首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The soil vapor to indoor air exposure pathway is considered in a wide number of risk-based site management programs. In screening-level assessments of this exposure pathway, models are typically used to estimate the transport of vapors from either subsurface soils or groundwater to indoor air. Published studies indicate that the simple models used to evaluate this exposure pathway often over estimate the impact for aromatic hydrocarbons (e.g., benzene, toluene, ethylbenzene, and xy-lene or BTEX), while showing reasonable agreement for estimates of chlorinated hydrocarbon impacts (e.g., PCE, TCE, DCE). Aerobic biodegradation of the petroleum hydrocarbons is most often attributed as the source of this disparity in the model/ data comparisons. This paper looks at the significance of aerobic biodegradation of aromatic hydrocarbons as part of the assessment of chemical vapor intrusion from soil or groundwater to indoor air. A review of relevant literature summarizing the available field data as well as various modeling approaches that include biodegradation is presented. This is followed by a simple modeling analysis that demonstrates the potential importance of biodegradation in the assessment of the soil vapor to indoor air exposure pathway. The paper concludes with brief discussions of other model considerations that are often not included in simple models but may have a significant impact on the intrusion of vapors into indoor air.  相似文献   

2.
Several DNA probes for polychlorinated biphenyl (PCB)-degrading genotypes were constructed from PCB-degrading bacteria. These laboratory-engineered DNA probes were used for the detection, enumeration, and isolation of specific bacteria degrading PCBs. Dot blot analysis of purified DNA from toxic organic chemical-contaminated soil bacterial communities showed positive DNA-DNA hybridization with a 32P-labeled DNA probe (pAW6194, cbpABCD). Less than 1% of bacterial colonies isolated from garden topsoil and greater than 80% of bacteria isolated from PCB-contaminated soils showed DNA homologies with 32P-labeled DNA probes. Some of the PCB-degrading bacterial isolates detected by the DNA probe method did not show biphenyl clearance. The DNA probe method was found to detect additional organisms with greater genetic potential to degrade PCBs than the biphenyl clearance method did. Results from this study demonstrate the usefulness of DNA probes in detecting specific PCB-degrading bacteria, abundance of PCB-degrading genotypes, and genotypic diversity among PCB-degrading bacteria in toxic chemical-polluted soil environments. We suggest that the DNA probe should be used with caution for accurate assessment of PCB-degradative capacity within soils and further recommend that a combination of DNA probe and biodegradation assay be used to determine the abundance of PCB-degrading bacteria in the soil bacterial community.  相似文献   

3.
Several DNA probes for polychlorinated biphenyl (PCB)-degrading genotypes were constructed from PCB-degrading bacteria. These laboratory-engineered DNA probes were used for the detection, enumeration, and isolation of specific bacteria degrading PCBs. Dot blot analysis of purified DNA from toxic organic chemical-contaminated soil bacterial communities showed positive DNA-DNA hybridization with a 32P-labeled DNA probe (pAW6194, cbpABCD). Less than 1% of bacterial colonies isolated from garden topsoil and greater than 80% of bacteria isolated from PCB-contaminated soils showed DNA homologies with 32P-labeled DNA probes. Some of the PCB-degrading bacterial isolates detected by the DNA probe method did not show biphenyl clearance. The DNA probe method was found to detect additional organisms with greater genetic potential to degrade PCBs than the biphenyl clearance method did. Results from this study demonstrate the usefulness of DNA probes in detecting specific PCB-degrading bacteria, abundance of PCB-degrading genotypes, and genotypic diversity among PCB-degrading bacteria in toxic chemical-polluted soil environments. We suggest that the DNA probe should be used with caution for accurate assessment of PCB-degradative capacity within soils and further recommend that a combination of DNA probe and biodegradation assay be used to determine the abundance of PCB-degrading bacteria in the soil bacterial community.  相似文献   

4.
The ability to directly characterize chemical transport and interactions that occur within a material (i.e., subsurface dynamics) is a vital component in understanding contaminant mass transport and the ability to decontaminate materials. If a material is contaminated, over time, the transport of highly toxic chemicals (such as chemical warfare agent species) out of the material can result in vapor exposure or transfer to the skin, which can result in percutaneous exposure to personnel who interact with the material. Due to the high toxicity of chemical warfare agents, the release of trace chemical quantities is of significant concern. Mapping subsurface concentration distribution and transport characteristics of absorbed agents enables exposure hazards to be assessed in untested conditions. Furthermore, these tools can be used to characterize subsurface reaction dynamics to ultimately design improved decontaminants or decontamination procedures. To achieve this goal, an inverse analysis mass transport modeling approach was developed that utilizes time-resolved mass spectroscopy measurements of vapor emission from contaminated paint coatings as the input parameter for calculation of subsurface concentration profiles. Details are provided on sample preparation, including contaminant and material handling, the application of mass spectrometry for the measurement of emitted contaminant vapor, and the implementation of inverse analysis using a physics-based diffusion model to determine transport properties of live chemical warfare agents including distilled mustard (HD) and the nerve agent VX.  相似文献   

5.
Fluorescence in situ hybridization (FISH) with chromosome-specific probes has been applied to detection of numerical aberrations involving chromosomes 13, 18, and 21 in metaphase and interphase amniocytes. High-complexity, composite probes for chromosomes 13, 18, and 21 were used as hybridization probes for this study. These probes were constructed as chromosome-specific libraries in Bluescribe plasmids and are designated pBS-13, pBS-18, and pBS-21. Elements of these probes bind at numerous sites along the target chromosome and, when detected fluorescently, stain essentially the entire long arm of the target chromosome. The target chromosome number (i.e., the number of chromosomes of the type for which the probe was specific) was correctly determined in 20 of 20 samples in which metaphase spreads were analyzed and in 43 of 43 samples in which interphase nuclei were analyzed; all of these studies were conducted in blind fashion. These results suggest the utility of FISH with composite probes for rapid detection of numerical aberrations in metaphase and interphase amniotic cells.  相似文献   

6.
A small, removable microdialysis probe   总被引:4,自引:0,他引:4  
A miniaturized, concentric, microdialysis probe is described. It is constructed from 36 gauge stainless steel tubing inside of 26 gauge tubing, with a cellulose hollow fiber tip 0.2 mm in diameter and 2 mm long. It has a 6000 molecular weight cut off that excludes enzymes but collects monoamines, their metabolites, and other small neurochemicals. In vitro tests show relative recovery rates of 5-10%. Absolute recovery measured in picograms was independent of the perfusate flow rate inside the probe. Tests in awake rats with probes in the nucleus accumbens showed stable amounts of catecholamines and metabolites collected during repeated 20 min samples. After ip amphetamine, release of dopamine in the accumbens increased from 20 to 40 pg per sample while DOPAC and HVA decreased from about 1500 to 500 pg. Tests of multiple site sampling succeeded in obtaining norepinephrine and dopamine plus three metabolites (DOPAC, HVA and 5HIAA) from four probes simultaneously in four different brain sites in each rat. Five day continuous samples or monthly intermittent samples can be obtained with this microdialysis probe.  相似文献   

7.
A quantitative, non-radioisotopic microsystem has been developed for measuring nucleic acid hybridization using microliter volumes of test sample and reagents. This new method, Slide Immunoenzymatic Assay-DNA, is a modification of the Slide Immunoenzymatic Assay technology originally designed for quantifying antigens and antibodies. It features small, circular solid phases (circles) of transparent material for nucleic acid immobilization. This allows the use of enzyme-labelled gene probes and substrates that generate color which, due to the distribution pattern of the circles on their support, can be measured by automated microtitration plate readers. Slide Immunoenzymatic Assay-DNA has been standardized to measure hybridization of probe to purified DNA or to DNA in cells lysed directly on the circles. Owing to its simplicity, relative low cost and expeditiousness, i.e., providing results in four hours. Slide Immunoenzymatic Assay-DNA is also suitable for use in simple laboratories and field studies.  相似文献   

8.
A flow cytometric method (FCM) was used to detect and accurately enumerate a polycyclic aromatic hydrocarbon-degrading bacterial strain, Sphingomonas sp. 107, inoculated into a soil sample artificially contaminated with pyrene. To compare the FCM method with colony forming unit (CFU) assays, a rifampicin-resistant Sphingomonas sp. 107 was obtained which could be distinguished from the indigenous microflora, since there was no organism resistant to rifampicin in the soil that could transform indole to indigo (naphthalene dioxygenase activity). By combining light-scattering profiles (i.e., morphological properties), ethidium bromide influx (i.e., cell wall permeability), and fluorescence in situ hybridization against the 16S rRNA (i.e., detection specificity), we could enumerate the bacterial population of interest from the indigenous microflora and soil debris during the biotreatment. The FCM technique revealed that the number of inoculated Sphingomonas cells decreased gradually for 15 days of incubation before reaching a steady level of 7 to 12 x 10(5) cells.g-1 of soil. Similar values were obtained with the CFU assay. During this period, pyrene concentration decreased from 632 to 26 mg.kg-1 of dry soil. The FCM detection was improved by adding blocking reagent to the hybridization buffer to minimize the non-specific attachment of the fluorescent probe to soil particles. Combined with the improvements in probe technology, FCM detection was shown to be a good alternative to the conventional culture methods for the analysis of bacterial populations in environmental samples. This technique could be potentially useful for the detection of microorganisms that grow poorly in culture.  相似文献   

9.
Bacterial communities in water samples and eel slime were investigated by fluorescence in situ hybridization of whole bacterial cells in an eel intensive culture system over 1 year. A newly developed probe, matching 27 Vibrio spp., and a specific probe for Vibrio vulnificus were used. Phylogenetic probes complementary to selected regions of the 16S and 23S ribosomal RNA revealed that Proteobacteria of the alpha and beta subclass were predominant in water and eel slime. Members of the gamma subclass (e.g. vibrios and aeromonads) were more abundant in eel slime, although no V. vulnificus was detected.  相似文献   

10.
To clearly discriminate the results of simultaneous screening and quantification of up to 40 different targets–DNA sequences, long probes from 100 to 500 nt, rather than smaller or similar-sized synthetic ones, were adopted for multiplex ligation-dependent probe amplification (MLPA). To prepare the long probes, asymmetric polymerase chain reaction (PCR) was employed to introduce non-complementary stuffers in between the two parts of the MLPA probe with specially designed primers, then restriction enzymes were selected to digest the double-stranded DNAs, and finally polyacrylamide gel electrophoresis was used to purify the single-stranded DNAs (i.e., the long probes). By using this approach, 12 long probes were prepared and used to identify genetically modified (GM) maize. Our experimental results show that the prepared long probes were in full accordance with the designed ones and could be assembled in 4-, 7-, and 10-plex MLPA analysis without losing result specificity and accuracy, showing they were as effective and reliable in MLPA analysis as those prepared with M13-derived vectors. This novel asymmetric PCR-based approach does not need expensive equipment, special reagents, or complicated operations when compared with previous methods. Therefore, our new approach could make MLPA analysis more independent, efficient, and economical.  相似文献   

11.
Bispeptide nucleic acids (bis-PNAs; PNA clamps), PNA oligomers, and DNA oligonucleotides were evaluated as affinity purification reagents for subfemtomolar 16S ribosomal DNA (rDNA) and rRNA targets in soil, sediment, and industrial air filter nucleic acid extracts. Under low-salt hybridization conditions (10 mM NaPO(4), 5 mM disodium EDTA, and 0.025% sodium dodecyl sulfate [SDS]) a PNA clamp recovered significantly more target DNA than either PNA or DNA oligomers. The efficacy of PNA clamps and oligomers was generally enhanced in the presence of excess nontarget DNA and in a low-salt extraction-hybridization buffer. Under high-salt conditions (200 mM NaPO(4), 100 mM disodium EDTA, and 0.5% SDS), however, capture efficiencies with the DNA oligomer were significantly greater than with the PNA clamp and PNA oligomer. Recovery and detection efficiencies for target DNA concentrations of > or =100 pg were generally >20% but depended upon the specific probe, solution background, and salt condition. The DNA probe had a lower absolute detection limit of 100 fg of target (830 zM [1 zM = 10(-21) M]) in high-salt buffer. In the absence of exogenous DNA (e.g., soil background), neither the bis-PNA nor the PNA oligomer achieved the same absolute detection limit even under a more favorable low-salt hybridization condition. In the presence of a soil background, however, both PNA probes provided more sensitive absolute purification and detection (830 zM) than the DNA oligomer. In varied environmental samples, the rank order for capture probe performance in high-salt buffer was DNA > PNA > clamp. Recovery of 16S rRNA from environmental samples mirrored quantitative results for DNA target recovery, with the DNA oligomer generating more positive results than either the bis-PNA or PNA oligomer, but PNA probes provided a greater incidence of detection from environmental samples that also contained a higher concentration of nontarget DNA and RNA. Significant interactions between probe type and environmental sample indicate that the most efficacious capture system depends upon the particular sample type (and background nucleic acid concentration), target (DNA or RNA), and detection objective.  相似文献   

12.
The relationship between subsurface contaminant concentrations and indoor air concentrations, arising from the migration of contaminant vapors into buildings, is affected by a number of complex processes and parameters, many of which are subject to uncertainty. A study was undertaken to develop a simplified relationship between subsurface contaminant concentrations and indoor air concentrations. This relationship is intended for use as a screening tool to determine the relative significance of vapor transport and inhalation as an exposure scenario in the establishment of soil quality guidelines. The relationship was developed using a proprietary model to analyze the infiltration of subsurface vapors into buildings. A probabilistic analysis of the relationship, using a form of Monte Carlo simulation, was undertaken to estimate the dilution of contaminant concentrations between the source (soil gas) and point of exposure (indoor air). Using standardized values for certain parameters and generic distributions for key variables, probability distributions were generated for the dilution factor as a function of contaminant depth and soil type.  相似文献   

13.
The product of the rabbit prt gene (PRT), a gene linked to the immunoglobulin κ-light chain gene ab, was purified from rabbit serum by precipitation with ammonium sulfate and by chromotography on DEAE-Sephadex and Sephacryl S300. Analysis of PRT indicated that it was associated rabbit hemopexin; the molecular weight of PRT (i.e., 68,000), as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was similar to the reported molecular weight of rabbit hemopexin; the PRT phenotypes correlated with the phenotypes of a hematin binding protein; PRT itself bound hematin; and the amino acid composition of PRT was similar to the amino acid composition of rabbit hemopexin. The prt gene, however, need not be the structural gene for hemopexin; it may encode a glycosyl transferase responsible in part for the carbohydrate associated with the protein.  相似文献   

14.
Phytoremediation of hydrocarbons in soil involves plants and their associated microorganisms. Differences in environmental conditions and restrictions on species importation mean that each country may need to identify indigenous plants to use for phytoremedation. Screening plants for hydrocarbon tolerance before screening for degradation ability may prove more economical than screening directly for degradation. Thirty-nine cold-tolerant plants native, or exotic and naturalized, in western Canada were assessed for their ability to survive in crude oil-contaminated soil. Four naturalized grasses (i.e., Agropyron pectiniforme, Bromus inermis, Phleum pratense, and Poa pratensis), three naturalized legumes (i.e., Medicago sativa, Melilotus officinalis, and Trifolium repens), two native forbs (i.e., Artemisia frigida and Potentilla pensylvanica), one native grass (i.e., Bromus ciliatus) and two native legumes (i.e., Glycyrrhiza lepidota and Psoralea esculenta) exhibited phytoremediation potential, based on survival. We determined the effect of increasing crude oil concentrations on total and root biomass, and relative growth rate of those species with the highest survival. The addition of 0.5%, 1%, and 5% (crude oil wt/fresh soil wt) crude oil to soil significantly decreased both the total biomass by at least 22% of the control and the relative growth rate of all species except P. esculenta. Root biomass significantly decreased by at least 22% with crude oil addition in all species except P. esculenta and A. frigida. Total biomass production in contaminated soil had a significant negative correlation with the relative growth rate in uncontaminated soil.  相似文献   

15.
A method is described for the design, evaluation, and application of internal control targets and probes for use in probe-based nucleic acid diagnostic assays (i.e., PCR-ELISA). The technique is a modified version of oligonucleotide-directed mutagenesis in conjunction with PCR amplification to develop a novel probe-annealing sequence in a cloned IS1111a gene fragment of Coxiella burnetii. The internal control probe-recognition site with its complementary probe was identical to the wild-type-specific probe in length, base composition, location, and annealing temperature. Neither the internal control nor the wild-type probes annealed to the recognition sequence of the other. As both of the amplified nucleic acid fragments, internal control and wild type, were identical in length and base composition, the amplification conditions for the diagnostic assay were not affected. This allowed small copy numbers of the internal control clone to be loaded into a diagnostic assay without negatively affecting it. In a single reaction we were able to differentiate between an assay reporting a true or false-negative signal. A negative signal is defined as the absence of detectable pathogen genetic material (true) or inhibition/failure of the reaction (false).  相似文献   

16.
17.
A fluorescence in situ hybridization (FISH) technique based on binding of a rhodamine-labelled oligonucleotide probe to 16S rRNA was used to estimate the numbers of ribosome-rich bacteria in soil samples. Such bacteria, which have high cellular rRNA contents, were assumed to be active (and growing) in the soil. Hybridization to an rRNA probe, EUB338, for the domain Bacteria was performed with a soil slurry, and this was followed by collection of the bacteria by membrane filtration (pore size, 0.2 micrometer). A nonsense probe, NONEUB338 (which has a nucleotide sequence complementary to the nucleotide sequence of probe EUB338), was used as a control for nonspecific staining. Counting and size classification into groups of small, medium, and large bacteria were performed by fluorescence microscopy. To compensate for a difference in the relative staining intensities of the probes and for binding by the rhodamine part of the probe, control experiments in which excess unlabelled probe was added were performed. This resulted in lower counts with EUB338 but not with NONEUB338, indicating that nonspecific staining was due to binding of rhodamine to the bacteria. A value of 4.8 x 10(8) active bacteria per g of dry soil was obtained for bulk soil incubated for 2 days with 0.3% glucose. In comparison, a value of 3.8 x 10(8) active bacteria per g of dry soil was obtained for soil which had been air dried and subsequently rewetted. In both soils, the majority (68 to 77%) of actively growing bacteria were members of the smallest size class (cell width, 0.25 to 0.5 micrometer), but the active (and growing) bacteria still represented only approximately 5% of the total bacterial population determined by DAPI (4', 6-diamidino-2-phenylindole) staining. The FISH technique in which slurry hybridization is used holds great promise for use with phylogenetic probes and for automatic counting of soil bacteria.  相似文献   

18.
Bispeptide nucleic acids (bis-PNAs; PNA clamps), PNA oligomers, and DNA oligonucleotides were evaluated as affinity purification reagents for subfemtomolar 16S ribosomal DNA (rDNA) and rRNA targets in soil, sediment, and industrial air filter nucleic acid extracts. Under low-salt hybridization conditions (10 mM NaPO4, 5 mM disodium EDTA, and 0.025% sodium dodecyl sulfate [SDS]) a PNA clamp recovered significantly more target DNA than either PNA or DNA oligomers. The efficacy of PNA clamps and oligomers was generally enhanced in the presence of excess nontarget DNA and in a low-salt extraction-hybridization buffer. Under high-salt conditions (200 mM NaPO4, 100 mM disodium EDTA, and 0.5% SDS), however, capture efficiencies with the DNA oligomer were significantly greater than with the PNA clamp and PNA oligomer. Recovery and detection efficiencies for target DNA concentrations of ≥100 pg were generally >20% but depended upon the specific probe, solution background, and salt condition. The DNA probe had a lower absolute detection limit of 100 fg of target (830 zM [1 zM = 10−21 M]) in high-salt buffer. In the absence of exogenous DNA (e.g., soil background), neither the bis-PNA nor the PNA oligomer achieved the same absolute detection limit even under a more favorable low-salt hybridization condition. In the presence of a soil background, however, both PNA probes provided more sensitive absolute purification and detection (830 zM) than the DNA oligomer. In varied environmental samples, the rank order for capture probe performance in high-salt buffer was DNA > PNA > clamp. Recovery of 16S rRNA from environmental samples mirrored quantitative results for DNA target recovery, with the DNA oligomer generating more positive results than either the bis-PNA or PNA oligomer, but PNA probes provided a greater incidence of detection from environmental samples that also contained a higher concentration of nontarget DNA and RNA. Significant interactions between probe type and environmental sample indicate that the most efficacious capture system depends upon the particular sample type (and background nucleic acid concentration), target (DNA or RNA), and detection objective.  相似文献   

19.
元宝枫生长旺季树干液流动态及影响因素   总被引:35,自引:3,他引:32  
利用热扩散式边材液流探针和多种气象、土壤因子传感器组成的全自动数据采集系统和美国产Licor-6400光合测定系统,于夏秋季节对北京西山地区低山成林元宝枫单株边材液流动态和叶片蒸腾作用进行了系统观测。元宝枫树干边材液流变化受天气的影响,环境胁迫或环境的改善都能改变边材液流的波动特征。在正常情况下,边材液流的日变化呈单峰曲线:日出后树干液流迅速上升,峰值在中午前后出现,然后下降,在次日早晨前达到坡谷。最热月7月液流启动和进入坡谷的时间比其他各月早1~4 h。6月树干上位液流速率大于中位和下位,其他各月树干下位液流速率大于上位和中位,这种差距在7月达2~3倍。多元回归分析表明,在整个生长旺季,元宝枫边材液流变化深受气温、太阳辐射、空气相对湿度、土壤温度和风速等环境因子的影响,但在不同的观测时段和观测部位其影响的主导因子不完全相同,只有空气温度在任何情况下都是影响液流的主导因子;元宝枫边材液流的变异规律较好地说明了其耐旱的生态策略。  相似文献   

20.
Duplications and deletions are known to cause a number of genetic disorders, yet technical difficulties and financial considerations mean that screening for these mutations, especially duplications, is often not performed. We have adapted multiplex amplifiable probe hybridization (MAPH) for the screening of the DMD gene, mutations in which cause Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy. MAPH involves the quantitative recovery of specifically designed probes following hybridization to immobilized genomic DNA. We have engineered probes for each of the 79 exons of the DMD gene, and we analyzed them by using a 96-capillary sequencer. We screened 24 control individuals, 102 patients, and 23 potential carriers and detected a large number of novel rearrangements, especially small, one- and two-exon duplications. A duplication of exon 2 alone was the most frequently occurring mutation identified. Our analysis indicates that duplications occur in 6% of patients with DMD. The MAPH technique as modified here is simple, quick, and accurate; furthermore, it is based on existing technology (i.e., hybridization, PCR, and electrophoresis) and should not require new equipment. Together, these features should allow easy implementation in routine diagnostic laboratories. Furthermore, the methodology should be applicable to any genetic disease, it should be easily expandable to cover >200 probes, and its characteristics should facilitate high-throughput screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号