首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Absolute anchorages proved to be very effective for orthodontic tooth movements. We used a 3D digitizer to record each tooth on pre-treatment diagnostic and post-treatment predictive setup models and then 3D coordinate system conversion was performed to make the coordinate values comparable. An arithmetic calculation of vector and moment based on the orthodontic forces and the tooth displacement under preliminary premises undertaken to decide the most favorable pOsition and number for absolute anchorages. Position-For two-dimensional and three-dimensional calculations, the most appropriate positions for absolute anchorages should theoretically be on the line of resultant force (2D) and the plane (3D) where the total moment effect tends to be zero. Number-As for the number of the absolute anchorages needed, it depends on the number of target teeth. Different combinations of target teeth provide different sets of results.  相似文献   

2.
In orthodontic treatment, the locations of the centre of resistance (CR) of individual teeth and the applied load system are the major determinants for the type of tooth movement achieved. Currently, CR locations have only been specified for a relatively small number of tooth specimen for research purposes. Analysing cone beam computed tomography data samples from three upper central incisors, this study explores whether the effort to establish accurate CR estimates can be reduced by (i) morphing a pre-existing simplified finite element (FE) mesh to fit to the segmented 3D tooth-bone model, and (ii) individualizing a mean CR location according to a small parameter set characterising the morphology of the tooth and its embedding. The FE morphing approach and the semi-analytical approach led to CR estimates that differ in average only 0.04 and 0.12 mm respectively from those determined by very time-consuming individual FE modelling (standard method). Both approaches may help to estimate the movement of individual teeth during orthodontic treatment and, thus, increase the therapeutic efficacy.  相似文献   

3.
The purpose of this study was to establish a novel method for evaluating orthodontic tooth movement in three-dimensional (3-D) space. The present system consisted of the following procedures at a given treatment period: (1) 3-D tooth positions were measured with a 3-D surface-scanning system using a slit laser beam; (2) the 3-D shape data were registered automatically at the maxillary first molars, and the coordinate systems were normalized; (3) the rotation matrix and translation vector were calculated from the automatic registration of the two position data for a given tooth; (4) the finite helical axes of teeth were calculated as the locus of zero rotational displacement; and (5) tooth movement was presented as rotation about and translation along the finite helical axis. To test this system, a male patient (age 22 yr 2 months) with Angle Class III malocclusion and moderate crowding of the anterior teeth, who had been treated using a standard multi-bracket appliance, was used as a model case in this study. Impressions for a dental cast model were taken at five phases; immediately before and after application of the appliance, and 10 days, 1 month and 2 months after beginning treatment. The results demonstrated that the present analytical method can more simply describe the movement of a given tooth by rotation about and translation along the finite helical axis, and provides quantitative visual 3-D information on complicated tooth movement during orthodontic treatment.  相似文献   

4.
This study presents a biomechanical model of orthodontic tooth movement. Although such models have already been presented in the literature, most of them incorporate computationally expensive finite elements (FE) methods to determine the strain distribution in the periodontal ligament (PDL). In contrast, the biomechanical model presented in this work avoids the use of FE methods. The elastic deformation of the PDL is modelled using an analytical approach, which does not require setting up a 3D model of the tooth. The duration of the lag phase is estimated using the calculated hydrostatic stresses, and bone remodelling is predicted by modelling the alveolar bone as a viscous material. To evaluate the model, some typically used motion patterns were simulated and a sensitivity analysis was carried out on the parameters. Results show that despite some shortcomings, the model is able to describe commonly used motion patterns in orthodontic tooth movement, in both single- and multi-rooted teeth.  相似文献   

5.
Most anteroposterior orthodontic movements of posterior teeth have to overcome the "resistance" of adjacent teeth with functioning interproximal contacts. The aim of this study was to develop a mathematical model describing initial posterior tooth movement associated with functioning interproximal contacts in relation to the viscoelastic mechanical behavior of the human periodontal ligament (PDL). A linear viscoelastic 2D mathematical model was modified to depict tipping movement around the center of rotation (C(rot)) of a premolar where tipping is restrained by adjacent teeth. Equilibrium equations were applied taking into account the sagittal moment developed around the C(rot). The constants of the model were analyzed and applied to a numerical model that can simulate short-term tooth creep movement caused by a tipping force. Changes in force magnitude (0.5-3N) and crown length (6-10mm) were analyzed until no movement was observed (steady state). Premolar displacement in contact with adjacent teeth showed a non-linear progression over time with an initial sharp tipping movement followed by a transient period of 2.6-7.1min. As tipping force increased the transient period increased. A similar but smaller effect was observed with an increase in crown length. The premolar initial displacement within the arch (3.2-19.5microm) is about seven-fold smaller than retraction/protraction movement of an incisor. These suggest reduction in tooth displacement when functioning interproximal contact is present and clinically recommend establishing a space in the direction of tooth displacement before tooth movement.  相似文献   

6.
The present study is part of a research project that includes different components for the simulation of orthodontic tooth movement and comparing experimental results. This concept includes the development of a bone remodelling algorithm, as well as experimental studies on tooth movement. After the acquisition and evaluation of specific experimental data of the patient's situation, the individual components have to be integrated to verify and forecast tooth movement. The aim is to design individual treatment devices as well as to shorten treatment while making it more effective. The geometry of the teeth and that of the surrounding alveolar bone both influence the orthodontic tooth movement. For this reason, an exact morphological tooth model for the valid simulation of the tooth movement is needed, and can be constructed from computed tomography data. Simulation of tooth movement can then be compared with "in vivo" measurements of the orthodontic tooth movement. In this study, a specially developed hybrid retraction spring is employed. This spring enables the application of a defined, almost constant force system. The "in vivo" determined tooth movement is simulated with the aid of special positioning and measuring devices. Meanwhile, the active force system can be determined by 6-component force/moment sensors. The experimentally measured force system, "in vivo" measurements of tooth movement and the CT model are now available for numerical simulation for the first time.  相似文献   

7.
Maxillary right first molar teeth of rats were tipped mesially with an orthodontic appliance for 2 weeks (experimental group), 3H-proline was injected, and orthodontic forces were removed 6 hr later (time 0). The contralateral molar teeth of treated (internal control group) and age- and weight-matched untreated animals (external control group) were also studied. Diastemata were created between the molar teeth by the orthodontic appliance, and transseptal fibers between first and second (P less than 0.001) and second and third molars (P less than 0.005) were significantly lengthened as compared to external and internal controls at time 0. Diastemata between molar teeth were closed 5 days after removal of orthodontic force. Transseptal fibers adjacent to the source of the orthodontic force (mesial region) had the highest mean number of 3H-proline-labeled proteins at time 0 and at all times following removal of the force (P less than 0.001), and had the highest rate of labeled protein removal (P less than 0.001). Half-lives for removal of 3H-proline-labeled transseptal fiber proteins were significantly greater in mesial and distal regions and significantly less in middle regions of experimentals than in corresponding regions of external controls (P less than 0.001). These data suggest the following: 1) transseptal fibers adjust their length by rapid remodeling in regions experiencing a tensile force; 2) collagenous protein turnover within the middle third of the transseptal fibers is more rapid subsequent to release of orthodontic force than during normal physiologic drift, suggesting that this region adapts rapidly to changes in adjacent tooth position and that these fibers do not play a significant role in relapse of orthodontically relocated teeth; and 3) significant differences in turnover rates of 3H-proline-labeled transseptal ligament proteins of external and internal control quadrants suggest that tooth movement produces both local and systemic effects on collagenous protein metabolism.  相似文献   

8.
The objectives of this study were to develop a numerically controlled experimental set-up to predict the movement caused by the force systems of orthodontic devices and to experimentally verify this system. The presented experimental set-up incorporated an artificial tooth fixed via a 3D force/moment sensor to a parallel kinematics robot. An algorithm determining the initial movement of the tooth in its elastic embedding controlled the set-up. The initial tooth movement was described by constant compliances. The constants were obtained prior to the experiment in a parameterised finite element (FE) study on the basis of a validated FE model of a human molar. The long-term tooth movement was assembled by adding up a multiple of incremental steps of initial tooth movements. A pure translational movement of the tooth of about 8 mm resulted for a moment to force ratio of ? 8.85 mm, corresponding to the distance between the bracket and the centre of resistance. The correct behaviour of this linear elastic model in its symmetry plane allows for simulating single tooth movement induced by orthodontic devices.  相似文献   

9.
Orthodontic treatments not only displace irregular teeth but also induce responses in surrounding bone tissues. Bone remodelling is regarded as the regulatory mechanism triggered by mechanical loading. This study was aimed at investigating the effect of orthodontic loading on both tooth movement and neighbouring bone density distribution. A set of computational algorithms incorporating both external and internal remodelling mechanisms was implemented into a patient-specific 3D finite element (FE) model to investigate and analyse orthodontic treatment under four typical modes of orthodontic loading. The consequence of orthodontic treatment was reproduced numerically by using this FE-based technique. The results indicated that the diverse modes of orthodontic loading would result in different magnitudes of tooth movement and particular morphology of bone density distribution. It is illuminated that the newly developed algorithms may replicate the clinical situation more closely compared with the previous proposed method.  相似文献   

10.
Orthodontic tooth movement occurs as a result of resorption and formation of the alveolar bone due to an applied load, but the stimulus responsible for triggering orthodontic tooth movement remains the subject of debate. It has been suggested that the periodontal ligament (PDL) plays a key role. However, the mechanical function of the PDL in orthodontic tooth movement is not well understood as most mechanical models of the PDL to date have ignored the fibrous structure of the PDL. In this study we use finite element (FE) analysis to investigate the strains in the alveolar bone due to occlusal and orthodontic loads when PDL is modelled as a fibrous structure as compared to modelling PDL as a layer of solid material. The results show that the tension-only nature of the fibres essentially suspends the tooth in the tooth socket and their inclusion in FE models makes a significant difference to both the magnitude and distribution of strains produced in the surrounding bone. The results indicate that the PDL fibres have a very important role in load transfer between the teeth and alveolar bone and should be considered in FE studies investigating the biomechanics of orthodontic tooth movement.  相似文献   

11.
The predaceous neotropical characoid fish Ctenolucius has an essentially homodont dentition, the number of teeth increasing linearly with age. The basic manner of tooth replacement suggests that Ctenolucius is a primitive characoid. Tooth replacement continues throughout life and is similar to that of tetrapods, involving replacement waves which pass from the back to the front of the jaws. The waves containing the greatest number of teeth are found just anterior to the middle of the jaws. In the upper jaw the increase in the number of teeth is restricted to the anterior portion (premaxillary) whereas the number on the posterior part (maxillary) remains constant. In specimens measuring from 68–230 mm in standard length the posterior portion of the upper jaw doubles in length whereas the anterior portion triples. It is suggested that the area immediately anterior to the middle of the jaw, where replacement waves are longest, is where most of the increase in tooth numbers occurs. During growth of the teeth the absolute height is always greater than the absolute width as the shape changes. The final shape of the recurved conical teeth is determined only in the last stages of tooth formation when the main axis of growth abruptly changes.  相似文献   

12.
目的:探讨成年人个别牙缺失伴错牙合患者,通过正畸治疗校正错牙合后,修复治疗的疗效情况。方法:对16例成年人个别牙缺失致前牙散在间隙或伴有反牙合患者,采用直丝弓矫治技术进行修复前正畸治疗。结果:16例成年人个别牙缺失伴错牙合畸形的患者经过修复前正畸治疗后,再进行牙列缺损修复治疗,获得了令患者较为满意的疗效,外貌也得到了改善。结论:通过正畸、修复相结合的口腔综合治疗,可以有效地使便利体获得更加完善的口腔功能及美观效果。  相似文献   

13.
The determination of the minimum number of individuals can be very challenging, especially in an assemblage of fragmentary bones and isolated teeth. Similarities in tooth morphology, degree of wear, and interproximal wear facets (IPWF) are generally used to associate isolated teeth qualitatively. However, no quantitative method has yet been established for an objective identification and matching of isolated tooth crowns. In this study, we analyze the IPWF morphology of adjacent mandibular molars (17 M(1)/M(2) pairs), applying both qualitative and quantitative methods to test a reproducible approach for crown association. The surfaces of distal (for M(1)) and mesial (for M(2)) IPWF were surface-scanned and digitally selected. Three-dimensional (3D) and two-dimensional (2D) outlines of IPWF were analyzed using elliptic Fourier analysis (EFA) and geometric morphometrics methods (GMM). Additionally, teeth were qualitatively associated by visual evaluation of the IPWF outline and by physical matching. Unsatisfactory results with less than 50% of tooth pairs correctly associated were obtained by using both methods, shape analysis (digital approach) and the visual evaluation (qualitative assessment) of the IPWF outline. The physical matching of the crowns showed highly variable accuracy ranging between 53% and 77%. The quantitative form-space analysis of 2D IPWF outlines provided the best results (82% of correctly associated teeth), but no statistically significant differences were recorded when compared with the manual matching. Since three tooth pairs out of 17 could not be quantitatively associated, we suggest that the quantitative analysis of IPWF should be used only in addition with other approaches.  相似文献   

14.
In this paper we present the development of the Advanced System for Implant Stability Testing (ASIST) for application to natural teeth. The ASIST uses an impact measurement combined with an analytical model of the system and surrounding support to provide a measure of the interface stiffness. In this study, an analytical model is developed for a single-rooted natural tooth allowing the ASIST to estimate the stiffness characteristics of the periodontal ligament (PDL). The geometry and inertia parameters of the tooth model are presented in two ways: (1) using full CT scans of the individual tooth and (2) using an approximate geometry model with estimates of only the tooth length and diameter. The developed system is evaluated with clinical data for patients undergoing orthodontic treatment. This study shows that ASIST technique can be applied to natural teeth to estimate the stiffness characteristics of the PDL. The developed system can provide a valuable clinical tool for assessment of tooth stability properties and PDL stiffness in a variety of clinical situations such as dental trauma, orthodontics, and periodontology.  相似文献   

15.
Measuring the three-dimensional (3D) force-moment (F/M) systems applied for correcting tooth malposition is highly desirable for accurate spatial control of tooth movement and for reducing traumatic side effects such as irreversible root resorption. To date, suitable tools for monitoring the applied F/M system during therapy are lacking. We have previously introduced a true-scale orthodontic bracket with an integrated microelectronic stress sensor system for 3D F/M measurements on individual teeth with a perspective for clinical application. The underlying theoretical concept assumes a linear correlation between externally applied F/M systems and mechanical stresses induced within the smart bracket. However, in combined applications of F/M components the actual wire-bracket contacts may differ from those caused by separate applications of corresponding individual F/M components, thus violating the principle of linear superposition of mechanical stresses. This study systematically evaluates this aspect using finite element (FE) simulations and measurements with a real smart bracket. The FE analysis indicated that variability in the wire-bracket contacts is a major source for measurement errors. By taking the critical F/M combinations into account in the calibration of the real smart bracket, we were able to reduce the mean measurement error in five of the six F/M components to values <0.12 N and <0.04 N cm. Bucco-lingually directed forces still showed mean errors up to 0.21 N. Improving the force measurement accuracy and integrating components for telemetric energy and data transfer are the next steps towards clinical application of intelligent orthodontic appliances based on smart brackets.  相似文献   

16.
Interproximal wear facets were examined on hominoid teeth from the middle Miocene site at Pa?alar, Turkey. The aim was to find matches between adjacent premolar and molar teeth from single individuals that were collected in the field as isolated teeth and use them to reconstruct tooth rows. These were then used to investigate: (1) the wear gradient on the molar teeth; (2) the dispersal of teeth from single mandibles and maxillae; (3) the size ratios among the molars; and (4) the number of individuals represented by the hominoid sample. Facets were scored for size and shape and were assessed visually using photographs and superimposed outline drawings on acetate transparencies. Out of a sample of approximately 1,500 teeth collected between 1983 and 1996, 532 molars and 258 premolars produced apparent matches making up 160 tooth rows. These were then examined rigorously for morphological consistency and state of wear, and, employing the criterion that only the most unequivocal associations should be used, the final number was reduced to 48 tooth rows-31 mandibular and 17 maxillary. The tooth associations represent a minimum of 21 individuals and probably as many as 34. Molar wear was rapid, with M1s having almost twice as much wear as M3s, as measured by a wear-gradient index. The M2s are intermediate but generally closer to M1s in degree of wear, as are P4s. This wear pattern suggests either delayed eruption of M3s or extremely abrasive diets causing rapid, heavy wear. There is some indication that the wear patterns in Griphopithecus alpani and Kenyapithecus kizili are different, with the latter perhaps having a lower wear gradient, but the K. kizili sample is very small. In both species, the M2 is the largest molar and the M1 is the smallest. Separation of individual teeth in the 48 tooth associations varied from widely separated-up to 8.5m apart-to within a few centimeters of each other. One tooth row (D922) was found with the teeth in contact but the maxillary bone had dissolved away. Two dispersal mechanisms have been identified from earlier taphonomic work: transport of disarticulated elements to the fossil site and reworking of sediments by spring action.  相似文献   

17.
This study assessed trends in social inequalities in tooth loss in the United Kingdom between 1988 and 2009. Data from 20,126 adults who participated in the latest three national Adult Dental Health Surveys in England, Wales and Northern Ireland were used. Social class was determined using the 6-point Registrar General’s Social Class. Three indicators of tooth loss were analysed; the proportion of edentate people among all adults and the number of teeth and the proportion with functional dentition (defined as having 20+ teeth) among dentate adults. Trends were modelled within an age, period and cohort framework using partial least squares regression (PLSR). Confidence intervals for PLSR estimates were obtained using non-parametric bootstrapping. The Slope and Relative Index of Inequality (SII and RII) were used to quantify social inequalities in tooth loss. Between 1988 and 2009, absolute inequalities in total tooth loss narrowed (SII changed from −28.4% to −15.3%) while relative inequalities widened (RII from 6.21 to 20.9) in the whole population. On the other hand, absolute and relative social inequality in tooth loss remained fairly stable over time among dentate adults. There was an absolute difference of 2.5–2.9 in number of teeth and 22–26% in the proportion with functional dentition between the lowest and highest social classes. In relative terms, the highest social class had 10–11% more teeth and 25–28% higher probability of having functional dentition than the lowest social class. The findings show pervasive inequalities in tooth loss by social class among British adults despite marked improvements in tooth retention in recent years and generations. In the whole adult population, absolute inequalities in tooth loss have narrowed while relative inequalities have increased steadily. Among dentate adults, absolute and relative inequalities in number of teeth and proportion of people with functional dentition have remained significant but unchanged over time.  相似文献   

18.
This paper describes a new simulation method to analyze the initial behavior of the total system comprising orthodontic appliance, teeth, and their supporting structures. It is based on a finite element method which additionally takes account of a rotational degree of freedom. Beam and rod elements are used for finite element idealization of orthodontic appliance. Through spring elements it is connected with the teeth supported by the alveolar structures. The technique of 'initial strain' is introduced so as to analyze the effects of a gable bend and activation on the force system which is delivered by the orthodontic appliance. As compared with the photoelastic technique hitherto used, this method serves to investigate systematically and quantitatively the initial aspect of orthodontic tooth movement.  相似文献   

19.
部分蜥蜴类牙齿特征补充   总被引:2,自引:0,他引:2  
The characteristics of modern lizard teeth have often been overlooked as an aid to classification. In order to i-dentify isolated teeth or rows of teeth on the jaws of Quaternary lizard fossils, we observed many modern lizard skulls with complete tooth rows, and thereby discovered that there are different patterns of tooth arrangement which are a significant aid to classification and also valuable in distinguishing lizard tooth fragments or isolated teeth. Our observations suggest that lizard teeth can be divided into three major types: 1 ) Homodont, pleurodont with single-cusp. This kind of teeth is usually slender and closely spaced. Teeth number 20 - 30 or more. The smaller-sized lizards, such as Gekkos gecko, G.Japonicus, Eumeces chinensis (Fig. 1 :A, a), E. xanthi, Leiolopisma tsinlingensis (Fig. 1 :B, b), L. reevesii, Ly-gosoma indicum, Platyurus platyurus and Hemidactylus frenatus, have this kind of arrangement. 2) Heterodont, sub-acrodont or pleurodont, with single-conical cusp teeth at the anterior of the tooth row and with flat-conical bicuspid teeth posteriorly. There are about 18 - 19 check teeth. Eremias argus (Fig. 1:C,c), E. multiocellata and E. brenchltyi have this kind of arrangement. 3 ) Heterodont, with single-conical cusp teeth in the anterior part of the tooth row and with tricuspid, subacrodont teeth posteriorly. There are vertical grooves between the teeth on the external side of the low-er jaw. The fourth tooth in most species is canine-like. There are 16 or less check teeth. The larger-sized lizards, such as Phrynocephalus przewalski, P. frontalis (Fig. 1:D,d), Japalura splendida, J. flaviceos (Fig. 1 : E, e), Calotes versicolor and Leioleps belliana etc. possess this kind of arrangement. Evolutionary trends in lizard teeth are briefly dis-cussed.  相似文献   

20.
Orthodontic tooth movement is achieved by the remodeling of alveolar bone in response to mechanical loading, and is supposed to be mediated by several host mediators, such as chemokines. In this study we investigated the pattern of mRNAs expression encoding for osteoblast and osteoclast related chemokines, and further correlated them with the profile of bone remodeling markers in palatal and buccal sides of tooth under orthodontic force, where tensile (T) and compressive (C) forces, respectively, predominate. Real-time PCR was performed with periodontal ligament mRNA from samples of T and C sides of human teeth submitted to rapid maxillary expansion, while periodontal ligament of normal teeth were used as controls. Results showed that both T and C sides exhibited significant higher expression of all targets when compared to controls. Comparing C and T sides, C side exhibited higher expression of MCP-1/CCL2, MIP-1α/CCL3 and RANKL, while T side presented higher expression of OCN. The expression of RANTES/CCL5 and SDF-1/CXCL12 was similar in C and T sides. Our data demonstrate a differential expression of chemokines in compressed and stretched PDL during orthodontic tooth movement, suggesting that chemokines pattern may contribute to the differential bone remodeling in response to orthodontic force through the establishment of distinct microenvironments in compression and tension sides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号