首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过盆栽试验,评价栎属植物在铅锌尾矿中的生长响应及植被恢复前景.分析比较了覆瓦栎、猩红栎、樱皮栎、舒玛栎和白栎5种栎树幼苗在铅锌矿砂中生长30个月后的生物量、根系形态及其对营养元素和重金属的吸收及转移特征.结果表明: 5种栎树在矿砂中均能生长,其中,猩红栎和白栎的生物量较对照有下降趋势,其他3种栎树的生长与对照相比无显著差异;栎树根系生物量均较对照有不同程度增加(猩红栎除外),且仅猩红栎侧根形态学参数较对照有所减少.重金属胁迫下,栎树根系和茎中营养元素浓度较对照无显著变化.5种栎树体内重金属浓度均较低,且其生物富集系数和转移系数均小于1.但樱皮栎叶片和茎中Cd浓度分别为22.4和15.1 mg·kg-1,转移系数为2.3,显著高于其他4种栎树.除猩红栎以外,其他参试栎树均可作为有潜力的污染土壤修复树种.其中舒玛栎的耐性较高、生物富集系数和转移系数较低,是适合在尾矿区造林和生态修复的优选树种.  相似文献   

2.
The aim of this research was to identify wild plant species applicable for remediation of mine tailings in arid soils. Plants growing on two mine tailings were identified and evaluated for their potential use in phytoremediation based on the concentration of potentially toxic elements (PTEs) in roots and shoots, bioconcentration (BCF) and translocation factors (TF). Total, water-soluble and DTPA-extractable concentrations of Pb, Cd, Zn, Cu, Co and Ni in rhizospheric and bulk soil were determined. Twelve species can grow on mine tailings, accumulate PTEs concentrations above the commonly accepted phytotoxicity levels, and are suitable for establishing a vegetation cover on barren mine tailings in the Zimapan region. Pteridium sp. is suitable for Zn and Cd phytostabilization. Aster gymnocephalus is a potential phytoextractor for Zn, Cd, Pb and Cu; Gnaphalium sp. for Cu and Crotalaria pumila for Zn. The species play different roles according to the specific conditions where they are growing at one site behaving as a PTEs accumulator and at another as a stabilizer. For this reason and due to the lack of a unified approach for calculation and interpretation of bioaccumulation factors, only considering BCF and TF may be not practical in all cases.  相似文献   

3.
六种植物对Pb的吸收与耐性研究   总被引:107,自引:0,他引:107       下载免费PDF全文
 为了选择和筛选重金属Pb的耐性与富集植物,在温室砂培盆栽条件下对铅锌尾矿区附近生长的6种植物(山野豌豆(Vicia amoena Fisch)、草木樨(Melilotus suavena Ledeb)、披碱草(Elymus dahuricus Turca)、酸模(Rumex acetosa)、紫苜蓿(Medicago sativa)和羽叶鬼针草(Bidens maximowicziana Oett))体内Pb的含量与分布、重金属Pb的迁移总量、根系的耐性指数做了研究;拟定了6种植物对Pb的耐性临  相似文献   

4.
六种植物对Pb的吸收与耐性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为了选择和筛选重金属Pb的耐性与富集植物,在温室砂培盆栽条件下对铅锌尾矿区附近生长的6种植物(山野豌豆(Vicia amoena Fisch)、草木樨(Melilotus suavena Ledeb)、披碱草(Elymus dahuricus Turca)、酸模(Rumex acetosa)、紫苜蓿(Medicago sativa)和羽叶鬼针草(Bidens maximowicziana Oett))体内Pb的含量与分布、重金属Pb的迁移总量、根系的耐性指数做了研究;拟定了6种植物对Pb的耐性临  相似文献   

5.
A greenhouse experiment was conducted to investigate the effects of the arbuscular mycorrhizal fungus Funneliformis mosseae on three parameters: Pb, Zn, Cu and Cd accumulation, translocation and plant growth in perennial ryegrass (Lolium perenne), tall fescue (Festuca arundinacea), showy stonecrop (Hylotelephium spectabile) and Purple Heart (Tradescantia pallida). The purpose of this work is to enhance site-specific phytostabilization of lead/zinc mine tailings using native plant species. The results showed that mycorrhizal fungi inoculation significantly increased plant biomass of F. arundinacea, H. spectabile and T. pallida. The Pb, Zn, Cu and Cd concentrations in roots were higher than those in shoots both with and without mycorrhizae, with the exception of the Zn concentration in H. spectabile. Mycorrhizae generally increased metal concentrations in roots and decreased metal concentrations in shoots of L. perenne and F. arundinacea. In addition, it was found that the majority of the bioconcentration and translocation factors were lower than 1 and mycorrhizal fungi inoculation further reduced these values. These results suggest that appropriate plant species inoculated with mycorrhiza might be a potential approach to revegetating mine tailing sites and that H. spectabile is an appropriate plant for phytostabilization of Pb/Zn tailings in northern China due to its higher biomass production and lower metal accumulation in shoots.  相似文献   

6.
Revegetation of Pb/Zn Mine Tailings, Guangdong Province, China   总被引:6,自引:0,他引:6  
The Lechang lead/zinc mine is located in the north part of Guangdong Province, southern China. The tailings residue from the extraction of lead/zinc ores was permanently stored in tailings ponds, which required revegetation to reduce the environmental impact. A field study was, therefore, conducted to evaluate the effects of different ameliorants, including: (1) pig manure (PM); (2) mushroom compost (MC); (3) burnt coal residue (BC); (4) fly ash (FA); and (5) surface soil on the growth of Agropyron elongatum (tall wheat grass), Cynodon dactylon (Bermuda grass), Lolium multiflorum (Italian ryegrass), and Trifolium repens (clover) in the tailings residue. The results from the core profiles indicated that adding FA (10 cm) or BC (15 cm) as a barrier layer between the cover soil and the tailings could increase pH, compared to the treatment with soil only. C. dactylon grew well and had a high cover (90–100%) in all the treatment plots except the control plots without any amendment. A. elongatum and L. multiflorum had a higher cover when grown in plots covered with a barrier layer using FA or BC (both with surface soil), than those grown in plots covered with surface soil only. Treatment plots receiving a thicker soil cover (30 cm) had a better dry weight yield than those with a thinner soil cover (15 cm), regardless of the barrier layer. The results from this study indicate that the use of either 15 cm BC or 10 cm FA as a barrier layer with surface soil, or the use of 38 tonnes PM/ha and 6 cm MC, were effective for the revegetation of Pb/Zn mine tailings. C. dactylon was the best species among the four species used for revegetation. Key words: reclamation, Pb/Zn mine tailings, burnt coal, mushroom compost, fly ash, Bermuda grass, Italian ryegrass, clover.  相似文献   

7.
Plants may reduce element leakage from submerged mine tailings by phytostabilisation. However, high shoot concentrations of elements might disperse them and could be harmful to grazing animals. The aim of this investigation was to find out which of the three properties; low-accumulation, root accumulation or shoot accumulation of elements, occur in four of the most common wetland species growing on an old submerged mine tailings and if their properties can be determined by a hydroponic experiment. Above- and below-ground parts of Salix (mixed tissue from S. phylicifolia and S. borealis), Carex rostrata, Eriophorum angustifolium, and Phragmites australis were sampled and analysed for Cd, Cu, Zn, Pb and As. Differences in uptake and translocation properties of the same plant species were observed between field-grown plants and plants grown in hydroponics. These differences were probably due to processes in the soil–root interface. Thus, hydroponic screening studies should not be used to find suitable species for vegetation of wet-covered mine tailings. Most species were found to have restricted translocation of elements to the shoot, i.e. they were root accumulators, and only the shoot concentrations of Salix for Cd and Zn and E. angustifolium for Pb might be toxic to grazing animals. Thus, plant establishment on submerged tailings can be a safe method to stabilise the metals.  相似文献   

8.
Plants of the Cerrado have shown some potential for restoration and/or phytoremediation projects due to their ability to grow in and tolerate acidic soils rich in metals. The aim of this study is to evaluate the tolerance and accumulation of metals (Cd, Cu, Pb, and Zn) in five native tree species of the Brazilian Cerrado (Copaifera langsdorffii, Eugenia dysenterica, Inga laurina, Cedrela fissilis, Handroanthus impetiginosus) subjected to three experiments with contaminated soils obtained from a zinc processing industry (S1, S2, S3) and control soil (S0). The experimental design was completely randomized (factorial 5 × 4 × 3) and conducted in a greenhouse environment during a 90-day experimentation time. The plant species behavior was assessed by visual symptoms of toxicity, tolerance index (TI), translocation factor (TF), and bioaccumulation factor (BF). C. fissilis has performed as a Zn accumulator by the higher BFs obtained in the experiments, equal to 3.72, 0.88, and 0.41 for S1, S2, and S3 respectively. This species had some ability of uptake control as a defense mechanism in high stress conditions with the best behavior for phytoremediation and high tolerance to contamination. With economical and technical benefits, this study may support a preliminary analysis necessary for using native tree species in environmental projects.  相似文献   

9.
Land disturbed by mining in China is a serious problem and lead/zinc (Pb/Zn) mine tailings constitute the majority of the metal mine tailings produced in Guangdaong Province, China. A greenhouse study was therefore conducted to evaluate the effects of lime (40, 80, 120, and 160 t/ha) and manure compost (50 and 100 t/ha) amendment on the revegetation of the Pb/Zn mine tailings using Cynodon dactylon (Bermuda grass) and Agropyron elongatum (tall wheatgrass). The results showed that a combination of lime and manure compost amendment together with deionized water leachating was able to increase pH, reduce electrical conductivity and diethylenetraminepentaacetic acid (DTPA)‐extractable concentrations of Zn and Pb in tailings. Using 80 t/ha lime amendment with the supplement of fertilizer or manure compost was able to effectively improve germination of both C. dactylon and A. elongatum. The highest dry weight yields were obtained in tailings receiving 80 t lime/ha and 100 t manure compost/ha for both plant species. Plant tissue analysis showed that lime amendment at 120–160 t/ha reduced Zn accumulation in both shoot and root of C. dactylon. However, this trend was not observed for Pb.  相似文献   

10.
Vegetation at an abandoned heavy metal bearing mine tailing may have multifunctional roles such as modification of water balance, erosion control and landscape rehabilitation. Research on the vegetation of mine tailings can provide useful information on tolerance, accumulation and translocation properties of species potentially applicable at moderately contaminated sites. Analyses of the relationship between heavy metal content (Pb, Zn and Cu) and vegetation in a mine tailing were carried out. These analyses included: (1) spatial analysis of relationship among heavy metal distribution, pH and vegetation patterns, and (2) analysis of heavy metal accumulation and translocation in some plant species. Presence of vegetation was found to be significantly dependent on pH value, which confirms that phytotoxicity is a function of element concentration in solution, which is primarily controlled by pH value in mine tailings. Among the most abundant plant species, dewberry (Rubus caesius), vipersbugloss (Echium vulgare), scarlet pimpernel (Anagallis arvensis) and narrowleaf plantain (Plantago lanceolata) accumulate significant amounts of Pb, Cu and Zn, while in the case of annual bluegrass (Poa annua) only Pb can be measured in elevated contents. Considering the translocation features, scarlet pimpernel, narrowleaf plantain, and dewberry accumulate heavy metals primarily in their roots, while heavy metal concentration in vipersbugloss and annual bluegrass is higher in the shoots.  相似文献   

11.
An experiment was performed to determine the effects of mine tailings alone mixed with compost or with compost plus crude biosurfactant on the accumulation of heavy metals (Pb, Zn, Cu, Cr, Cd, and Ni) in Acacia retinodes, Nicotiana glauca, and Echinochloa polystachya. The plants were grown in soil, mine tailings, and mine tailings containing compost over a period of seven and five months for shrubs or grass, respectively. The plants Acacia retinodes and Nicotiana glauca grown in mine tailings containing compost showed increases in dry biomass (from 62 to 79%) compared with plants in only tailings. Heavy metals accumulated in the roots and leaves showed high translocation rates of Cr in N. glauca, Cd in A. retinodes, and Ni in E. polystachya. Concentrations of heavy metals in the three plants irrigated with crude biosurfactant were not significantly different from those irrigated with water. Zn and Cd fractions within mine tailings containing compost were bound to carbonate, Pb was bound to residues, and Cu was bound to Fe-oxides. Cd had the highest mobility factor followed in order by Zn, Pb, and Cu. The elevated concentrations of Pb in roots and the low translocation rate for N. glauca and A. retinodes indicate that they are suitable for phytostabilizing Pb and Zn.  相似文献   

12.
The aim of this research was to identify adapted native plant species with potential for use in phytoremediation of a metalliferous mine tailings heap in Guerrero, Mexico. Physico-chemical characterization, total, DTPA-extractable and fractionation of metals in rhizospheric and non-rhizopheric samples were carried out to gain information about their potential risks. Metal concentrations in plant and bioconcentration factors (BCF) were also determined. Organic matter (OM) and total N contents were higher in the rhizospheric samples, which could improve the conditions for plant establishment. Total Cu, Zn, and Pb concentration were above those for normal soils. The highest metals concentration was found in the residual and organic fractions. Eleven plant species were recorded at the site; three behaved as metal accumulator plants: Gnaphalium chartaceum (accumulator of Cu, Mn, Zn, and Pb), Wigandia urens and Senecio salignus (1027 and 2477 mg kg?1 of Zn). These species and Brickellia sp. presented high Pb-BCF; they may be suitable for metals phytoextraction. Seven species behaved as excluder plants; Guardiola tulocarpus, Juniperus flaccida, and Ficus goldmanii, presented low BCFs. These species are well suited to cope with the toxic conditions, and they could be propagated for revegetation and stabilization of these residues and to decrease metal bioavailability.  相似文献   

13.
In our study, we tested two poplars, Populus beijingensis and Populus cathayana, as model species for their potential for phytoremediation by measuring changes in biomass, pigments, superoxide radicals (O2?), cellular ultrastructure and their ability for O2? quenching and heavy metal accumulation when exposed to Pb, Zn and their interaction in a hydroponic system. Exposure to Pb did not cause a significant decrease in biomass in either P. beijingensis or P. cathayana. Correspondingly, no obvious impairment in cellular organelles was observed in either species, although the former species translocated a higher fraction of Pb to its shoots than the latter. In contrast, there were significant decreases in biomass and pigment content, and serious impairments in ultrastructure in both species when exposed to either Zn alone or to a combined treatment. Under such conditions, P. beijingensis showed smaller losses of biomass and pigments but a greater ability to quench O2? and maintained relatively intact cellular organelles compared with P. cathayana. Under the combined stress, there were no obvious additive effects on biomass, pigments or cellular impairment, whereas synergistic effects on metal absorption and accumulation in both species were observed when compared with exposure to either alone. Thus, the attribute of synergistic uptake and translocation in both species validates their potential to remediate soil contaminated by multiple metals. Moreover, our results indicated that P. beijingensis is a better potential candidate for phytoremediation than P. cathayana, due to its greater phytoremediation efficiency as well as its higher tolerance capacity.  相似文献   

14.
Dispersion and runoff of mine tailings have serious implications for human and ecosystem health in the surroundings of mines. Water, soils and plants were sampled in transects perpendicular to the Santiago stream in Zimapan, Hidalgo, which receives runoff sediments from two acidic and one alkaline mine tailing. Concentrations of potentially toxic elements (PTE) were measured in water, soils (rhizosphere and non-rhizosphere) and plants. Using diethylenetriaminepentaacetic acid (DTPA) extractable concentrations of Cu, Zn, Ni, Cd and Pb in rhizosphere soil, the bioconcentration and translocation factors were calculated. Ruderal annuals formed the principal element of the herbaceous vegetation. Accumulation was the most frequent strategy to deal with high concentrations of Zn, Cu, Ni, Cd and Pb. The order of concentration in plant tissue was Zn>Pb>Cu>Ni>Cd. Most plants contained concentrations of PTE considered as phytotoxic and behaved as metal tolerant species. Rorippa nasturtium-aquaticum accumulated particularly high concentrations of Cu. Parietaria pensylvanica and Commelina diffusa, common tropical weeds, behaved as Zn hyperaccumulators and should be studied further.  相似文献   

15.
Systematic site survey for sample collection and analysis was conducted at a derelict copper (Cu) mine at Kapunda, South Australia. Cu concentrations in the soils at this former mine ranged from 65–10107 mg kg?1. The pH and EC varied widely in the 3.9–8.4 and 152–7311 µS ranges, respectively. Nine plant species growing over the copper mine site were selected to screen for metal uptake to determine their suitability for phytoremediation. The Australian native tree species Eucalyptus camaldulensis indicated enrichment factor (EF) of 2.17, 1.89, and 1.30 for Cu, Zn, and Pb, respectively, suggesting that this species of tree can accumulate these metals to some degree. The stress-resistant exotic olive, Olea europaea exhibited EF of ≤ 0.01 for Cu, Cd, and Pb, and 0.29 for Zn, which is characteristic of an excluder plant. Acacia pycnantha, the Australian pioneer legume species with EF 0.03, 0.80, 0.32, and 0.01 for Cu, Zn, Cd, and Pb, respectively, emerged as another strong metal excluder and consequently as an ideal metal stabilizer.  相似文献   

16.
Microbe-enhanced phytoremediation has been considered as a promising measure for the remediation of metal-contaminated soils. In this study, two bacterial strains JYX7 and JYX10 were isolated from rhizosphere soils of Polygonum pubescens grown in metal-polluted soil and identified as of Enterobacter sp. and Klebsiella sp. based on 16S rDNA sequences, respectively. JYX7 and JYX10 showed high Cd, Pb and Zn tolerance and increased water-soluble Cd, Pb and Zn concentrations in culture solution and metal-added soils. Two isolates produced plant growth-promoting substances such as indole acetic acid, siderophore, 1-aminocyclopropane-1-carboxylic deaminase, and solubilized inorganic phosphate. Based upon their ability in metal tolerance and solubilization, two isolates were further studied for their effects on growth and accumulation of Cd, Pb, and Zn in Brassica napus (rape) by pot experiments. Rapes inoculated with JYX7 and JYX10 had significantly higher dry weights, concentrations and uptakes of Cd, Pb, Zn in both above-ground and root tissues than those without inoculation grown in soils amended with Cd (25 mg kg?1), Pb (200 mg kg?1) or Zn (200 mg kg?1). The present results demonstrated that JYX7 and JYX10 are valuable microorganism, which can improve the efficiency of phytoremediation in soils polluted by Cd, Pb, and Zn.  相似文献   

17.
Eva Stoltz  Maria Greger 《Plant and Soil》2005,276(1-2):251-261
Vegetation cover with two Eriophorum species on old unweathered sulphidic mine tailings has earlier been found to reduce the element levels and to prevent production of acidity in drainage water. The present study aims to find out if Carex rostrata Stokes, Eriophorum angustifolium Honck. and Phragmites australis (Cav.) Steud. had other effects on metal and As release in fresh unweathered sulphidic mine tailings, if the species showed different effects and if this depended on plant mechanisms such as O2, carbonate or organic acid release. Plants were grown in pots with fresh sulphidic mine tailings for 13 months. Arsenic, Cd, Cu, Fe, Pb, Zn, pH, SO 4 2− , alkalinity and organic acids in the drainage water as well as metals and As in roots and shoot and O2 and redox potential in pore water were analysed. The tailings weathered slowly due to high buffering capacity thus no pH decrease was found and therefore similar buffering effects by plants as shown in the previous investigation could not be found. The plants increased the total release of metals and As from the tailings. The release did not depend on carbonate or organic acid release from plants. However, the Fe and As release was due to changed redox potential, caused by O2 release, and high concentration of Fe and As was found in plant roots. Phragmites australis released more As and Fe but less Cd than E. angustifolium and C. rostrata which make P. australis not suitable for plant establishment on sulphidic mine tailings containing high levels of As. Plants did take up the elements and the lowest translocation of elements to the shoot was found in P. australis while the highest in E. angustifolium.  相似文献   

18.
Yu  Xiumei  Li  Yangxin  Li  Yanmei  Xu  Chaohua  Cui  Yongliang  Xiang  Quanju  Gu  Yunfu  Zhao  Ke  Zhang  Xiaoping  Penttinen  Petri  Chen  Qiang 《Applied microbiology and biotechnology》2017,101(4):1739-1751

Mine tailings contain high concentrations of metal contaminants and only little nutrients, making the tailings barren for decades after the mining has been terminated. Effective phytoremediation of mine tailings calls for deep-rooted, metal accumulating, and soil fertility increasing plants with tolerance against harsh environmental conditions. We assessed the potential of the biofuel leguminous tree Pongamia pinnata inoculated with plant growth promoting rhizobia to remediate iron–vanadium–titanium oxide (V–Ti magnetite) mine tailing soil by pot experiment and in situ remediation test. A metal tolerant rhizobia strain PZHK1 was isolated from the tailing soil and identified as Bradyrhizobium liaoningense by phylogenetic analysis. Inoculation with PZHK1 increased the growth of P. pinnata both in V–Ti magnetite mine tailings and in Ni-contaminated soil. Furthermore, inoculation increased the metal accumulation capacity and superoxide dismutase activity of P. pinnata. The concentrations of Ni accumulated by inoculated plants were higher than the hyperaccumulator threshold. Inoculated P. pinnata accumulated high concentration of Fe, far exceeding the upper limit (1000 mg kg−1) of Fe in plant tissue. In summary, P. pinnataB. liaoningense PZHK1 symbiosis showed potential to be applied as an effective phytoremediation technology for mine tailings and to produce biofuel feedstock on the marginal land.

  相似文献   

19.
In vitro breeding and somaclonal variation were used as tools to improve the potential of Indian mustard (Brassica juncea L.) to extract and accumulate toxic metals. Calli from B. juncea were cultivated on a modified MS medium supplemented with 10–200 μM Cd or Pb. Afterwards, new B. juncea somaclones were regenerated from metal-tolerant callus cells. Three different phenotypes with improved tolerance of Cd, Zn and Pb were observed under hydroponic conditions: enhanced metal accumulation in both shoots and roots; limited metal translocation from roots to shoots; reduced accumulation in shoots and roots. Seven out of thirty individual variants showed a significantly higher metal extraction than the control plants. The improvement of metal shoot accumulation of the best regenerant (3× Cd, 1.6× Zn, 1.8× Pb) and metal extraction (6.2× Cd, 3.2× Zn, 3.8× Pb) indicated a successful breeding and selection of B. juncea, which could be used for phytoremediation purpose.  相似文献   

20.
Vetiver grass (Chrysopogon zizanioides) was investigated for its potential use in the rehabilitation of gold mine tailings, its ability to extract and accumulate toxic metals from the tailings and its metal tolerant strategies. Vetiver grass was grown on gold mine tailings soil, in a hothouse, and monitored for sixteen weeks. The mine tailings were highly acidic and had high electrical conductivity. Vetiver grass was able to grow and adapt well on gold mine tailings. The results showed that Vetiver grass accumulated large amounts of metals in the roots and restricted their translocation to the shoots. This was confirmed by the bioconcentration factor of Zn, Cu, and Ni of >1 and the translocation factor of <1 for all the metals. This study revealed the defense mechanisms employed by Vetiver grass against metal stress that include: chelation of toxic metals by phenolics, glutathione S-tranferase, and low molecular weight thiols; sequestration and accumulation of metals within the cell wall that was revealed by the scanning electron microscopy that showed closure of stomata and thickened cell wall and was confirmed by high content of cell wall bound phenolics. Metal induced reactive oxygen species are reduced or eliminated by catalase, superoxide dismutase and peroxidase dismutase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号