首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was conducted to determine the abundance of Quercus species, the spatial pattern of Quercus regeneration, the current canopy disturbance pattern, and their interrelationship in two old-growth deciduous forests in Ohio (Goll Woods and Sears-Carmean Woods). Acer saccharum and Fagus grandifolia had the greatest density and basal area in both forests, yet the largest trees (by basal area) present at each site were Quercus spp. Quercus spp. appeared to be decreasing in abundance in both sites. Though Quercus seedlings were common, few Quercus saplings or subcanopy trees were present. The current disturbance regimes were dominated by small canopy gaps created by death of 1–2 trees; canopy gaps 100 m2 in size were rare and only 2.5–2.8% of the forest area was covered by recognizable canopy gaps. No significant differences in the density of Quercus seedlings or saplings were found between gaps and non-gap areas at either site. Though no significant barrier to seedling establishment appeared to exist, the present disturbance regimes are not well suited for the growth of Quercus into the subcanopy size class or the recruitment of Quercus into the canopy. The most frequent gapmakers in Goll Woods were Tilia americana and Acer saccharum, and those in Sears-Carmean Woods were A. saccharum and F. grandifolia. The species most frequent as gap fillers were A. saccharum (in both sites) and F. grandifolia (in Goll Woods). These results suggest that A. saccharum will continue to increase in abundance, and Quercus decrease in abundance, in these two old-growth stands.  相似文献   

2.
This study examined the temporal patterns of establishment, suppression, and release of major tree species in two old-growth Ohio forest remnants as a means to determine the past disturbance history of these forests. Increment cores were taken from a total of 154 trees from two well-drained, upland plots and two poorly-drained, bottomland plots in each of the two forested areas. Acer saccharum and Fagus grandifolia exhibited multiple episodes of suppression and release prior to becoming canopy trees, and could tolerate suppressions as long as 84 years. In contrast, Quercus macrocarpa, Q. muehlenbergii, Prunus serotina, and Acer saccharinum rerely exhibited any tolerance to suppression and appeared to have entered the canopy after single disturbances had opened large areas of canopy. There was clear synchrony in the temporal pattern of establishment and final release from suppression among trees from bottomland plots scattered throughout the stands, indicating that relatively large disturbances were important in these poorly-drained areas. In contrast, there was little synchrony among trees from well-drained upland plots, except in a single instance where selective cutting of Quercus trees opened the canopy. Thus, the canopy of upland site was likely subjected only to small disturbances resulting from the death of one or a few trees. At the whole of forest level, there was evidence of episodic recruitment of canopy trees in both forests. Establishment of Fraxinus spp. and Quercus spp. were particularly episodic, and few Fraxinus or Quercus trees alive today established during the last century. These data suggest that large disturbances have affected canopy dynamics of both upland and bottomland areas prior to 1900 and in bottomland forests through this century. In contrast, disturbances in upland areas during this century have been restricted to small, treefall-generated canopy gaps.  相似文献   

3.
Question: Are canopy gap dynamics responsible for driving the structural and compositional changes that have occurred over a 26‐year period in a mature Quercus forest remnant? Location: Dobbs Natural Area, an unlogged 3.6‐ha forest preserve in west‐central Indiana, USA. Methods: We analyzed mapped permanent plot data for a site that illustrates a trend common in Quercus‐dominated forests in eastern North America, where recruitment of new stems is dominated by mesophytic, shade‐tolerant species such as Acer saccharum, rather than Quercus. We developed a GIS database from stand census measurements taken in 1974 and 2000, employing it to conduct tree‐by‐tree comparisons that allow direct determination of ingrowth, mortality and survivorship, and to relate the spatial patterns of subcanopy dynamics to canopy gap occurrence. Results: The re‐census shows modest changes in canopy composition, but much greater turnover in the subcanopy. Nearly half of all individuals originally present died; much of this mortality resulted from a major decline in subcanopy Ulmus americana. While overall density remained fairly constant, the subcanopy experienced substantial ingrowth of shade‐tolerant Acer saccharum, Fagus grandifolia, and Tilia americana. Canopy gaps, although forming at rates in the upper range of regional averages, did not significantly benefit subcanopy populations of Quercus spp. or most other taxa with limited shade tolerance. Conclusions: Canopy gaps play a minor role in driving the recent demographic trends of this stand. The spatial and temporal scales of light availability in gaps do not support regeneration of most shade‐intolerant species. Compositional change parallels a historical shift in light regimes.  相似文献   

4.
Cornus florida is a common understory species in many hardwood forests in eastern North America. It plays an important role in nutrient cycling and is an important food resource for many vertebrate species, especially migratory birds. We used data collected over a 16-year period to examine population dynamics of a tagged population of C. florida in a 6.4 ha area in the context of change in the protected Quercus–Carya forest of the Ross Biological Reserve, Indiana. We examined the hypothesis that forest dynamics result from interactions between long-term ecological succession and pathogens. The C. florida population at the Ross Reserve declined by 50% between 1983 and 2000, with a survivorship of 24%. Analysis of 40 years of forest survey data showed that Quercus and Carya populations declined in importance, while Acer saccharum increased dramatically. This change in forest structure is consistent with successional changes occurring throughout the Midwest and can be attributed to suppression of disturbance. Cornus florida declined more sharply where A. saccharum increased. From 1983 to 1999, C. florida were less likely to survive if they were within 5 m of a A. saccharum. Light measurements showed that A. saccharum abundance correlated negatively with light available to C. florida, suggesting that increased shading by A. saccharum contributed to C. florida decline. The fungus, Discula destructiva causes the disease dogwood anthracnose that is associated with widespread decline of C. florida in the eastern United States. Tests for this pathogen in our study area were mostly negative. Other tests revealed that Armillaria root rot infected most C. florida, but this disease seemed to be a secondary effect of shading by A. saccharum. These results suggest that the lack of fire and other anthropogenic disturbances has resulted in an accelerated shift in dominance from Quercus and Carya to A. saccharum in the main canopy, and this shift, in turn, has resulted in increased shading of C. florida and its decline in previously more open Midwestern forests.  相似文献   

5.
Summary Saplings of three, co-occurring maple species in a mature maple-beech forest differed in a suite of structural and physiological characters that separated the canopy species, Acer, saccharum, from the two subcanopy species, A. pensylvanicum and A. spicatum. Acer saccharum had both more dense wood and tougher and heavier but thinner leaves than the subcanopy species. Acer pensylvanicum had the largest, lightest leaves with high stomatal density and its canopy architecture was the most effective in terms of leaf display for light interception. Acer spicatum had weaker wood similar to that of A. pensylvanicum but also small, soft and relatively poorly displayed leaves. Both subcanopy species maintained marginally higher average rates of photosynthesis over the growing season in the understory environment. We consider juvenile A. saccharum only shade-tolerant, capable of persisting through long periods in the closed canopy until a gap occurs but not specifically adapted to the understory environment. Juvenile A. sacchrum appears to be constrained functionally by the requirements set by the canopy environment that adults will occupy. Characters such as high wood density are already expressed in the understory sapling; this investment in denser wood slows the growth of saplings, but is necessary for structural reasons in the adult. Juvenile A. saccaharum have morphological and photosynthetic characters better suited to gas exchange and extension growth under the increased photon flux densities in large forest gaps, characteristics that will also be advantageous in the sunlit canopy environment of adults.Both subcanopy maples appear to be more truly shade-adapted, although in somewhat different ways. Acer pensylvanicum has characteristics that enhance the potential for capture and utilization of sunflecks and is able to sustain higher growth rates than A. saccharum in the shaded subcanopy environment. Acer spicatum shares some shade-adapted features with A. pensylvanicum, and its habit of lateral spread through stem layering may confer an additional advantage in foraging for small light gaps.  相似文献   

6.
Augspurger CK 《Oecologia》2008,156(2):281-286
Saplings of many canopy tree species in winter deciduous forests receive the major portion of their light budget for their growing season prior to canopy closure in the spring. This period of high light may be critical for achieving a positive carbon (C) gain, thus contributing strongly to their growth and survival. This study of saplings of Aesculus glabra and Acer saccharum in Trelease Woods, Illinois, USA, tested this hypothesis experimentally by placing tents of shade cloth over saplings during their spring period of high light prior to canopy closure in three consecutive years. Leaf senescence began 16 days (year 0) and 60 days (year 1) earlier for shaded A. glabra saplings than control saplings. No change in senescence occurred for A. saccharum. The annual absolute growth in stem diameter of both species was negligible or negative for shaded saplings, but positive for control saplings. Only 7% of the shaded A. glabra saplings were alive after 2 years, while all control saplings survived for 3 years; only 20% of the shaded A. saccharum saplings survived for 3 years, while 73% of control saplings were alive after the same period. Early spring leaf out is a critical mechanism that allows the long-term persistence of saplings of these species in this winter deciduous forest. Studies and models of C gain, growth, and survival of saplings in deciduous forests may need to take into account their spring phenology because saplings of many species are actually “sun” individuals in the spring prior to their longer period in the summer shade.  相似文献   

7.
湖南栎类天然次生林幼树更新特征及影响因子   总被引:1,自引:0,他引:1  
黄朗  朱光玉  康立  胡松  刘卓  卢侃 《生态学报》2019,39(13):4900-4909
以湖南典型栎类天然次生林为研究对象,基于51块样地的调查数据,采用k-means聚类分析划分林分类型,研究湖南不同栎类天然次生林幼树更新特征,分析了湖南不同栎类天然次生林幼树更新指标(幼树密度、幼树平均地径、平均高以及平均冠幅)与环境因子、林分因子的相关性,旨在阐明环境因子、林分因子对幼树更新的影响,以期为湖南不同栎类天然次生林的恢复与经营管理提供理论依据。结果表明:(1)利用聚类分析可将研究区内栎类天然次生林划分为5个类型,包括甜槠锥栗混交林(CC)、亮叶水青冈多脉青冈混交林(FC)、石栎樟树混交林(LC)、枹栎甜槠混交林(QC)、青冈栎混交林(CG)。(2)不同类型栎类天然次生林更新幼树优势种分化明显,物种丰富度差异显著(P0.05)。5种不同栎类次生林幼树密度均未超过500株/hm~2,更新情况较差;幼树数量差异显著(P0.05),为亮叶水青冈多脉青冈混交林石栎樟树混交林青冈栎混交林枹栎甜槠混交林甜槠锥栗混交林;生长情况差异显著(P0.05),为青冈栎混交林亮叶水青冈多脉青冈混交林枹栎甜槠混交林甜槠锥栗混交林石栎樟树混交林。(3)相关分析结果显示,不同类型次生林幼树更新的主要影响因子存在差异。甜槠锥栗混交林中幼树密度与腐殖质厚度呈显著负相关(P0.05);幼树平均高与灌木盖度呈显著正相关(P0.05);幼树平均地径与草本盖度、灌木盖度呈显著正相关(P0.05)。亮叶水青冈多脉青冈混交林中幼树密度与海拔、腐殖质厚度、枯落物厚度呈显著正相关(P0.05),与草本盖度呈极显著正相关(P0.01);幼树平均地径与郁闭度呈显著负相关(P0.05);幼树平均高、幼树平均冠幅与坡位呈显著正相关(P0.05)。石栎樟树混交林中幼树密度与坡向、土壤厚度呈显著正相关(P0.05),其余因子对幼树生长无显著影响。枹栎甜槠混交林中幼树密度与郁闭度、乔木密度呈极显著正相关(P0.01),与坡位呈显著负相关(P0.05);幼树平均冠幅与坡度呈显著负相关(P0.05)。青冈栎混交林中幼树平均地径与土壤厚度呈显著正相关(P0.05),与乔木密度呈极显著正相关(P0.01);幼树平均冠幅与灌木盖度呈显著正相关(P0.05)。  相似文献   

8.
We studied soil and forest floor conditions, regeneration patterns oftrees, and forest structure and floristic composition along a gradient ofdominance by Pinus spp. in disturbed stands in thehighlands of Chiapas, southern Mexico. Seedlings, saplings, and adults of treespecies were counted and measured in 2-3 circular plots (1000m2 each) in 36 forest stands (a total of 38 treespecies). Dominance of broadleaved trees other thanQuercusspp. was negatively correlated with basal area of Pinusspp. (P < 0.001). Soils of pine-dominated stands weremore compacted, less acidic, and less fertile (lower C.E.C., nitrogen, andorganic matter content). Numerous broadleaved trees may depend on anoak-dominated canopy to regenerate, and changes associated to pinelandsexpansion may compromise their long-term persistence. However, seedlings andsaplings of Quercus spp. were abundant in stands with bothan oak- or pine-dominated canopy. The results suggest that a plan forsustainable forest utilization in the study region, and in other similarpopulated tropical highlands, could take advantage of the abundant oakregeneration and coexistence with pines in the canopy.  相似文献   

9.
Although it is well accepted that cytokinins (CKs) regulate processes such as leaf senescence and stomatal conductance, data on CKs in the canopy of mature trees are lacking in the literature. Here we report the first in situ sampling for determination of CKs in mature sugar maple (Acer saccharum) canopy layers. The upper canopy showed a distinct seasonal pattern in total CK content, while the lower canopy remained relatively unchanged.This project was supported by an NSERC Discovery Grant to RJNE.  相似文献   

10.
Abstract. Across eastern North America, there is a temporal trend from open Quercus forests to closed forests with increased Acer rubrum in the understory. We used a series of Ripley's K(d) analyses to examine changes in the spatial pattern of Quercus and Acer rubrum stems greater than 2.5 cm DBH over 45 yr in a 2‐ha mapped stand. Specifically, we asked whether changes over time were consistent with the hypothesis that Quercus is being competitively replaced by Acer rubrum. Both Acer rubrum and Quercus stems are spatially clumped, but have become less clumped over time. Stem mortality from Hurricane Fran (1996) was more clumped in all strata of the forest, at all spatial scales, than expected if damage had occurred to stems at random. Acer rubrum ingrowth occurred more often near established trees (all species) in the midstory, whereas Quercus ingrowth occurred less often near established trees in the midstory. The specific hypothesis that stems of Acer rubrum in the midstory of the forest are associated with a lack of Quercus regeneration was strongly supported. This effect occurred at all spatial scales tested, including scales larger than that at which direct competition for light can occur. Edaphic gradients in the plot are correlated with many of the observed trends at large spatial scales, and our results suggest that the presence of such gradients can generate complex spatial patterns over time.  相似文献   

11.
Taylor  Scott O.  Lorimer  Craig G. 《Plant Ecology》2003,167(1):71-88
Gap capture methods predict future forest canopy species composition from the tallest trees growing in canopy gaps rather than from random samples of shaded understory trees. We used gap capture methods and a simulation approach to forecast canopy composition in three old oak forests (Quercus spp.) on dry-mesic sites in southern Wisconsin, USA. In the simulation, a gap sapling is considered successful if it exceeds a threshold height of 13–17 m (height of maximum crown width of canopy trees) before its crown center can be overtopped by lateral crown growth of mature trees. The composition of both the tallest gap trees and simulated gap captures suggests that 68–90% of the next generation of canopy trees in the stands will consist of non-Quercus species, particularly Ulmus rubra, Carya ovata and Prunus serotina. Quercus species will probably remain as a lesser stand component, with Quercus alba and Quercus rubra predicted to comprise about 19% of successful gap trees across the three stands. Several methods of predicting future canopy composition gave similar results, probably because no gap opportunist species were present in these stands and there was an even distribution of species among height strata in gaps. Gap trees of competing species already average 11–13 m tall, and mean expected time for these trees to reach full canopy height is only 19 years. For these reasons, we suggest that dominance will shift from oaks to other species, even though late successional species (e.g., Acer and Tilia) are not presently common in the understories of these stands.  相似文献   

12.
133 stands from the uplands of Land Between The Lakes (LBL) were sampled. Stand data were ordinated to identify clinal patterns in the overstory vegetation. A coeno-cline, accounting for 52% of the species variance, was developed from the first ordination axis. Classification of stands identified nine dominance types: Pinus echinata-Quercus spp., Q. prinus, Q. prinus-Q. alba, Q. stellata-Q. alba, Q. velutina-Q. alba, Q. alba, Q. alba-Q. rubra, Acer saccharum-Q. alba-Fagus grandifolia sadF. grandifolia-A. saccharum. Compositionally-stable (climax) and unstable (successional) stands were analyzed separately. Trajectories of unstable stands include the succession of P. echinata to Quercus-dominated communities on xeric sites and of Quercus types to more mesophytic communities (e.g. A. saccharum and F. grandifolia) onmesic sites. These shifts indicate the nature of the future climax overstory composition at LBL. The first axis DCCA ordination for climax stands accounted for 45% of the vegetation variance. Factor Analysis identified two significant suites of variables related to vegetation: soil chemistry/soil moisture and soil texture. Specific variables related to variation in the climax vegetation include soil pH, calcium and magnesium, effective soil depth, available water capacity, percent rock in the soil, slope position, aspect, elevation and distance to the opposing slope. Modal positions of species along the direct gradient ordination were similar in rank order to those derived from the indirect gradient ordination of all stands. The latter ordination represents the present forest vegetation pattern at LBL. Climax stands showed a shift in modes of Quercus spp. toward the xeric end of the gradient and increases in habitat width of mesophytic species. Following a reduction in disturbance, species appear to adjust to changes in competition and available habitat. That is, the dimensions of realized niches (i.e. habitat widths) change with succession. The climax vegetation at LBL appears to show centrifugal organization.  相似文献   

13.
Leaf cytokinins (CKs) were profiled within four locations throughout the inner and outer layers of a mature sugar maple (Acer saccharum) canopy. Leaf CK was associated with leaf gas exchange activity and some corresponding microclimate variables. Both inner and outer layers in the upper canopy had higher concentrations of leaf CKs than the lower canopy layers and the difference was comprised primarily by riboside forms of CK. Transpiration (E) showed a similar pattern to leaf CK content, with significantly higher rates in the upper canopy. There was, however, no clear pattern discernable in stomatal conductance (gs), other than it tended to be higher in the outer canopy layers. The upper/outer canopy showed a significantly different environment than all other canopy positions with higher photosynthetically active radiation (PAR), ultra-violet light (UV-B) and leaf temperature. Simple linear regression analysis showed that the nucleotide CK group (including iPNT, cis- and trans-[9RMP]Z, [9RMP]DZ) was positively related to PAR. Exogenous applications of benzylaminopurine (BAP), showed that low concentrations of BAP reduced E and g s, and indicated that CK may help regulate stomatal aperture. The similar patterns in E and CK content suggest that CKs and leaf gas exchange are functionally connected.  相似文献   

14.
Disturbance regimes in many temperate, old growth forests are characterized by gap-scale events. However, prior to a complex stage of development, canopy gaps may still serve as mechanisms for canopy tree replacement and stand structural changes associated with older forests. We investigated 40 canopy gaps in secondary hardwood stands on the Cumberland Plateau in Tennessee to analyze gap-scale disturbance processes in developing forests. Gap origin, age, land fraction, size, shape, orientation, and gap maker characteristics were documented to investigate gap formation mechanisms and physical gap attributes. We also quantified density and diversity within gaps, gap closure, and gap-phase replacement to examine the influence of localized disturbances on forest development. The majority of canopy gaps were single-treefall events caused by uprooted or snapped stems. The fraction of the forest in canopy gaps was within the range reported from old growth remnants throughout the region. However, gap size was smaller in the developing stands, indicating that secondary forests contain a higher density of smaller gaps. The majority of canopy gaps were projected to close by lateral crown expansion rather than height growth of subcanopy individuals. However, canopy gaps still provided a means for understory trees to recruit to larger size classes. This process may allow overtopped trees to reach intermediate positions, and eventually the canopy, after future disturbance events. Over half of the trees located in true gaps with intermediate crown classifications were Acer saccharum, A. rubrum, or Liriodendron tulipifera. Because the gaps were relatively small and close by lateral branch growth of perimeter trees, the most shade-tolerant A. saccharum has the greatest probability of becoming dominant in the canopy under the current disturbance regime. Half of the gap maker trees removed from the canopy were Quercus; however, Acer species are the most probable replacement trees. These data indicate that canopy gaps are important drivers of forest change prior to a complex stage of development. Even in relatively young forests, gaps provide the mechanisms for stands to develop a complex structure, and may be used to explain patterns of shifting species composition in secondary forests of eastern North America.  相似文献   

15.
Gap regeneration was studied in a typical primary evergreen broad-leaved forest withoutDistylium racemosum, at the Kasugayama Forest Reserve, southwestern Japan and the results were compared with those from other primary evergreen broad-leaved forests in southwestern Japan, whereD. racemosum was the dominant species. Several common types of gap regeneration behavior were recognized among the major tree species and forests with or withoutD. racemosum consisted of three typical regeneration guilds which could be detected in the principal component analysis.Castanopsis cuspidata frequently regenerated in gaps from saplings recruited before gap formation in the forest withoutD. racemosum, although elsewhere, in forests withD. racemosum, it lacked advanced regeneration and regenerated in gaps from saplings recruited after gap formation. Some evergreenQuercus had their regenerations in gaps of the forest withoutD. racemosum, although elsewhere, in forests withD. racemosum, evergreenQuercus might not regenerate. The results indicate that tree species may change their regeneration behavior depending on the presence or absence of another key dominant species. This suggests that the presence and the dominance of a potential competitor induces shifts in the regeneration niche of other coexisting tree species.  相似文献   

16.
Populus euphratica Oliv. is a main tree species that forms natural riparian forests in arid and semi-arid areas from Morocco to the Ordos Plateau. This study is designed to clarify the forest structure and dynamics of P. euphratica and to elucidate the ecological mechanisms sustaining riparian forests under unreliable environmental conditions. This study was conducted in a P. euphratica forest of the Ejina Oasis in Inner Mongolia, China, which is a hyperarid area. According to their tree size distribution, P. euphratica forests can be grouped into juvenile, mature, and overmatured stages. Almost all large P. euphratica showed dieback. The regeneration density on the forest floor shows a relation with the degree of height decrease due to dieback damage, as evaluated using the ratio of actual height to the maximum height estimated from the DH relation. Therefore, after the mature stage, individual trees continue to grow while controlling their canopy size to adjust to changing environmental conditions in the overmatured stage. Our results suggest that P. euphratica growing under large fluctuations in groundwater levels exhibit a sophisticated regeneration system with canopy degradation.  相似文献   

17.
Invasive plants are often associated with reduced cover of native plants, but rarely has competition between invasives and natives been assessed experimentally. The shrub Lonicera maackii, native to northeastern Asia, has invaded forests and old fields in numerous parts of eastern North America, and is associated with reduced tree seedling density in Ohio forests. A field experiment was conducted to test the effects of established L. maackii on the survival and growth of transplanted native tree species. The experiment examined above-ground competition (by removing L. maackii shoots) and below-ground competition (by trenching around transplanted seedlings). The effects of above-ground competition with L. maackii were generally more important than below-ground competition, though both were detected. Shoot treatment was the key determinant for the survival of all species except P. serotina, whereas trenching only enhanced survival for A. saccharum caged and P. serotina, and only in the shoot removal treatment. For the surviving seedlings, L. maackii shoot removal increased growth of A. saccharum seedlings protected with cages, but actually reduced the growth of unprotected Q. rubra and A. saccharum seedlings, indicating that L. maackii shoots confer some protection from deer browsing. Significant interactions between root and shoot treatment on Q. rubra growth parameters, specifically greatest growth in the shoot present & trenched treatment, is attributed to protection from deer browsing combined with release from below-ground competition. Despite this protective function of L. maackii shoots, the overall effect of this invasive shrub is increased mortality of native tree seedlings, suggesting it impacts the natural regeneration of secondary forests.  相似文献   

18.
Heat wave frequency, duration, and intensity are predicted to increase with global warming, but the potential impacts of short‐term high temperature events on forest functioning remain virtually unstudied. We examined canopy processes in a forest in Central Ontario following 3 days of record‐setting high temperatures (31–33 °C) that coincided with the peak in leaf expansion of dominant trees in late May 2010. Leaf area dynamics, leaf morphology, and leaf‐level gas‐exchange were compared to data from prior years of sampling (2002–2008) at the same site, focusing on Acer saccharum Marsh., the dominant tree in the region. Extensive shedding of partially expanded leaves was observed immediately following high temperature days, with A. saccharum losing ca. 25% of total leaf production but subsequently producing an unusual second flush of neoformed leaves. Both leaf losses and subsequent reflushing were highest in the upper canopy; however, retained preformed leaves and neoformed leaves showed reduced size, resulting in an overall decline in end‐of‐season leaf area index of 64% in A. saccharum, and 16% in the entire forest. Saplings showed lower leaf losses, but also a lower capacity to reflush relative to mature trees. Both surviving preformed and neoformed leaves had severely depressed photosynthetic capacity early in the summer of 2010, but largely regained photosynthetic competence by the end of the growing season. These results indicate that even short‐term heat waves can have severe impacts in northern forests, and suggest a particular vulnerability to high temperatures during the spring period of leaf expansion in temperate deciduous forests.  相似文献   

19.
Norway maple (Acer platanoidesis) is invasive in a natural stand in suburban Ithaca, NY. To determine the understory pattern and consequences of a Norway maple invasion, I compared density and species richness under Norway maples and sugar maples (Acer saccharum). Mean sapling density was significantly lower (P<0.0027) under Norway maples (3.64/100 m2±1.6 SE) than under sugar maples (19.4/100 m2±4.4 SE). Mean sapling species richness was significantly lower (P<0.0018) under Norway maples (0.7/32 m2±0.18 SE) than under sugar maples (2.6/32 m2±0.48 SE). Likewise, Norway maple regeneration is more frequent under sugar maples than sugar maple regeneration: 57% of sugar maple plots had Norway maple saplings while 0% of Norway maple plots had sugar maple saplings. Two significant plot effects were found for presence–absence: Norway maple saplings grow under Norway maples with a significantly lower frequency (P<0.03) than under sugar maples; sugar maple saplings grow under Norway maples with a significantly lower frequency (P<0.000) than under sugar maples. Across the site, Norway maple saplings were the most abundant (29 saplings for 480 m2). The success of Norway maple regeneration and the reductions in total stem density beneath Norway maples is most likely the result of its strong competitive abilities, notably its high shade tolerance and abundant seed crops.  相似文献   

20.
Ordination and classification techniques were used to analyze patterns of forest vegetation, species diversity, and soil type in the Wichita Mountains Wildlife Refuge of southwestern Oklahoma. Cluster analysis based on tree species produced three general community types: 1) Quercus stellata-Q. marilandica forests; 2) Q. stellata forests; and 3) mesophytic forests. A polar ordination produced a gradient of vegetation that corresponded to a moisture gradient. Many high diversity forests were located on loamy drainageway soils or north facing slopes. Tree species diversity (H') was inversely related to the importance of Quercus stellata. Cluster analysis based on species composition of the tree seedlings produced four general community types: 1) Q. marilandica type; 2) Q. marilandica-Q. stellata-Juniperus virginiana type; 3) Ulmus americana-Celtis reticulata-Bumelia lanuginosa type; and 4) Acer saccharum type. The third seedling type occurred almost exclusively on loamy drainageway soils. There was no relationship between stand location on the first axis of the tree ordination and the first axis of the seedling ordination suggesting that trees and seedlings respond differently along the moisture gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号