首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HU, a nonspecific histone-like DNA binding protein, participates in a number of genomic events as an accessory protein and forms multiple complexes with DNA. The HU-DNA binding interaction was characterized by fluorescence, generated with the guanosine analogue 3-methyl-8-(2-deoxy-beta-D-ribofuranosyl)isoxanthopterin (3-MI) directly incorporated into DNA duplexes. The stoichiometry and equilibrium binding constants of complexes formed between HU and 13 and 34 bp DNA duplexes were determined using fluorescence anisotropy and analytical ultracentrifugation. These measurements reveal that three HU molecules bind to the 34 bp duplexes, while two HU molecules bind to the 13 bp duplex. The data are well described by an independent binding site model, and the association constants for the first binding event for both duplexes are similar (approximately 1 x 10(6) M(-1)), indicating that HU binding affinity is independent of duplex length. Further analysis of the binding curves in terms of a nonspecific binding model is indicative that HU binding to DNA exhibits little to no cooperativity. The fluorescence intensity also increases upon HU binding, consistent with decreased base stacking and increased solvent exposure of the 3-MI fluorescence probe. These results are suggestive of a local bending or unwinding of the DNA. On the basis of these results we propose a model in which bending of DNA accompanies HU binding. Up to five complex bands are observed in gel mobility shift assays of HU binding to the 34 bp duplexes. We suggest that protein-induced bending of the DNA leads to the observation of complexes in the gel, which have the same molecular weight but different relative mobilities.  相似文献   

2.
Using HU chemical nucleases to probe HU-DNA interactions, we report here for the first time site-specific binding of HU to naked DNA. An unique feature of this interaction is the absolute requirement for negative DNA supercoiling for detectable levels of site-specific DNA binding. The HU binding site is the Mu spacer between the L1 and L2 transposase binding sites. Our results suggest recognition of an altered DNA structure which is induced by DNA supercoiling. We propose that recruitment of HU to this naked DNA site induces the DNA bending required for productive synapsis and transpososome assembly. Implications of HU as a supercoiling sensor with a potential in vivo regulatory role are discussed. Finally, using HU nucleases we have also shown that non-specific DNA binding by HU is stimulated by increasing levels of supercoiling.  相似文献   

3.
Benevides JM  Serban D  Thomas GJ 《Biochemistry》2006,45(16):5359-5366
HU is a small DNA-binding protein of eubacteria that is believed to induce or stabilize bending of the double helix and mediate nucleoid compaction in vivo. Although HU does not bind preferentially to specific DNA sequences, it is known to have high affinity for DNA sites containing structural anomalies, such as unpaired or mismatched bases, nicks, and four-way junctions. We have employed Raman spectroscopy to further investigate the structural basis of HU-DNA recognition in solution. Experiments were carried out on the homodimeric HU protein of Bacillus stearothermophilus (HUBst) and a 222-bp DNA fragment, which was isolated in linear (DNA(L222)) and circular (DNA(C222)) forms. In the absence of bound HUBst the Raman signatures of DNA(L222) and DNA(C222) are nearly superimposable, indicating that circularization produces no substantial change in the local B-DNA conformation. Conversely, the Raman signatures of DNA(L222) and DNA(C222) are perturbed significantly and specifically by HUBst binding. The HUBst-induced perturbations are markedly greater for the circularized DNA target. These results support an opportunistic molecular mechanism, in which HU binding is facilitated by intrinsic nonlinearity or flexibility in the DNA target. We propose that DNA segments which are bent or predisposed toward bending provide the high-affinity sites for HU attachment and nucleoid condensation. This model is consistent with the wide range of DNA bending angles reported in crystal structures of HU-DNA complexes.  相似文献   

4.
HU is an abundant, highly conserved protein associated with the bacterial chromosome. It belongs to a small class of proteins that includes the eukaryotic proteins TBP, SRY, HMG-I and LEF-I, which bind to DNA non-specifically at the minor groove. HU plays important roles as an accessory architectural factor in a variety of bacterial cellular processes such as DNA compaction, replication, transposition, recombination and gene regulation. In an attempt to unravel the role this protein plays in shaping nucleoid structure, we have carried out fluorescence resonance energy transfer measurements of HU-DNA oligonucleotide complexes, both at the ensemble and single-pair levels. Our results provide direct experimental evidence for concerted DNA bending by HU, and the abrogation of this effect at HU to DNA ratios above about one HU dimer per 10-12 bp. These findings support a model in which a number of HU molecules form an ordered helical scaffold with DNA lying in the periphery. The abrogation of these nucleosome-like structures for high HU to DNA ratios suggests a unique role for HU in the dynamic modulation of bacterial nucleoid structure.  相似文献   

5.
6.
Ultraviolet resonance Raman (UVRR) spectra of H2O and D2O solutions of the nucleoside (dA, dG, dC, dT) and aromatic amino acid (Phe, Trp, Tyr) constituents of DNA viruses have been obtained with laser excitation wavelengths of 257, 244, 238, and 229 nm. Using the 981 cm−1 marker of Na2SO4 as an internal standard, Raman frequencies and scattering cross sections were evaluated for all prominent UVRR bands at each excitation wavelength. The results show that UVRR cross sections of both the nucleosides and amino acids are strongly dependent on excitation wavelength and constitute sensitive and selective probes of the residues. The results provide a library of UVRR marker bands for structural analysis of DNA viruses and other nucleoprotein assemblies. © 1998 John Wiley & Sons, Inc. Biopoly 45: 247–256, 1998  相似文献   

7.
The histone-like protein HU of Bacillus stearothermophilus (HUBst) is a 90-residue homodimer that binds nonspecifically to B DNA. Although the structure of the HUBst:DNA complex is not known, the proposed DNA-binding surface consists of extended arms that project from an alpha-helical platform. Here, we report Raman and ultraviolet-resonance Raman (UVRR) spectra diagnostic of subunit secondary structures and indicative of key side-chains lining the proposed DNA-binding surface. Raman conformation markers show that the DNA-binding arms of the dimer contain beta-stranded structure in excess (eight +/- two residues per subunit) of that reported previously. Important among side-chain markers are Met (701 cm(-1)), Ala (908 cm(-1)), Arg (1082 cm(-1)), and Pro (1457 cm(-1)). The Ala marker undergoes a substantial shift (908 --> 893 cm(-1)) on deuteration of alanyl peptide sites, indicating a coupled side-chain/main-chain mode of diagnostic value in the identification of exchange-protected alanines. A large subset of alanines (67%) in the alpha-helical core exhibits robust resistance to exchange. A quantitative study of NH --> ND exchange exploiting newly identified amide II' markers of helical (1440 cm(-1)) and nonhelical (1472 cm(-1)) conformations of HUBst indicates unexpected flexibility at the dimer interface, which is manifested in rapid exchange of 80% of peptide sites. The results establish a basis for subsequent Raman and UVRR investigations of HUBst:DNA complexes and provide a framework for applications to other DNA-binding architectural proteins.  相似文献   

8.
Wen ZQ  Armstrong A  Thomas GJ 《Biochemistry》1999,38(10):3148-3156
Pf1, a class II filamentous virus, has been investigated by ultraviolet resonance Raman (UVRR) spectroscopy with excitation wavelengths of 257, 244, 238, and 229 nm. The 257-nm UVRR spectrum is rich in Raman bands of the packaged single-stranded DNA (ssDNA) genome, despite the low DNA mass (6%) of the virion. Conversely, the 229-nm UVRR spectrum is dominated by tyrosines (Tyr 25 and Tyr 40) of the 46-residue alpha-helical coat subunit. UVRR spectra excited at 244 and 238 nm exhibit Raman bands diagnostic of both viral DNA and coat protein tyrosines. Raman markers of packaged Pf1 DNA contrast sharply with those of the DNA packaged in the class I filamentous virus fd [Wen, Z. Q., Overman, S. A., and Thomas, G. J., Jr. (1997) Biochemistry 36, 7810-7820]. Interestingly, deoxynucleotides of Pf1 DNA exhibit sugars in the C2'-endo/anti conformation and bases that are largely unstacked, compared with C3'-endo/anti conformers and very strong base stacking in fd DNA; hydrogen-bonding interactions of thymine carbonyls are also different in Pf1 and fd. On the other hand, coat protein tyrosines of Pf1 exhibit Raman markers of ring environment identical to those of fd, including an anomalous singlet at 853 cm-1 in lieu of the canonical Fermi doublet (850/830 cm-1) found in globular proteins. The results indicate markedly different modes of organization of ssDNA in Pf1 and fd virions, despite similar environments for coat protein tyrosines, and suggest strong hydrogen-bonding interactions between DNA bases and coat subunits of Pf1 but not between those of fd. We propose that structural relationships between the protein coat and encapsidated ssDNA genome are also fundamentally different in the two assemblies.  相似文献   

9.
Nuclease digestion studies of DNA bound to the histone-like protein HU show that cuts in each strand of the DNA double helix are made with a periodicity of 8.5 base-pairs. By contrast, similar digestions of DNA in eukaryotic nucleosomes show a repeat of 10.4 base-pairs. This and other results (including circular dichroism studies) are consistent with the proposal that the pitch of the DNA double helix in the HU complex is reduced from a repeat length of 10.5 to 8.5 base-pairs per helical turn. Simultaneously, the DNA in the HU-DNA complex containing two dimers of HU per 60 base-pairs has its linking number decreased by 1.0 turn per 290 base-pairs. From these changes it is calculated that HU imposes a DNA writhe of 1.0 per three to four monomers of HU. The results suggest a model in which DNA is coiled in left-handed toroidal supercoils on the HU complex, having a stoichiometry resembling that of the half-nucleosome of eukaryotic chromatin. An important distinction is that HU complexes can restrain the same number of DNA superhelical turns as eukaryotic nucleosomes, yet the DNA retains more negative torsional tension, just as is observed in prokaryotic chromosomes in vivo. Another distinction is that HU-DNA complexes are less stable, having a dissociation half-life of 0.6 min in 50 mM-NaCl. This last property may explain prior difficulties in detecting prokaryotic nucleosome-like structures.  相似文献   

10.
11.
A M Segall  S D Goodman    H A Nash 《The EMBO journal》1994,13(19):4536-4548
Integration host factor (IHF) is required in lambda site-specific recombination to deform the DNA substrates into conformations active for recombination. HU, a homolog of IHF, can also deform DNA but binds without any apparent sequence specificity. We demonstrate that HU can replace IHF by cooperating with the recombinase protein, integrase, to generate a stable and specific complex with electrophoretic mobility and biochemical activity very close to the complex formed by IHF and integrase. The eukaryotic HMG1 and HMG2 proteins differ entirely in structure from HU but they also bind DNA non-specifically and induce or stabilize deformed DNA. We show that the eukaryotic HMG1 and HMG2 proteins cooperate with integrase at least as well as does HU to make a defined structure. We also find that the eukaryotic core histone dimer H2A-H2B can replace IHF, suggesting that the histone dimer is functional outside the context of a nucleosome. HU and the HMG proteins not only contribute to the formation of stable complexes, but they can at least partially replace IHF for the integrative and excisive recombination reactions. These results, together with our analysis of nucleoprotein complexes made with damaged recombination sites, lead us to conclude that the cooperation between HU and integrase does not depend on protein-protein contacts. Rather, cooperation is manifested through building of higher order structures and depends on the capacity of the non-specific DNA binding proteins to bend DNA. While all these non-specific binding proteins appear to fulfil the same bending function, they do so with different efficiencies. This probably reflects subtle structural differences between the assembled complexes.  相似文献   

12.
The incubation of the E coli DNA binding protein HU with relaxed circular SV40 DNA in the presence of pure nicking-closing enzyme introduces up to 18 negative superhelical turns in the DNA molecules as measured by agarose gel electrophoresis. The maximal density of supercoiling is obtained at a HU-DNA mass ratio of 1. Reconstituted DNA-HU complexes prefixed with glutaraldehyde appear as condensed circular structures having an average of 14 "beads" per circular SV40 DNA molecule, with a "bead" diameter of 180 +/- 23 A. The circular SV40 DNA is condensed by a ratio of 2.0-2.5 relative to naked DNA. This is similar to the ratio (2.4) measured for chromatin formed by reassociation of relaxed SV40 DNA with the four core histones.  相似文献   

13.
Haruta N  Aki M  Ozaki S  Watanabe Y  Kitagawa T 《Biochemistry》2001,40(23):6956-6963
Conformational change of myoglobin (Mb) accompanied by binding of a ligand was investigated with 244 nm excited ultraviolet resonance Raman Spectroscopy (UVRR). The UVRR spectra of native sperm whale (sw) and horse (h) Mbs and W7F and W14F swMb mutants for the deoxy and CO-bound states enabled us to reveal the UVRR spectra of Trp7, Trp14, and Tyr151 residues, separately. The difference spectra between the deoxy and CO-bound states reflected the environmental or structural changes of Trp and Tyr residues upon CO binding. The W3 band of Trp7 near the N-terminus exhibited a change upon CO binding, while Trp14 did not. Tyr151 in the C-terminus also exhibited a definite change upon CO binding, but Tyr103 and Tyr146 did not. The spectral change of Tyr residues was characterized through solvent effects of a model compound. The corresponding spectral differences between CO- and n-butyl isocyanide-bound forms were much smaller than those between the deoxy and CO-bound forms, suggesting that the conformation change in the C- and N-terminal regions is induced by the proximal side of the heme through the movement of iron. Although the swinging up of His64 upon binding of a bulky ligand is noted by X-ray crystallographic analysis, UVRR spectra of His for the n-butyl isocyanide-bound form did not detect the exposure of His64 to solvent.  相似文献   

14.
In order to understand how MutS recognizes mismatched DNA and induces the reaction of DNA repair using ATP, the dynamics of the complexes of MutS (bound to the ADP and ATP nucleotides, or not) and DNA (with mismatched and matched base‐pairs) were investigated using molecular dynamics simulations. As for DNA, the structure of the base‐pairs of the homoduplex DNA which interacted with the DNA recognition site of MutS was intermittently disturbed, indicating that the homoduplex DNA was unstable. As for MutS, the disordered loops in the ATPase domains, which are considered to be necessary for the induction of DNA repair, were close to (away from) the nucleotide‐binding sites in the ATPase domains when the nucleotides were (not) bound to MutS. This indicates that the ATPase domains changed their structural stability upon ATP binding using the disordered loop. Conformational analysis by principal component analysis showed that the nucleotide binding changed modes which have structurally solid ATPase domains and the large bending motion of the DNA from higher to lower frequencies. In the MutS–mismatched DNA complex bound to two nucleotides, the bending motion of the DNA at low frequency modes may play a role in triggering the formation of the sliding clamp for the following DNA‐repair reaction step. Moreover, MM‐PBSA/GBSA showed that the MutS–homoduplex DNA complex bound to two nucleotides was unstable because of the unfavorable interactions between MutS and DNA. This would trigger the ATP hydrolysis or separation of MutS and DNA to continue searching for mismatch base‐pairs. Proteins 2016; 84:1287–1303. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
16.
Ultraviolet resonance Raman (UVRR) spectra, with 260-nm excitation, are reported for oxidized and reduced nicotinamide adenine dinucleotides (NAD+ and NADH, respectively). Corresponding spectra are reported for these coenzymes when bound to the enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and liver and yeast alcohol dehydrogenases (LADH and YADH). The observed differences between the coenzyme spectra are interpreted in terms of conformation, hydrogen bonding, and general environment polarity differences between bound and free coenzymes and between coenzymes bound to different enzymes. The possibility of adenine protonation is discussed. UVRR spectra with 220-nm excitation also are reported for holo- and apo-GAPDH (GAPDH-NAD+ and GAPDH alone, respectively). In contrast with the 260-nm spectra, these show only bands due to vibrations of aromatic amino acid residues of the protein. The binding of coenzyme to GAPDH has no significant effect on the aromatic amino acid bands observed. This result is discussed in the light of the known structural change of GAPDH on binding coenzyme. Finally, UVRR spectra with 240-nm excitation are reported for GAPDH and an enzyme-substrate intermediate of GAPDH. Perturbations are reported for tyrosine and tryptophan bands on forming the acyl enzyme.  相似文献   

17.
Skoko D  Wong B  Johnson RC  Marko JF 《Biochemistry》2004,43(43):13867-13874
The mechanical response generated by binding of the nonspecific DNA-bending proteins HMGB1, NHP6A, and HU to single tethered 48.5 kb lambda-DNA molecules is investigated using DNA micromanipulation. As protein concentration is increased, the force needed to extend the DNA molecule increases, due to its compaction by protein-generated bending. Most significantly, we find that for each of HMGB1, NHP6A, and HU there is a well-defined protein concentration, not far above the binding threshold, above which the proteins do not spontaneously dissociate. In this regime, the amount of protein bound to the DNA, as assayed by the degree to which the DNA is compacted, is unperturbed either by replacing the surrounding protein solution with protein-free buffer or by straightening of the molecule by applied force. Thus, the stability of the protein-DNA complexes formed is dependent on the protein concentration during the binding. HU is distinguished by a switch to a DNA-stiffening function at the protein concentration where the formation of highly stable complexes occurs. Finally, introduction of competitor DNA fragments into the surrounding solution disassembles the stable DNA complexes with HMGB1, NHP6A, and HU within seconds. Since spontaneous dissociation of protein does not occur on a time scale of hours, we conclude that this rapid protein exchange in the presence of competitor DNA must occur only via "direct" DNA-DNA contact. We therefore observe that protein transport along DNA by direct transfers occurs even for proteins such as NHP6A and HU that have only one DNA-binding domain.  相似文献   

18.
Fluorescence-determined preferential binding of quinacrine to DNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
Quinacrine complexes with native DNA (Calf thymus, Micrococcus lysodeikticus, Escherichia coli, Bacillus subtilis, and Colstridium perfringens) and synthetic polynucleotides (poly(dA) . poly(dT), poly[d(A-T)] . poly[d(A-T)], poly(dG) . poly(dC) and poly[d(G-C)] . poly[d(G-C)]) has been investigated in solution at 0.1 M NaCl, 0.05 M Tris HCl, 0.001 M EDTA, pH 7.5, at 20 degrees C. Fluorescence excitation spectra of complexes with dye concentration D = 5-30 microM and DNA phosphate concentration P = 400 microM have been examined from 300 to 500 nm, while collecting the emission above 520 nm. The amounts of free and bound quinacrine in the dye-DNA complexes have been determined by means of equilibrium dialysis experiments. Different affinities have been found for the various DNAs and their values have been examined with a model that assumes that the binding constants associated with alternating purine and pyrimidine sequences are larger than those relative to nonalternating ones. Among the alternating nearest neighbor base sequences, the Pyr(3'-5')Pur sequences, i.e., C-G, T-G, C-A and T-A seem to bind quinacrine stronger than the remaining sequences. In particular the three sites, where a G . C base pair is involved, are found to display higher affinities. Good agreement is found with recent calculations on the energetics of intercalation sites in DNA. The analysis of the equilibrium shows also that the strength of the excitation spectrum of bound dye depends strongly upon the ratio of bound quinacrine to DNA. This effect can be attributed to dye-dye energy transfer along DNA.  相似文献   

19.
delta 5-3-Ketosteroid isomerase (KSI: EC 5.3.3.1) of Pseudomonas testosteroni catalyzes the isomerization of delta 5-3-ketosteroids to delta 4-3-ketosteroids by the stereospecific transfer of the steroid 4 beta-proton to the 6 beta-position, using Tyr-14 as a general acid and Asp-38 as a base. Ultraviolet resonance Raman (UVRR) spectra have been obtained for the catalytically active double mutant Y55F + Y88F, which retains Tyr-14 as the only tyrosine residue (referred to as the Y14(0) mutant), and the Y14F mutant, which has 50,000-fold lower activity. The UVRR results establish that binding of the product analog and competitive inhibitors 19-nortestosterone or 4-fluoro-19-nortestosterone to the Y14(0) mutant does not result in the formation of deprotonated Tyr-14. The UVRR spectra of the steroid inhibitors show large decreases in the vinyl and carbonyl stretching frequencies on binding to the Y14(0) enzyme but not on binding to the Y14F enzyme. These changes cannot be mimicked by protonation of the steroids. For 19-nortestosterone, the vinyl and carbonyl stretching frequencies shift down (with respect to the values in aqueous solution) by 18 and 27 cm-1, respectively, on binding to Y14(0) KSI. It is proposed that the changes in the steroid resonance Raman spectrum arise from polarization of the enone moiety via the close proximity of the charged Asp-38 side chain to the vinyl group and the directional hydrogen bond between Tyr-14 and the 3-carbonyl oxygen of the steroid enone. The 230-nm-excited UVRR spectra do not, however, show changes that are characteristic of strong hydrogen bonding from the tyrosine hydrogen. It is proposed that this hydrogen bonding is compensated by a second hydrogen bond to the Tyr-14 oxygen from another protein residue. UVRR spectra of the Y14(0) enzyme obtained using 200 nm excitation show enhancement of the amide II and S Raman bands. The secondary structure of KSI was estimated from the amide II and S intensities and was found to be low in alpha-helical structure. The alpha-helix content was estimated to be in the range of 0-25% (i.e., 10 +/- 15%).  相似文献   

20.
Previous isothermal titration calorimetry (ITC) and Förster resonance energy transfer studies demonstrated that Escherichia coli HUαβ binds nonspecifically to duplex DNA in three different binding modes: a tighter-binding 34-bp mode that interacts with DNA in large (> 34 bp) gaps between bound proteins, reversibly bending it by 140o and thereby increasing its flexibility, and two weaker, modestly cooperative small site-size modes (10 bp and 6 bp) that are useful for filling gaps between bound proteins shorter than 34 bp. Here we use ITC to determine the thermodynamics of these binding modes as a function of salt concentration, and we deduce that DNA in the 34-bp mode is bent around—but not wrapped on—the body of HU, in contrast to specific binding of integration host factor. Analyses of binding isotherms (8-bp, 15-bp, and 34-bp DNA) and initial binding heats (34-bp, 38-bp, and 160-bp DNA) reveal that all three modes have similar log-log salt concentration derivatives of the binding constants (Ski) even though their binding site sizes differ greatly; the most probable values of Ski on 34-bp DNA or larger DNA are − 7.5 ± 0.5. From the similarity of Ski values, we conclude that the binding interfaces of all three modes involve the same region of the arms and saddle of HU. All modes are entropy-driven, as expected for nonspecific binding driven by the polyelectrolyte effect. The bent DNA 34-bp mode is most endothermic, presumably because of the cost of HU-induced DNA bending, while the 6-bp mode is modestly exothermic at all salt concentrations examined. Structural models consistent with the observed Ski values are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号