首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The mitotic spindle assembly checkpoint delays anaphase until all chromosomes achieve bipolar attachment to the spindle microtubules. The spindle assembly checkpoint protein BubR1 is thought to act by forming an inhibitory complex with Cdc20. We here identify two Cdc20 binding sites on BubR1. A strong Cdc20 binding site is located between residues 490 and 560, but mutations that disrupt Cdc20 binding to this region have no effect upon checkpoint function. A second Cdc20 binding site present between residues 1 and 477 is highly specific for Cdc20 already bound to Mad2. Mutation of a conserved lysine in this region weakened Cdc20 binding and correspondingly reduced checkpoint function. Our results indicate that there may be more than one checkpoint complex containing BubR1, Mad2, and Cdc20. They also lead us to propose that in vivo checkpoint inhibition of Cdc20 is a two-step process in which prior binding of Mad2 to Cdc20 is required to make Cdc20 sensitive to inhibition by BubR1. Thus, Mad2 and BubR1 must cooperate to inhibit Cdc20 activity.  相似文献   

2.
The spindle checkpoint senses unattached or improperly attached kinetochores during mitosis, inhibits the anaphase-promoting complex or cyclosome (APC/C), and delays anaphase onset to prevent aneuploidy. The mitotic checkpoint complex (MCC) consisting of BubR1, Bub3, Mad2, and Cdc20 is a critical APC/C-inhibitory checkpoint complex in human cells. At the metaphase-anaphase transition, the spindle checkpoint turns off, and MCC disassembles to allow anaphase onset. The molecular mechanisms of checkpoint inactivation are poorly understood. A major unresolved issue is the role of Cdc20 autoubiquitination in this process. Although Cdc20 autoubiquitination can promote Mad2 dissociation from Cdc20, a nonubiquitinatable Cdc20 mutant still dissociates from Mad2 during checkpoint inactivation. Here, we show that depletion of p31(comet) delays Mad2 dissociation from Cdc20 mutants that cannot undergo autoubiquitination. Thus both p31(comet) and ubiquitination of Cdc20 are critical mechanisms of checkpoint inactivation. They act redundantly to promote Mad2 dissociation from Cdc20.  相似文献   

3.
Tang Z  Shu H  Oncel D  Chen S  Yu H 《Molecular cell》2004,16(3):387-397
To ensure the fidelity of chromosome segregation, the spindle checkpoint blocks the ubiquitin ligase activity of APC/C(Cdc20) in response to a single chromatid not properly attached to the mitotic spindle. Here we show that HeLa cells depleted for Bub1 by RNA interference are defective in checkpoint signaling. Bub1 directly phosphorylates Cdc20 in vitro and inhibits the ubiquitin ligase activity of APC/C(Cdc20) catalytically. A Cdc20 mutant with all six Bub1 phosphorylation sites removed is refractory to Bub1-mediated phosphorylation and inhibition in vitro. Upon checkpoint activation, Bub1 itself is hyperphosphorylated and its kinase activity toward Cdc20 is stimulated. Ectopic expression of the nonphosphorylatable Cdc20 mutant allows HeLa cells to escape from mitosis in the presence of spindle damage. Therefore, Bub1-mediated phosphorylation of Cdc20 is required for proper checkpoint signaling. We speculate that inhibition of APC/C(Cdc20) by Bub1 in a catalytic fashion may partly account for the exquisite sensitivity of the spindle checkpoint.  相似文献   

4.
The spindle checkpoint delays anaphase until all chromosomes are properly attached to spindle microtubules. When the spindle checkpoint is activated at unattached kinetochores, the checkpoint proteins BubR1, Bub3 and Mad2 bind and inhibit Cdc20, an activator of the anaphase-promoting complex (APC). Here, we show that Xenopus laevis Cdc20 is phosphorylated at Ser 50, Thr 64, Thr 68 and Thr 79 during mitosis and that mitogen-activated protein kinase (MAPK) contributes to the phosphorylation at Thr 64 or Thr 68. Cdc20 mutants that are phosphorylation-deficient are able to activate the APC in X. laevis egg extracts. However, Cdc20 mutants in which any of the four phosphorylation sites were altered to Ala or Val failed to respond to the spindle checkpoint signal, owing to their reduced affinity for the spindle checkpoint proteins. This study demonstrates that the spindle checkpoint stops anaphase by inhibiting fully-phosphorylated Cdc20. Our results also have implications for the spindle checkpoint silencing mechanism.  相似文献   

5.
The spindle assembly checkpoint (SAC) restricts mitotic exit to cells that have completed chromosome-microtubule attachment. Cdc20 is a bifunctional protein. In complex with SAC proteins Mad2, BubR1, and Bub3, Cdc20 forms the mitotic checkpoint complex (MCC), which binds the anaphase-promoting complex (APC/C) and inhibits its mitotic exit-promoting activity. When devoid of SAC proteins, Cdc20 serves as an APC/C coactivator and promotes mitotic exit. During mitotic arrest, Cdc20 is continuously degraded via ubiquitin-dependent proteolysis and resynthesized. It is believed that this cycle keeps the levels of Cdc20 below a threshold above which Cdc20 would promote mitotic exit. We report that p31(comet), a checkpoint antagonist, is necessary for mitotic destabilization of Cdc20. p31(comet) depletion stabilizes the MCC, super-inhibits the APC/C, and delays mitotic exit, indicating that Cdc20 proteolysis in prometaphase opposes the checkpoint. Our studies reveal a homeostatic network in which checkpoint-sustaining and -repressing forces oppose each other during mitotic arrest and suggest ways for enhancing the sensitivity of cancer cells to antitubulin chemotherapeutics.  相似文献   

6.
Tight regulation of the APC/C-Cdc20 ubiquitin ligase that targets cyclin B1 for degradation is important for mitotic fidelity. The spindle assembly checkpoint (SAC) inhibits Cdc20 through the mitotic checkpoint complex (MCC). In addition, phosphorylation of Cdc20 by cyclin B1–Cdk1 independently inhibits APC/C–Cdc20 activation. This creates a conundrum for how Cdc20 is activated before cyclin B1 degradation. Here, we show that the MCC component BubR1 harbors both Cdc20 inhibition and activation activities, allowing for cross-talk between the two Cdc20 inhibition pathways. Specifically, BubR1 acts as a substrate specifier for PP2A-B56 to enable efficient Cdc20 dephosphorylation in the MCC. A mutant Cdc20 mimicking the dephosphorylated state escapes a mitotic checkpoint arrest, arguing that restricting Cdc20 dephosphorylation to the MCC is important. Collectively, our work reveals how Cdc20 can be dephosphorylated in the presence of cyclin B1-Cdk1 activity without causing premature anaphase onset.  相似文献   

7.
The spindle assembly checkpoint (SAC) is required to block sister chromatid separation until all chromosomes are properly attached to the mitotic apparatus. The SAC prevents cells from entering anaphase by inhibiting the ubiquitylation of cyclin B1 and securin by the anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase. The target of the SAC is the essential APC/C activator Cdc20. It is unclear how the SAC inactivates Cdc20 but most current models suggest that Cdc20 forms a stable complex with the Mad2 checkpoint protein. Here we show that most Cdc20 is not in a complex with Mad2; instead Mad2 is required for Cdc20 to form a complex with another checkpoint protein, BubR1. We further show that during the SAC, the APC/C ubiquitylates Cdc20 to target it for degradation. Thus, ubiquitylation of human Cdc20 is not required to release it from the checkpoint complex, but to degrade it to maintain mitotic arrest.  相似文献   

8.
The metaphase-to-anaphase transition is triggered by the Anaphase-Promoting Complex (APC), an E3 ubiquitin ligase that targets proteins for degradation, leading to sister chromatid separation and mitotic exit. The function of APC is controlled by the spindle checkpoint that delays anaphase onset in the presence of any chromosome that has not established bipolar attachment to the mitotic spindle. In this way, the checkpoint ensures accurate chromosome segregation. The spindle checkpoint is mostly activated from kinetochores that are not attached to microtubules or not under tension that is normally generated from bipolar attachment. These kinetochores recruit several spindle checkpoint proteins to assemble an inhibitory complex composed of checkpoint proteins Mad2, Bub3, and Mad3/BubR1. This complex binds and inhibits Cdc20, an activator and substrate adaptor for APC. In addition, the checkpoint complex promotes Cdc20 degradation, thus lowering Cdc20 protein level upon checkpoint activation. This dual inhibition on Cdc20 likely ensures that the spindle checkpoint is sustained even when the cell contains only a single unattached kinetochore.  相似文献   

9.
The kinetochore checkpoint pathway, involving the Mad1, Mad2, Mad3, Bub1, Bub3 and Mps1 proteins, prevents anaphase entry and mitotic exit by inhibiting the anaphase promoting complex activator Cdc20 in response to monopolar attachment of sister kinetochores to spindle fibres. We show here that Cdc20, which had previously been shown to interact physically with Mad2 and Mad3, associates also with Bub3 and association is up-regulated upon checkpoint activation. Moreover, co-fractionation experiments suggest that Mad2, Mad3 and Bub3 may be concomitantly present in protein complexes with Cdc20. Formation of the Bub3-Cdc20 complex requires all kinetochore checkpoint proteins but, surprisingly, not intact kinetochores. Conversely, point mutations altering the conserved WD40 motifs of Bub3, which might be involved in the formation of a beta-propeller fold devoted to protein-protein interactions, disrupt its association with Mad2, Mad3 and Cdc20, as well as proper checkpoint response. We suggest that Bub3 could serve as a platform for interactions between kinetochore checkpoint proteins, and its association with Mad2, Mad3 and Cdc20 might be instrumental for checkpoint activation.  相似文献   

10.
Mitotic progression is driven by proteolytic destruction of securin and cyclins. These proteins are labeled for destruction by an ubiquitin-protein isopeptide ligase (E3) known as the anaphase-promoting complex or cyclosome (APC/C). The APC/C requires activators (Cdc20 or Cdh1) to efficiently recognize its substrates, which are specified by destruction (D box) and/or KEN box signals. The spindle assembly checkpoint responds to unattached kinetochores and to kinetochores lacking tension, both of which reflect incomplete biorientation of chromosomes, by delaying the onset of anaphase. It does this by inhibiting Cdc20-APC/C. Certain checkpoint proteins interact directly with Cdc20, but it remains unclear how the checkpoint acts to efficiently inhibit Cdc20-APC/C activity. In the fission yeast, Schizosaccharomyces pombe, we find that the Mad3 and Mad2 spindle checkpoint proteins interact stably with the APC/C in mitosis. Mad3 contains two KEN boxes, conserved from yeast Mad3 to human BubR1, and mutation of either of these abrogates the spindle checkpoint. Strikingly, mutation of the N-terminal KEN box abolishes incorporation of Mad3 into the mitotic checkpoint complex (Mad3-Mad2-Slp1 in S. pombe, where Slp1 is the Cdc20 homolog that we will refer to as Cdc20 hereafter) and stable association of both Mad3 and Mad2 with the APC/C. Our findings demonstrate that this Mad3 KEN box is a critical mediator of Cdc20-APC/C inhibition, without which neither Mad3 nor Mad2 can associate with the APC/C or inhibit anaphase onset.  相似文献   

11.
Favored models of spindle checkpoint signaling propose that two inhibitory complexes (Mad2-Cdc20 and Mad2-Mad3-Bub3-Cdc20) must be assembled at kinetochores in order to inhibit mitosis. We have directly tested this model in the budding yeast Saccharomyces cerevisiae. The proteins Mad2, Mad3, Bub3, Cdc20, and Cdc27 in yeast were quantified, and there are sufficient amounts to form stoichiometric inhibitors of Cdc20 and the anaphase-promoting complex. Mad2 is present in two separate complexes in cells arrested in mitosis with nocodazole. There is a small amount of Mad2-Mad3-Bub3-Cdc20 and a much larger amount of a complex that contains Mad2-Cdc20. We use conditional mutants to show that both Mad2 and Mad3 are essential for establishment and maintenance of the spindle checkpoint. Both spindle checkpoint complexes containing Mad2 form in mitosis, not in response to checkpoint activation. The kinetochore is not required to form either complex. We propose that the conversion of Mad1-Mad2 to Cdc20-Mad2, a key step in generating inhibitory checkpoint complexes, is limited to mitosis by the availability of Cdc20 and is kinetochore independent.  相似文献   

12.
The spindle assembly checkpoint (SAC) is an important mechanism that prevents the separation of sister chromatids until the microtubules radiating from the spindle poles are correctly attached to the kinetochores. Cdc20, an activator of the Anaphase Promoting Complex/Cyclosome (APC/C), is known as a major downstream target for inhibition by the SAC through the binding of mitotic checkpoint proteins, such as Mad2 and BubR1. Here, we report that the SAC also negatively regulates the stability of Cdc20 by targeting it for proteasome-dependent degradation. Once the checkpoint is activated by spindle poisons, a major population of Cdc20 is degraded via APC/C, an event that requires the binding of Cdc20 to Mad2. We propose that the degradation of Cdc20 represents a critical control mechanism to ensure inactivation of APC/CCdc20 in response to the SAC.  相似文献   

13.
Successful mitosis requires the right protein be degraded at the right time. Central to this is the spindle checkpoint that prevents the destruction of securin and cyclin B1 when there are improperly attached chromosomes. The principal target of the checkpoint is Cdc20, which activates the anaphase-promoting complex/cyclosome (APC/C). A Drosophila Cdc20/fizzy mutant arrests in mitosis with high levels of cyclins A and B, but paradoxically the spindle checkpoint does not stabilize cyclin A. Here, we investigated this paradox and found that Cdc20 is rate limiting for cyclin A destruction. Indeed, Cdc20 binds efficiently to cyclin A before and in mitosis, and this complex has little associated Mad2. Furthermore, the cyclin A complex must bind to a Cks protein to be degraded independently of the checkpoint. Thus, we identify a crucial role for the Cks proteins in mitosis and one mechanism by which the APC/C can target substrates independently of the spindle checkpoint.  相似文献   

14.
The spindle assembly checkpoint monitors the attachment of kinetochores to the mitotic spindle and the tension exerted on kinetochores by microtubules and delays the onset of anaphase until all the chromosomes are aligned at the metaphase plate. The target of the checkpoint control is the anaphase-promoting complex (APC)/cyclosome, a ubiquitin ligase whose activation by Cdc20 is required for separation of sister chromatids. In response to activation of the checkpoint, Mad2 binds to and inhibits Cdc20-APC. I show herein that in checkpoint-arrested cells, human Cdc20 forms two separate, inactive complexes, a lower affinity complex with Mad2 and a higher affinity complex with BubR1. Purified BubR1 binds to recombinant Cdc20 and this interaction is direct. Binding of BubR1 to Cdc20 inhibits activation of APC and this inhibition is independent of its kinase activity. Quantitative analysis indicates that BubR1 is 12-fold more potent than Mad2 as an inhibitor of Cdc20. Although at high protein concentrations BubR1 and Mad2 each is sufficient to inhibit Cdc20, BubR1 and Mad2 mutually promote each other's binding to Cdc20 and function synergistically at physiological concentrations to quantitatively inhibit Cdc20-APC. Thus, BubR1 and Mad2 act cooperatively to prevent premature separation of sister chromatids by directly inhibiting APC.  相似文献   

15.
Mad2 participates in spindle checkpoint inhibition of APC(Cdc20). We show that RNAi-mediated suppression of Mad1 function in mammalian cells causes loss of Mad2 kinetochore localization and impairment of the spindle checkpoint. Mad1 and Cdc20 contain Mad2 binding motifs that share a common consensus. We have identified a class of Mad2 binding peptides with a similar consensus. Binding of one of these ligands, MBP1, triggers an extensive rearrangement of the tertiary structure of Mad2. Mad2 also undergoes a similar striking structural change upon binding to a Mad1 or Cdc20 binding motif peptide. Our data suggest that, upon checkpoint activation, Mad1 recruits Mad2 to unattached kinetochores and may promote binding of Mad2 to Cdc20.  相似文献   

16.
The spindle checkpoint ensures accurate chromosome segregation by monitoring kinetochore-microtubule attachment. Unattached or tensionless kinetochores activate the checkpoint and enhance the production of the mitotic checkpoint complex (MCC) consisting of BubR1, Bub3, Mad2, and Cdc20. MCC is a critical checkpoint inhibitor of the anaphase-promoting complex/cyclosome, a ubiquitin ligase required for anaphase onset. The N-terminal region of BubR1 binds to both Cdc20 and Mad2, thus nucleating MCC formation. The middle region of human BubR1 (BubR1M) also interacts with Cdc20, but the nature and function of this interaction are not understood. Here we identify two critical motifs within BubR1M that contribute to Cdc20 binding and anaphase-promoting complex/cyclosome inhibition: a destruction box (D box) and a phenylalanine-containing motif termed the Phe box. A BubR1 mutant lacking these motifs is defective in MCC maintenance in mitotic human cells but is capable of supporting spindle-checkpoint function. Thus, the BubR1M-Cdc20 interaction indirectly contributes to MCC homeostasis. Its apparent dispensability in the spindle checkpoint might be due to functional duality or redundant, competing mechanisms.  相似文献   

17.
Xia G  Luo X  Habu T  Rizo J  Matsumoto T  Yu H 《The EMBO journal》2004,23(15):3133-3143
The spindle checkpoint ensures accurate chromosome segregation by delaying anaphase in response to misaligned sister chromatids during mitosis. Upon checkpoint activation, Mad2 binds directly to Cdc20 and inhibits the anaphase-promoting complex or cyclosome (APC/C). Cdc20 binding triggers a dramatic conformational change of Mad2. Consistent with an earlier report, we show herein that depletion of p31(comet) (formerly known as Cmt2) by RNA interference in HeLa cells causes a delay in mitotic exit following the removal of nocodazole. Purified recombinant p31(comet) protein antagonizes the ability of Mad2 to inhibit APC/C(Cdc20) in vitro and in Xenopus egg extracts. Interestingly, p31(comet) binds selectively to the Cdc20-bound conformation of Mad2. Binding of p31(comet) to Mad2 does not prevent the interaction between Mad2 and Cdc20 in vitro. During checkpoint inactivation in HeLa cells, p31(comet) forms a transient complex with APC/C(Cdc20)-bound Mad2. Purified p31(comet) enhances the activity of APC/C isolated from nocodazole-arrested HeLa cells without disrupting the Mad2-Cdc20 interaction. Therefore, our results suggest that p31(comet) counteracts the function of Mad2 and is required for the silencing of the spindle checkpoint.  相似文献   

18.
Interaction between Mad2 and Cdc20 (cell division cycle 20) is a key event during spindle assembly checkpoint activation. In the past, an N-terminal peptide containing amino acid residues 111-150 of Cdc20 was shown to bind Mad2 much better than the full-length Cdc20 protein. Using co-localization, co-immunoprecipitation and peptide inhibition analysis with different deletion mutants of Cdc20, we identified another Mad2-binding domain on Cdc20 from amino acids 342-355 within the WD repeat region. An intervening region between these two domains interferes with its Mad2 binding when present individually with any of these two Mad2-binding sites. We suggest that these three domains together determine the overall strength of Mad2 binding with Cdc20. Functional analysis suggests that an optimum Mad2 binding efficiency of Cdc20 is required during checkpoint arrest and release. Further, we have identified a unique polyhistidine motif with metal binding property adjacent to this second binding domain that may be important for maintaining the overall conformation of Cdc20 for its binding to Mad2.  相似文献   

19.
The ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) is activated at prometaphase by mitotic phosphorylation and binding of its activator, Cdc20. This initiates cyclin A degradation, whereas cyclin B1 is stabilized by the spindle checkpoint. Upon checkpoint release, the RXXL destruction box (D box) was proposed to direct cyclin B1 to core APC/C or Cdc20. In this study, we report that endogenous cyclin B1–Cdk1 is recruited to checkpoint-inhibited, phosphorylated APC/C in prometaphase independently of Cdc20 or the cyclin B1 D box. Like cyclin A, cyclin B1 binds the APC/C by the Cdk cofactor Cks and the APC3 subunit. Prior binding to APC/CCdc20 makes cyclin B1 a better APC/C substrate in metaphase, driving mitotic exit and cytokinesis. We conclude that in prometaphase, the phosphorylated APC/C can recruit both cyclin A and cyclin B1 in a Cks-dependent manner. This suggests that the spindle checkpoint blocks D box recognition of APC/C-bound cyclin B1, whereas distinctive complexes between the N terminus of cyclin A and Cdc20 evade checkpoint control.  相似文献   

20.
Background: The spindle assembly checkpoint (SAC) imparts fidelity to chromosome segregation by delaying anaphase until all sister chromatid pairs have become bipolarly attached. Mad2 is a component of the SAC effector complex that sequesters Cdc20 to halt anaphase. In prometaphase, Mad2 is recruited to kinetochores with the help of Mad1, and it is activated to bind Cdc20. These events are linked to the existence of two distinct conformers of Mad2: a closed conformer bound to its kinetochore receptor Mad1 or its target in the checkpoint Cdc20 and an open conformer unbound to these ligands. Results: We investigated the mechanism of Mad2 recruitment to the kinetochore during checkpoint activation and subsequent transfer to Cdc20. We report that a closed conformer of Mad2 constitutively bound to Mad1, rather than Mad1 itself, is the kinetochore receptor for cytosolic open Mad2 and show that the interaction of open and closed Mad2 conformers is essential to sustain the SAC. Conclusions: We propose that closed Mad2 bound to Mad1 represents a template for the conversion of open Mad2 into closed Mad2 bound to Cdc20. This simple model, which we have named the "Mad2 template" model, predicts a mechanism for cytosolic propagation of the spindle checkpoint signal away from kinetochores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号