首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metabolic profile of benzo[a]pyrene (BP) in cumene hydroperoxide-(CHP)-dependent reaction by male rat liver microsomes was dependent on CHP concentration. At 0.05 mM CHP, 3-hydroxy-BP was the major metabolite. Increase in CHP reduced 3-hydroxy-BP formation but increased BP quinone formation simultaneously. This change in metabolic profile was reversed by preincubation with pyrene. Pyrene (PY) selectively inhibited quinone formation but enhanced 3-hydroxy-BP formation. Naphthalene (NP) had no effect on BP quinone formation but inhibited BP 3-hydroxylation. Phenanthrene (PA) and benz[a]anthracene (BA) inhibited effectively 3-hydroxy-BP formation but only slightly quinone formation. BP binding to microsomal protein correlated to quinone formation and not BP 3-hydroxylation. BP metabolism by female rat liver microsomes also depended on CHP concentration but was much less efficient than the male. Quinones were consistently predominant metabolites and their formation was also inhibited by pyrene. Our data provide evidence that regioselectivity in BP metabolism involves at least two distinct binding sites. One site recognizes the benzo region of BP in BP 3-hydroxylation and the other recognizes the pyrene region in quinone formation. The different ratios of 3-hydroxy-BP to quinone formation by male and female rat liver microsomes suggest that the two binding sites are probably located at separate cytochrome P-450 isozymes.  相似文献   

2.
C57BL/6N (Ahb/Ahb) mice have a high-affinity Ah receptor in tissues, whereas AKR/J and DBA/2N (Ahd/Ahd) mice have a poor-affinity Ah receptor. The cytochrome P1-450 induction response (enhanced benzo[a]pyrene metabolism) occurs much more readily in Ahb/Ahb and Ahb/Ahd than in Ahd/Ahd mice, at any given dose of the inducer benzo[a]pyrene. Embryos from the AKR/J X (C57BL/6N)(AKR/J)F1 and the reciprocal backcross were studied during benzo[a]pyrene feeding of the pregnant females. Oral benzo[a]pyrene (120 mg/kg/day) given to pregnant Ahd/Ahd mice between gestational day 2 and 10 produces more intrauterine toxicity and malformations in Ahd/Ahd than Ahb/Ahd embryos. This striking allelic difference is not seen in pregnant Ahb/Ahd mice receiving oral benzo[a]pyrene. Pharmacokinetics studies with [3H]benzo[a]pyrene in the diet and high-performance liquid chromatographic analysis of benzo[a]pyrene metabolism in vitro by the maternal intestine, liver, and ovary and the embryos of control and oral benzo[a]pyrene-treated pregnant females are consistent with "first-pass elimination" kinetics and differences in benzo[a]pyrene metabolism by the embryos and/or placentas versus maternal tissues. In the pregnant Ahd/Ahd mouse receiving oral benzo[a]pyrene, little induction of benzo[a]pyrene metabolism occurs in her intestine and liver; this leads to much larger amounts of benzo[a]pyrene reaching her embryos, and genetic differences in toxicity and teratogenesis are manifest. In the pregnant Ahb/Ahd mouse receiving oral benzo[a]pyrene, benzo[a]pyrene metabolism is greatly enhanced in her intestine and liver; this leads to less benzo[a]pyrene reaching her embryos, much less intrauterine toxicity and malformations, and no genetic differences are manifest. More toxic metabolites (especially benzo[a]pyrene 1,6- and 3,6-quinones) are shown to occur in Ahd/Ahd embryos than in Ahb/Ahd embryos. In additional studies, no prenatal or neonatal "imprinting" effect in C57BL/6N mice by 2,3,7,8-tetrachlorodibenzo-p-dioxin or Aroclor 1254 on benzo[a]pyrene metabolism later in life was detectable. These genetic differences in intrauterine toxicity and teratogenicity induced by oral benzo[a]pyrene are just opposite those induced by intraperitoneal benzo[a]pyrene [Shum et al., '79; Hoshino et al., '81). The data in the present report emphasize the importance of the route of administration when the teratogen induces its own metabolism.  相似文献   

3.
AIMS: To characterize some polycyclic aromatic hydrocarbons (PAH)-degrading microorganisms isolated from an enriched consortium degrading high molecular weight (HMW) PAHs in a two-liquid-phase (TLP) soil slurry bioreactor, and to determine the effect of low molecular weight (LMW) PAH on their growth and HMW PAH-degrading activity. METHODS AND RESULTS: Several microorganisms were isolated from a HMW-PAH (pyrene, chrysene, benzo[a]pyrene and perylene) degrading consortium enriched in TLP cultures using silicone oil as the organic phase. From 16S rRNA analysis, four isolates were identified as Mycobacterium gilvum B1 (99% identity),Bacillus pumilus B44 (99% identity), Microbacterium esteraromaticum B21 (98% identity), and to the genus Porphyrobacter B51 (96% identity). The two latter isolates have not previously been associated with PAH degradation. Isolate B51 grew strongly in the interfacial fraction in the presence of naphthalene vapours and phenanthrene compared with cultures without LMW PAHs. Benzo[a]pyrene was degraded in cultures containing a HMW PAH mixture but pyrene had no effect on its degradation. The growth of isolates B1 and B21 was improved in the aqueous phase than in the interfacial fraction for cultures with naphthalene vapours. Pyrene was required for benzo[a]pyrene degradation by isolate B1. For isolate B21, pyrene and chrysene were degraded only in cultures without naphthalene vapours. CONCLUSION: Consortium enriched in a TLP culture is composed of microorganisms with different abilities to grow at the interface or in the aqueous phase according to the culture conditions and the PAH that are present. Naphthalene vapours increased the growth of the microorganisms in TLP cultures but did not stimulate the HMW PAH degradation. SIGNIFICANCE AND IMPACT OF THE STUDY: New HMW PAH-degrading microorganisms and a better understanding of the mechanisms involved in HMW PAH degradation in TLP cultures.  相似文献   

4.
Binding and distribution of 3H-benzo[a]pyrene in lipoprotein fraction of rat blood serum were studied. The binding was enhanced in the row: LDL, VLDL, HDL, Kd lipoprotein-benzo[a]pyrene complexes had been calculated by means of tryptophan fluorescence quenching. It was found, that Kd value benzo[a]pyrene complexes with VLD was 1.5 x 10(-6) M, with LDL -6.6 x 10(-7) M and with HDL -4.2 x 10(-6) M. Radiolabeled benzo[a]pyrene uptake by rat organs and tissues was investigated after i.v. injection of benzo[a]pyrene-complexes with LP of different classes. High uptake activity was revealed for liver, adrenals and kidneys, whereas heart, spleen, thymus were characterized by low 3H-benzo[a]pyrene accumulation. Radioactivity distribution pattern was depended on the class of LP used for complexation. Ours data permit to evaluate the participation of lipoproteins in transport and metabolic pathways of xenobiotics in organism.  相似文献   

5.
Solutions of cytosolic proteins from rat liver contain benzo(a)pyrene solubilizing activity capable of serving as a carrier between solid state benzo(a)pyrene and microsomal cytochrome P450. Fractionation of benzo(a)pyrene-saturated cytosolic proteins on a Sephadex G-100 column or by sucrose density gradients produced benzo(a)pyrene peaks of about 46,000 daltons and a very high molecular weight material. The protein-bound benzo(a)pyrene obtained in both peaks was oxidized rapidly by microsomes in the presence of NADPH, indicating that the benzo(a)pyrene carrier activity is capable of presenting the substrate to the cytochrome P450. Liver cytosolic proteins from rats receiving intraperitoneal injection of [14C] benzo(a)pyrene was chromatographed on a column of Sephadex G-75. Radioactivity eluted at the same positions of the chromatogram as did the carrier activities described above. These results indicate that these benzo(a)pyrene carrier proteins may have an invivo role in the metabolism of benzo(a)pyrene.  相似文献   

6.
Addition of UDP-glucuronic acid to microsomal incubations containing benzo(a)pyrene caused a dose-dependent conjugation of principally quinone and phenol metabolites. Total benzo(a)pyrene oxidation was also stimulated with a maximum increase at 2 nM UDPGA. In the presence of calf thymus DNA, UDPGA caused a 2.7-fold increase in benzo(a)pyrene diol-oxide modification of DNA, as analyzed by Sephadex LH-20 chromatography. Maximum DNA modification by diol-oxides occurred at a UDPGA concentration which gave the highest level of free benzo(a)pyrene 7,8-dihydrodiol; likewise, the amount of DNA adduct derived from benzo(a)pyrene phenols declined in parallel with levels of free phenol metabolites. The UDPGA-induced increase in benzo(a)pyrene oxidation and concomitant increase in diol-oxide modification of DNA is consistent with removal of product inhibition by glucuronide conjugation of an inhibitory benzo(a)pyrene metabolite.  相似文献   

7.
When incubated with a 9,000 x g rat-liver supernatant, benzo(a)pyrene 7,8-diol and benz(a)anthracene 8,9-diol were more active than the parent hydrocarbons in inducing his+ revertant colonies of S. typhimurium TA 100. Benzo(a) pyrene 9,10-diol was less active than benzo(a)pyrene; the K-region diols, benz(a)anthracene 5,6-diol and benzo(a)pyrene 4,5-diol, were inactive. None of the diols was active when the cofactors for the microsomal mono-oxygenase were omitted. The diol-epoxides benzo(a)pyrene 7,8-diol 9,10-oxide, benz(a)anthracene 8,9-diol 10,11-oxide and 7-methylbenz(a)anthracene 8,9-diol 10,11-oxide and the K-region epoxides, benzo(a)pyrene 4,5-oxide and benz(a)anthracene 5,6-oxide, were mutagenic without further metabolism.  相似文献   

8.
The effect of intratracheal instillation of different doses of benzo(a)pyrene (0.1, 1.0 and 2.0 mg) on the drug metabolizing enzymes of lung and liver was analysed in rats fed diet with or without vitamin A for 5-6 weeks. Benzo(a)pyrene exposure at 2.0 mg dose only elevated the level of cytochrome P-450 and b5, and activity of benzopyrene hydroxylase in liver, and extent of increase was similar in normal and vitamin A deficient groups. Contrary to this, pulmonary contents of cytochrome P-450 and b5, and benzopyrene hydroxylase activity increased over control values in both the groups even at lower doses of benzo(a)pyrene. Moreover, their values were higher in vitamin A deficient-treated groups compared to normal-treated controls. Increase in these parameters was greater in lung as compared to increase in liver. NADPH cytochrome C-reductase in lung and liver was not affected either by inducing vitamin A deficiency or exposing these rats further to benzo(a)pyrene. Uridine-diphospho-glucuronosyl-transferase (UDP-GT) activity in normal and vitamin A deficient groups was enhanced following exposure to benzo(a)pyrene both in lung and liver. However, activity of this enzyme remained impaired in vitamin A deficient groups, benzo(a)pyrene exposed or not exposed when compared to respective normal controls. Glutathione S-transferase activity remained unchanged following exposure to benzo(a)pyrene both in lung and liver. The apparent increase in hepatic glutathione S-transferase and decrease in pulmonary glutathione S-transferase activity in vitamin A deficiency was only due to vitamin A deficient status of rats with no further effect of benzo(a)pyrene.  相似文献   

9.
Saccharomyces cerevisiae, brewer's yeast, produces a microsomal benzo(a)pyrene hydroxylase when grown at high glucose concentrations of which the haemoprotein, cytochrome P-450 (RH, reduced-flavoprotein:oxygen oxidoreductase (RH-hydroxylating) EC 1.14.14.1) is a component. We report here kinetic data derived from Lineweaver-Burk plots of benzo(a)pyrene hydroxylation. The Michaelis constant was decreased by growth of the yeast in the presence of benzo(a)pyrene showing the induction of a form of the enzyme more specific for this compound. NADPH or cumene hydroperoxide could be used as cofactors by this enzyme, although with different Km and V values for benzo(a)pyrene. A solubilised and a solubilised, immobilised enzyme preparation were capable of benzo(a)pyrene hydroxylation, using cumene hydroperoxide but not NADPH as the cofactor. Benzo(a)pyrene was found to produce a modified type I spectral change with yeast and rat liver microsomes. The interaction of benzo(a)pyrene with cytochrome P-450 was investigated further by means of an equilibrium gel filtration technique. There appeared to be 20 binding sites per mol ofcytochrome P-450 for benz(a)pyrene, in both yeast and rat liver microsomes.  相似文献   

10.
The influence of mono-phenol, di-resorcinol and tri-pyrogallol hydroxyl groups of simple unsubstituted phenols on the mutagenic potentials of benzo(a)pyrene was studied in vivo (micronuclear test on bone marrow polychromatic erythrocytes) and in vitro (test of direct point mutations at V79/HGPRT system induced by metabolic activation by mouse liver microsomal enzymes). The phenols decreased the mutagenic activity of benzo(a)pyrene in in vivo tests, with pyrogallol being the most active, it followed by resorcinol and phenol. The mixtures of benzo(a) pyrene + pyrogallol and benzo(a)pyrene + resorcinol were significantly less mutagenic in in vitro tests than benzo(a)pyrene and benzo(a)pyrene + phenol.  相似文献   

11.
Canine kidney cells (MDCK) in which [3H]arachidonic acid was esterified in the cellular lipids released increased levels of radioactive prostaglandins and arachidonic acid into the medium when cultured in the presence of benzo(a)pyrene. When MDCK cells were cultured in the presence of benzo(alpha)pyrene and 7,8-benzoflavone, this increased release was not observed. MDCK cells incubated with benzo(a)pyrene also converted exogenous arachidonic acid into prostaglandins more effectively than cells grown in its absence. 7,8-Benzoflavone inhibited this benzo(a)pyrene effect. Microsomes, prepared from benzo(alpha)pyrene-treated MDCK cells synthesized prostaglandin F2alpha from arachidonic acid more effectively than nontreated cells.  相似文献   

12.
Biodegradation of benzo(a)pyrene by a newly isolated Fusarium sp   总被引:1,自引:0,他引:1  
Benzo(a)pyrene (BaP) is a five-ring polycyclic aromatic hydrocarbon produced by the incomplete combustion of organic materials. It is one of the priority pollutants listed by the US Environmental Protection Agency. This study describes a fungal isolate that is able to biodegrade benzo(a)pyrene. The filamentous fungus, isolated from leaves of Pterocarpus macrocarpus Kurz., was identified as a Fusarium sp. (strain E033). Fusarium sp. E033 was able to survive in the presence of benzo(a)pyrene concentrations up to 1.2 mM (300 mg L(-1)). Biodegradation experiments using 0.4 mM (100 mg L(-1)) benzo(a)pyrene demonstrated that Fusarium sp. E033 was able to degrade 65-70% of the initial benzo(a)pyrene provided, and two transformation products, a dihydroxy dihydro-benzo(a)pyrene and a benzo(a)pyrene-quinone, were detected within 30 days of incubation at 32 degrees C. The factors affecting biodegradation efficiency were also investigated. While increasing aeration promoted better fungal growth and benzo(a)pyrene biodegradation, increasing the glucose concentration from 5 to 50 mM had an adverse effect on biodegradation. Ethanol and methanol, provided at 5 mM to increase benzo(a)pyrene water solubility, increased the fungal biomass yield but did not promote degradation. The Fusarium sp. E033 isolated in this study can tolerate and degrade relatively high concentrations of benzo(a)pyrene, suggesting its potential application in benzo(a)pyrene bioremediation.  相似文献   

13.
The toxicity of polycyclic aromatic hydrocarbons such as benzo(a)pyrene, 7,12-dimethylbenz(a)anthracene, and 3-methylcholanthrene has been associated with alterations in the proliferation of vascular smooth muscle cells and the development of lesions of mesenchymal origin. Because phosphorylation of endogenous substrates plays a central role in the regulation of smooth muscle cell growth, the present studies were conducted to evaluate the phosphorylation pattern of medial aortic protein upon repeated in vivo exposure of Japanese quail to benzo(a)pyrene (BaP). Medial aortic homogenates from quail treated for 10 weeks with 10 mg/kg benzo(a)pyrene or vehicle were processed for in vitro measurements of protein phosphorylation. In vitro phosphorylation of endogenous or exogenous proteins stimulated in vitro by phorbol myristate acetate/phosphatidyl-serine or cyclic AMP, known activators of protein kinase C and cyclic AMP-dependent protein kinase, respectively, was examined in the cytosolic and particulate fractions of homogenates from control and treated animals. Benzo(a)pyrene treatment significantly enhanced the basal phosphorylation of Mr 113, 35, and 23 kDa proteins in the cytosolic fraction. Modest increases in the phosphorylation of Mr 71, 52, and 38 kDa were also observed under basal conditions. No changes in the basal phosphorylation of particulate proteins were observed. Phosphorylation of endogenous protein substrates by protein kinase C in the cytosolic fraction was not altered by benzo(a)pyrene treatment. In contrast, inhibition of C-kinase-mediated phosphorylation of endogenous Mr 272, 72, and 45 kDa proteins was observed in the particulate fraction of aortic homogenates from benzo(a)pyrene-treated quail relative to controls. Exogenous histone phosphorylation by PKC in the particulate, but not cytosolic fraction, was decreased by benzo(a)pyrene treatment. The effects of benzo(a)pyrene on the C-kinase system were specific, since cAMP-mediated phosphorylation of endogenous proteins, as well as exogenous histone, was not altered by benzo(a)pyrene. Interestingly, benzo(a)pyrene treatment was associated with a selective increase of Mr 200, 80, and 67 kDa proteins in the cytosolic fraction. Collectively, these data are consistent with the hypothesis that medial protein phosphorylation is a significant molecular target of benzo(a)pyrene within the vascular wall.  相似文献   

14.
The alkaline version of the 'comet assay' was used to evaluate DNA damage in human umbilical vein endothelial cells (HUVEC) exposed to 0.1, 1.0, or 10 microM benzo(a)pyrene for 90min. The genotoxicity was monitored in HUVEC pretreated with the Ah-receptor agonist beta-naphthoflavone (BNF), previously shown to induce cytochrome P4501A1 (CYP1A1) activity in these cells, and in vehicle-treated HUVEC with only constitutive levels of this enzyme. Increased DNA damage was observed only in cells that had been exposed to 10 microM benzo(a)pyrene, cells exposed to BNF being subjected to the most extensive damage. The CYP1A/B-inhibitor alpha-naphthoflavone (ANF) reduced the benzo(a)pyrene-induced DNA-damage in the BNF-treated HUVEC to the same level as in the uninduced cells. The fact that benzo(a)pyrene induced DNA damage in vehicle-treated HUVEC suggests that there may be at least one alternative route of bioactivation for benzo(a)pyrene in these cells. Consequently, judging from the present results it seems as if tobacco-related polycyclic aromatic hydrocarbons (PAHs) may disrupt the function of the endothelial lining in blood vessels with low monooxygenase activity. It is proposed that exposure to Ah receptor agonists via, for example, tobacco smoke, may enhance the DNA-damaging effects of smoke-related genotoxic PAHs in human endothelial cells. The role of PAHs in endothelial dysfunction of tobacco smokers should therefore be further studied.  相似文献   

15.
Uptake of benzo(a)pyrene by living cultured cells has been visualized in real time using digital fluorescence-imaging microscopy. Benzo(a)pyrene was noncovalently associated with lipoproteins, as a physiologic mode of presentation of the carcinogen to cells. When incubated with either human fibroblasts or murine P388D1 macrophages, benzo(a)pyrene uptake occurred in the absence of endocytosis, with a halftime of approximately 2 min, irrespective of the identity of the delivery vehicles, which were high density lipoproteins, low density lipoproteins, very low density lipoproteins, and 1-palmitoyl-2-oleoylphosphatidylcholine single-walled vesicles. Thus, cellular uptake of benzo(a)pyrene from these hydrophobic donors occurs by spontaneous transfer through the aqueous phase. Moreover, the rate constant for uptake, the extent of uptake, and the intracellular localization of benzo(a)pyrene were identical for both living and fixed cells. Similar rate constants for benzo(a)pyrene efflux from cells to extracellular lipoproteins suggests the involvement of the plasma membrane in the rate-limiting step. The intracellular location of benzo(a)pyrene at equilibrium was coincident with a fluorescent cholesterol analog, N-(7-nitrobenz-2-oxa-1,3-diazole)-23,24-dinor-5-cholen-22-amine-3 beta-ol. Benzo(a)pyrene did not accumulate in acidic compartments, based on acridine orange fluorescence, or in mitochondria, based on rhodamine-123 fluorescence. When the intracellular lipid volume of isolated mouse peritoneal macrophages was increased by prior incubation of these cells with either acetylated low density lipoproteins or with very low density lipoproteins from a hypertriglyceridemic individual, cellular accumulation of benzo(a)pyrene increased proportionately with increased [1-14C]oleate incorporation into cellular triglycerides and cholesteryl esters. Thus, benzo(a)pyrene uptake by cells is a simple partitioning phenomenon, controlled by the relative lipid volumes of extracellular donor lipoproteins and of cells, and does not involve lipoprotein endocytosis as an obligatory step.  相似文献   

16.
A microbial consortium which rapidly mineralized the environmentally persistent pollutant benzo[a]pyrene was recovered from soil. The consortium cometabolically converted [7-(14)C]benzo[a]pyrene to (14)CO(2) when it was grown on diesel fuel, and the extent of benzo[a]pyrene mineralization was dependent on both diesel fuel and benzo[a]pyrene concentrations. Addition of diesel fuel at concentrations ranging from 0.007 to 0.2% (wt/vol) stimulated the mineralization of 10 mg of benzo[a]pyrene per liter 33 to 65% during a 2-week incubation period. When the benzo[a]pyrene concentration was 10 to 100 mg liter(-1) and the diesel fuel concentration was 0.1% (wt/vol), an inoculum containing 1 mg of cell protein per liter (small inoculum) resulted in mineralization of up to 17.2 mg of benzo[a]pyrene per liter in 16 days. This corresponded to 35% of the added radiolabel when the concentration of benzo[a]pyrene was 50 mg liter(-1). A radiocarbon mass balance analysis recovered 25% of the added benzo[a]pyrene solubilized in the culture suspension prior to mineralization. Populations growing on diesel fuel most likely promoted emulsification of benzo[a]pyrene through the production of surface-active compounds. The consortium was also analyzed by PCR-denaturing gradient gel electrophoresis of 16S rRNA gene fragments, and 12 dominant bands, representing different sequence types, were detected during a 19-day incubation period. The onset of benzo[a]pyrene mineralization was compared to changes in the consortium community structure and was found to correlate with the emergence of at least four sequence types. DNA from 10 sequence types were successfully purified and sequenced, and that data revealed that eight of the consortium members were related to the class Proteobacteria but that the consortium also included members which were related to the genera Mycobacterium and Sphingobacterium.  相似文献   

17.
The principal mechanism of cellular uptake of benzo(a)pyrene and other polycyclic aromatic hydrocarbons (PAH) from lipoproteins into cells is spontaneous transfer through the aqueous phase (Plant, A. L., Benson, D.M., and Smith, L.C. (1985) J. Cell Biol. 100, 1295-1308). Cellular uptake of benzo(a)pyrene from low density lipoproteins followed first-order kinetics with a rate constant that was independent of the relative lipoprotein concentrations or cell number but which was 2 orders of magnitude smaller than the rate constant for benzo(a)pyrene desorption from low density lipoproteins. Moreover, identical rate constants for cellular uptake of benzo(a)pyrene were observed when the donor vehicle was high density lipoproteins, very low density lipoproteins, or single bilayer phosphatidylcholine vesicles, even though rate constants for benzo(a)pyrene transfer from these donor vehicles differed by 10-fold. When phosphatidylcholine vesicles containing benzo(a)pyrene and a nontransferable fluorescence quencher were mixed with cells in a stopped-flow system, two kinetic components were distinguished: a fast component with a rate constant corresponding to that measured for transfer of benzo(a)pyrene out of vesicles, followed by a much slower component, with a time course approximating that measured for cellular accumulation of benzo(a)pyrene by other techniques. Rate constants for desorption of a series of PAH which contained different number of aromatic rings from phosphatidylcholine vesicles differed over a 70-fold range. First-order rate constants for cell uptake of benzo(a)pyrene and five other PAH of different molecular sizes had the same 70-fold range of values, but were 2 orders of magnitude smaller than their respective rate constants for desorption from single bilayer vesicles. In addition, activation energies for cell uptake were essentially identical to the respective activation energies for desorption of PAH from phosphatidylcholine vesicles, confirming the mechanistic similarity of the two processes.  相似文献   

18.
Two novel cyclopentafused polycyclic aromatic hydrocarbons, naphtho(1,2,3-mno)acephenanthrylene (cyclopenta benzo[e]pyrene) and naphtho(2,1,8-hij)acephenanthrylene (cyclopenta(ij)benzo[a]pyrene) were evaluated for mutagenic activity in the Ames Salmonella typhimurium plate incorporation assay. Both compounds required S9 metabolic activation, and showed optimal activity at low S9 concentrations (below 0.6 mg/plate). Both compounds induced frameshift and base-pair substitution mutations, being active in strains TA98, TA100, TA1537, TA1538 and TA104, but not in strain TA1535. Cyclopenta(ij)benzo[a]pyrene was more active than cyclopentabenzo[e]pyrene, and both were more potent than their parent ring systems, benzo[a]pyrene and benzo[e]pyrene, respectively. Cyclopenta(ij)benzo[a]pyrene was more active in strain TA104 than in TA100 or TA98 (250-470, 340 and 80-100 rev/nmole) as was benzo[a]pyrene (120, 70 and 40 rev/nmole respectively); cyclopentabenzo[e]pyrene was more active in TA100 than TA104 or TA98 (70 versus 50 and 40 rev/nmole), and benzo[e]pyrene showed a similar pattern (4, 3.5 and 0.6 rev/nmole). The relative potencies of the four compounds are in accord with predictions based on perturbational molecular orbital calculations. The peak of activity at low S9 concentrations is consistent with epoxidation at the cyclopentafused ring being the major route of metabolic activation for both these cyclopentafused compounds.  相似文献   

19.
用7-乙氧基异叻唑酮-脱乙基酶(EROD)检测的方法,研究了苯并芘和六氯苯对日本青鳉肝脏EROD酶的比活力的影响。结果表明,苯并芘和六氯苯对EROD酶的比活力均有激活作用,在实验浓度范围内,EROD酶的比活力与两者浓度之间存在剂量-效应关系。苯并芘和六氯苯表现为一定的协同作用。实验同时发现日本青鳉在六氯苯和苯并芘中暴露后,EROD酶的比活力开始有一个短暂的降低,然后持续升高。对六氯苯和苯并芘暴露的最佳时间进行了探讨。  相似文献   

20.
乳杆菌吸附苯并芘的特性   总被引:1,自引:0,他引:1  
[目的]探讨植物乳杆菌(Lactobacillus plantarum)121和戊糖乳杆菌(Lactobacillus pentosus)ML32的苯并芘吸附作用与机制.[方法]采用高效液相色谱检测菌体对苯并芘的吸附率.[结果]菌株121和ML32对苯并芘的吸附率分别为65.9%和64.9%,这种吸附特性与菌体活力无关,随培养时间延长、温度提高以及细胞浓度的上升而增加.菌株121和ML32的吸附率在pH 4和5时达到最大,分别为87.6%和89.0%.当培养液中Ca2+或Mg2+浓度大于0.05mol/L时,菌体吸附率与盐离子浓度呈正相关.苯洗脱会导致乳杆菌所吸附的苯并芘减少90%.经碱性蛋白酶、中性蛋白酶、溶菌酶及TCA和SDS等方法处理后,菌体吸附率上升,且不易被苯去除.在胆盐及胃酸环境下,两株菌的吸附率均提高至70%以上,而胰蛋白酶的存在仅对菌株121的吸附率有较大影响.[结论]两株乳杆菌可以通过吸附作用从环境中清除苯并芘,其吸附效果与细菌细胞壁的结构和组成有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号