of the enzyme. Their Km values for ADA are of the same order of magnitude as those of the natural adenosine (Ado) and 2'-deoxyadenosine (dAdo), but their Vmax values are 35-fold (ddDAPR) to 350-fold (ddeDAPR) lower than those of Ado and dAdo. The Ki/K values of ADA for ddeDAPR (as inhibitor) and Ado, 2',3'-dideoxyadenosine (ddAdo) and 9-beta-D-arabinofuranosyladenine (araA) as the substrates are 0.17, 0.05 and 0.06, respectively. ddDAPR is about 3-fold less potent as an inhibitor of ADA than ddeDAPR. The 2,6-diaminopurine derivatives ddeDAPR and ddDAPR [which is also a potent inhibitor of human immunodeficiency virus (HIV)], may hold great promise, from a chemotherapeutic viewpoint, in combination with other adenosine analogues such as ddAdo and araA, which have been recognized and/or being pursued as either anti-retrovirus or anti-herpesvirus agents.  相似文献   

14.
Human fibrinogen was shown to be a substrate of the catalytic subunit of pig muscle cyclic 3′,5′-AMP-stimulated protein kinase in vitro. Maximally at least 6 mol of (32P)phosphate per mol of fibrinogen was bound, preferentially to the α-chain.  相似文献   

15.
R J Suhadolnik  C Lee  K Karikó  S W Li 《Biochemistry》1987,26(22):7143-7149
The chiral and achiral phosphorothioate analogues of 2',5'-oligoadenylates (2-5A) have been enzymatically synthesized from the Sp and Rp isomers of adenosine 5'-O-(2-thiotriphosphate) [(Sp)-ATP beta S and (Rp)-ATP beta S, respectively] and adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) by 2-5A synthetase from L929 cells and lysed rabbit reticulocytes. These 2',5'-phosphorothioate analogues were separated, purified, and structurally characterized. While ATP gamma S and (Sp)-ATP beta S were as efficient substrates for the 2-5A synthetase as was ATP, (Rp)-ATP beta S was more than 50-fold less efficient a substrate. The beta- and gamma-phosphorothioates were more resistant to enzymatic hydrolysis than was authentic 2-5A. Compared to 2-5A, there were marked differences in the biological activities of the 2',5'-phosphorothioates as determined by (i) binding to 2-5A-dependent endoribonuclease (RNase L), (ii) activation of RNase L to hydrolyze RNA, and (iii) inhibition of protein synthesis in intact L929 cells. These studies extend previous reports on the elucidation of the stereochemical requirements of 2-5A synthetase and RNase L [Karikó, K., Sobol, R. W., Jr., Suhadolnik, L., Li, S. W., Reichenbach, N. L., Suhadolnik, R. J., Charubala, R., & Pfleiderer, W. (1987) Biochemistry (first of three papers in this issue); Karikó, K., Li, S. W., Sobol, R. W., Jr., Suhadolnik, R. J., Charubala, R., & Pfleiderer, W. (1987) Biochemistry (second of three papers in this issue)] with the phosphorothioate analogues of 2-5A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We found that 2,2-difluoro-1,3-dimethylimidazolidine (DFI) is useful for not only fluorination but also dehydrating reactions. This dehydrating ability of DFI was applied to the syntheses of dihydrofurans (2) that are possible starting materials for various anticancer or antiviral drugs.  相似文献   

17.
Yeast and plant tRNA splicing entails discrete healing and sealing steps catalyzed by a tRNA ligase that converts the 2',3' cyclic phosphate and 5'-OH termini of the broken tRNA exons to 3'-OH/2'-PO4 and 5'-PO4 ends, respectively, then joins the ends to yield a 2'-PO4, 3'-5' phosphodiester splice junction. The junction 2'-PO4 is removed by a tRNA phosphotransferase, Tpt1. Animal cells have two potential tRNA repair pathways: a yeast-like system plus a distinctive mechanism, also present in archaea, in which the 2',3' cyclic phosphate and 5'-OH termini are ligated directly. Here we report that a mammalian 2',3' cyclic nucleotide phosphodiesterase (CNP) can perform the essential 3' end-healing steps of tRNA splicing in yeast and thereby complement growth of strains bearing lethal or temperature-sensitive mutations in the tRNA ligase 3' end-healing domain. Although this is the first evidence of an RNA processing function in vivo for the mammalian CNP protein, it seems unlikely that the yeast-like pathway is responsible for animal tRNA splicing, insofar as neither CNP nor Tpt1 is essential in mice.  相似文献   

18.
3'-Azido-2',3'-dideoxyguanosine (AzddGuo) is a potent and selective inhibitor of human immunodeficiency virus (HIV) in vitro. AzddGuo completely inhibits HIV-induced cytopathogenicity and viral antigen expression in MT-4 cells at a concentration of 5.0 microM. Its 50% effective dose for inhibiting HIV-induced cytopathogenicity is 1.4 microM, as compared to 6.4 microM for 2',3'-dideoxyadenosine (ddAdo). Thus, AzddGuo is approximately 4.6-fold more potent as an anti-HIV agent than ddAdo, one of the most promising compounds for the treatment of AIDS. However, AzddGuo is about 4.7 times more cytotoxic than ddAdo, so that its selectivity index, as based on the ratio of the 50% cytotoxic dose to the 50% antiviral effective dose, is almost the same as that of ddAdo (136 and 139, respectively).  相似文献   

19.
Methods are described for the synthesis of the 2'-tributylstannyl derivative of 2',3'-didehydro-2',3'-dideoxyuridine (d4U). Two approaches were investigated: radical-mediated desulfonylative stannylation of the 2'-benzenesulfonyl derivative of d4U and sulfoxide-metal exchange reaction of the 2'-benzenesulfinyl derivative. The latter approach was found to give the desired 2'-stannyl derivative in good yield. It was also shown that manipulations of the stannyl group allowed the introduction of a variety of carbon-substituents to the 2'-position by applying the Stille reaction. The whole reaction sequence has opened up a highly general entry to 2'-carbon-substituted analogues of d4U.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号