首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macrophages at the maternal-placental interface coordinate opposite demands under the control of trophoblast cells such as the response against pathogens on one hand, and apoptotic cell clearance and wound healing with the production of suppressor cytokines. Here, we investigated whether trophoblast cells induce maternal monocyte activation towards an alternative activated macrophage profile and whether bacterial or viral stimuli modulate their migratory properties. We used an in vitro model of the maternal-placental interface represented by co-cultures of CD14+ cells isolated from fertile women with first trimester trophoblast cell line (Swan-71 cells) in the presence or absence of pathogen associated molecular pattern (PAMP) stimuli lipopolysaccharide (LPS), peptidoglycan (PGN) or poly [I:C]). Maternal CD14+ cells showed increased CD16 and CD39 expression, both markers associated to an alternative activation profile, with no changes in CD80 expression after trophoblast cell interaction. These changes were accompanied by increased IL-10 and decreased IL-12 production by CD14+ cells. After stimulation with LPS, PGN or poly [I:C], monocytes co-cultured with trophoblast cells had lower production of TNF-α and IL-1β compared with non co-cultured monocytes. Interestingly, monocyte migration towards trophoblast cells was prevented in the presence of LPS or PGN but not after 24h of stimulation with poly [I:C]. LPS or PGN also decreased CCR5, CXCL-8 and CCL5 expression. Finally, trophoblast cells co-cultured with monocytes in the presence of pathological stimuli failed to increase chemokine expression, indicating a bidirectional effect. In conclusion, trophoblast might ‘instruct’ maternal monocytes to express an alternative activation profile and restrain their early recruitment under pathological threats as one of the first strategies to avoid potential tissue damage at the maternal-placental interface.  相似文献   

2.
Immune cell networks in tissues play a vital role in mediating local immunity and maintaining tissue homeostasis, yet little is known of the resident immune cell populations in the oral mucosa and gingiva. We have established a technique for the isolation and study of immune cells from murine gingival tissues, an area of constant microbial exposure and a vulnerable site to a common inflammatory disease, periodontitis. Our protocol allows for a detailed phenotypic characterization of the immune cell populations resident in the gingiva, even at steady state. Our procedure also yields sufficient cells with high viability for use in functional studies, such as the assessment of cytokine secretion ex vivo. This combination of phenotypic and functional characterization of the gingival immune cell network should aid towards investigating the mechanisms involved in oral immunity and periodontal homeostasis, but will also advance our understanding of the mechanisms involved in local immunopathology.  相似文献   

3.
Chemokines are key mediators of leukocyte recruitment during pathogenic insult and also play a prominent role in homeostasis. While most chemokine receptors bind to multiple chemokines, CCR6 is unique in that this receptor is one of only a few that can bind only a single chemokine ligand, CCL20. CCR6 is an important receptor that is involved in regulating several aspects of mucosal immunity, including the ability to mediate the recruitment of immature dendritic cells (DCs) and mature DCs, and professional antigen presenting cells (APCs) to the sites of epithelial inflammation. Further, CCR6 mediates the homing of both CD4+ T (T-helper; Th) cells and DCs to the gut mucosal lymphoid tissue. DCs, which are known to be essential immune cells in innate immunity and in the initiation of adaptive immunity, play a central role in initiating a primary immune response. Herein, we summarize the role of CCR6 in immune responses at epithelial and mucosal sites in both the lung and gut based on a review of the current literature.  相似文献   

4.
5.
6.
The involvement of intestinal flora endotoxin (ET) in the regulation of immune homeostasis, namely, the maintenance of the physiological tone of all components of the immune system (so-called systemic endotoxinemia, SEE) is postulated. Excessive endotoxin in the systemic blood flow under conditions of the failure of endotoxin-binding and endotoxin-eliminating systems results in another phenomenon, endotoxin aggression (EA), which is regarded as a common factor of pathogenesis of various human diseases. An important role of endotoxin insufficiency in the development of immunodeficiencies is hypothesized.  相似文献   

7.
ObjectivesSuccessful pregnancy involves the homeostasis between maternal decidua and fetoplacental units, whose disruption contributes to compromised pregnancy outcomes, including recurrent spontaneous abortion (RSA). The role of cell heterogeneity of maternal decidua in RSA is yet to be illustrated.Materials and methodsA total of 66,078 single cells from decidua samples isolated from patients with RSA and healthy controls were analysed by unbiased single‐cell RNA sequencing (scRNA‐seq).ResultsOur scRNA‐seq results revealed that stromal cells are the most abundant cell type in decidua during early pregnancy. RSA samples are accompanied by aberrant decidualization and obviously obstructed communication between stromal cells and other cell types, such as abnormal activation of macrophages and NK cells. In addition, the over‐activated TNF superfamily member 12 (TNFSF12, TWEAK) and FASLG in RSA are closely related to stromal cell demise and pregnancy failure.ConclusionsOur research reveals that the cell composition and communications in normal and RSA decidua at early pregnancy and provides insightful information for the pathology of RSA and will pave the way for pregnancy loss prevention.

Recurrent spontaneous abortion (RSA), characterized by pregnancy loss before 20 weeks of gestation more than twice, is an intricated pregnancy complication with enigmatic underlying mechanism ascribes to its complex pathogenesis. The homeostasis between the developing foetus and maternal decidua is critical for pregnancy maintenance. By exploring the cell heterogeneity in normal and RSA decidua utilizing scRNA‐Seq, we unravel the discrepancies in cell composition and communications in these two distinct deciduae. Our investigations uncover that stromal cells are the most abundant cell populations in the decidua, with three different subpopulations at various decidualization stages and two fibroblasts. There are two separated trajectories of stromal cell decidualization marked by PLA2G2A and WNT4. As the most abundant cell population in the decidua, the stromal cells dominate the communications with other cell types, including endothelial cells, macrophages, uNK cells and perivascular cells. Compared with normal decidua, decidualized stromal cells are overtly decreased in RSA decidua with augmented macrophages. In addition, we present some previously unappreciated signaling pathways among different cells types in decidua and also depict the remarkably changed communications between normal and RSA decidual. The aberrant activated TWEAK and FASLG in RSA are considered to be potential reasons for stromal cells demise and pregnancy failure. Our research reveals the cell composition and communications in normal and RSA decidua at early pregnancy and provides insightful information for the pathology of RSA and will pave the way for pregnancy loss prevention.  相似文献   

8.
Neutrophils are rapidly and massively recruited to sites of microbial infection, where they can influence the recruitment of dendritic cells. Here, we have analyzed the role of neutrophil released chemokines in the early recruitment of dendritic cells (DCs) in an experimental model of Leishmania major infection. We show in vitro, as well as during infection, that the parasite induced the expression of CCL3 selectively in neutrophils from L. major resistant mice. Neutrophil-secreted CCL3 was critical in chemotaxis of immature DCs, an effect lost upon CCL3 neutralisation. Depletion of neutrophils prior to infection, as well as pharmacological or genetic inhibition of CCL3, resulted in a significant decrease in DC recruitment at the site of parasite inoculation. Decreased DC recruitment in CCL3−/− mice was corrected by the transfer of wild type neutrophils at the time of infection. The early release of CCL3 by neutrophils was further shown to have a transient impact on the development of a protective immune response. Altogether, we identified a novel role for neutrophil-secreted CCL3 in the first wave of DC recruitment to the site of infection with L. major, suggesting that the selective release of neutrophil-secreted chemokines may regulate the development of immune response to pathogens.  相似文献   

9.
ABSTRACT

Introduction: Recently, the classification of two ‘novel’ organs, the mesentere and interstitium, was saluted as a scientific breakthrough and disseminated into mainstream media. The novelty of these findings did not pertain to the characterization of some previously unexplored phenomena, rather to the appreciation that well-established tissues may play some hitherto unexplored functions critical to system homeostasis.

Areas covered: Here we provocatively comment on the potential classification of red blood cells – by far the most abundant host cell in the human body (~ 83% of the total cells) – as an organ involved in many functions beyond gas transport. In this perspective article, we describe some of these functions with a special emphasis on the role erythrocytes play with respect to systemic metabolic homeostasis. We thus focus on how these functions modulate the cross talk of red blood cells among each other and with other cell types including immune cells.

Expert commentary: The appreciation of RBCs as an organ impacting systemic metabolic homeostasis and other cell functions while engaging in complex metabolic activity beyond oxygen transport can foster the development of novel therapeutic interventions in pathologic hypoxemia, inflammation, neurodgenerative diseases, aging, and cancer.  相似文献   

10.
Our understanding why a woman's immune system does not reject her histoincompatible fetus is still very limited. Distinct insights into the mechanisms involved in pregnancy maintenance may help us to prevent pregnancy complications, e.g., miscarriages or pre-eclampsia. Immune integration and tolerance at the feto-maternal interface appear to be indispensable for successful pregnancy maintenance. Little is known about the cross talk between ICAM-1, expressed on epithelium, endothelium, and APC, and its ligand, LFA-1, at the feto-maternal interface. However, based on the role of ICAM-1/LFA-1 in allograft acceptance or rejection upon transplantation, adhesion molecules are likely to interfere with successful pregnancy outcome. In this study, we tested the hypothesis that ICAM-1/LFA-1 pathways may be involved in pregnancy rejection in murine models. By blocking ICAM-1/LFA-1-mediated intercellular adhesion events, we show that fetal immune acceptance is restored in challenged pregnancies (e.g., upon exposure to sound stress), and adoptive transfer of LFA-1 cells into pregnant mice induces rejection only in abortion-prone mouse models. ICAM-1/LFA-1 cross talk leads to increased recruitment of proinflammatory cells to the implantation site, promotes dendritic cell maturation in the decidua, and subsequently induces additional local Th1 polarization via mature dendritic cells. Furthermore, our observations clearly point out that mechanisms of fetal tolerance, e.g., indoleamine 2,3-dioxygenase expression, presence of CD4+CD25bright regulatory T cells, and synthesis of asymmetric Abs, are ICAM-1/LFA-1 dependent. Hence, our data shed light on a hierarchical network of immune integration at the feto-maternal interface, in which ICAM-1/LFA-1 cross talk is clearly a proximate mediator capable of disrupting successful pregnancy maintenance.  相似文献   

11.
组蛋白或转录因子或辅助因子进行泛素化和去泛素化,能够介导某些生理和病理过程。泛素化和去泛素化的动态平衡确保染色质处于健康的稳定状态。组蛋白泛素化酶和去泛素化酶通过识别DNA损伤位点、传导信号和招募修复因子等方式参与维持染色质稳态。组蛋白泛素化修饰和去泛素化修饰通过抑制(多数)或促进(少数)基因转录,从而影响基因表达。本综述主要关注组蛋白泛素化修饰和去泛素化修饰与染色质稳态和基因转录的关系,探讨这些过程在发育调控和在某些疾病中的作用,为相关疾病的治疗提供理论依据。  相似文献   

12.
In vertebrates, early developing epidermis is a bilayered epithelium consisting of an outer periderm and the underlying basal epidermis. It eventually develops into a multi-layered epithelium. The mechanisms that control the architecture and homeostasis of early developing bilayered epidermis have remained poorly understood. Recently, we have shown that the function of Myosin Vb, an actin based molecular motor, is essential in peridermal cells for maintenance of plasma membrane homeostasis. Furthermore, our analyses of the goosepimples/myosin Vb mutant unravelled a direct link between plasma membrane homeostasis, cell size maintenance and tissue homeostasis in the developing epidermis. However, it remained unclear whether this link is specific to myosin Vb mutant or this is a general principle. Here we have identified two more genetic conditions, romeharsha mutant and clint1 knockdown, in which membrane homeostasis is perturbed, as evident by increased endocytosis and accumulation of lysosomes. As a consequence, peridermal cells exhibit smaller size and increased proliferation. We further show that decreasing endocytosis in romeharsha mutant and clint1 morphants rescues or mitigates the effect on cell size, cell proliferation and morphological phenotype. Our data confirms generality of the principle by reaffirming the causal link between plasma membrane homeostasis, cell size maintenance and tissue homeostasis.  相似文献   

13.
Implantation and the establishment of pregnancy in mammals involves an intricate interplay of hormones, cytokines, growth factors, proteins, lipids, ions and the extracellular matrix between the uterine epithelium, stroma, immune cells and the conceptus trophectoderm. The divergent nature of implantation in the mouse, human and pig provides not only an interesting contrast in the establishment of pregnancy and early embryonic development but also intriguing similarities with regard to early endometrial-conceptus signaling. An interesting pro-inflammatory cytokine expressed in a number of mammalian species during the period of implantation is interleukin-1β (IL1B). The presence of IL1B might be involved with immunotolerance at the maternal-placental interface and has been proposed as one of the mediators in placental viviparity. The production of IL1B and other proinflammatory cytokines might play a role in establishing pregnancy through modulation of the nuclear factor kappa-B (NFKB) system in a number of species. A model for the regulation of cellular progesterone receptor expression and NFKB activation for endometrial receptivity and conceptus attachment is continuing to evolve and is discussed in the present review.  相似文献   

14.
The human immune system is a tightly regulated network that protects the host from disease. An important aspect of this is the balance between pro‐inflammatory Th17 cells and anti‐inflammatory T regulatory (Treg) cells in maintaining immune homeostasis. Foxp3+ Treg are critical for sustaining immune tolerance through IL‐10 and transforming growth factor‐β while related orphan receptor‐γt+ Th17 cells promote immunopathology and auto‐inflammatory diseases through the actions of IL‐17A, IL‐21 and IL‐22. Therefore, imbalance between Treg and Th17 cells can result in serious pathology in many organs and tissues. Recently, certain IL‐17‐producing cells have been found to be protective against infectious disease, particularly in relation to extracellular bacteria such Streptococcus pneumoniae; a number of other novel IL‐17‐secreting cell populations have also been reported to protect against a variety of other pathogens. In this mini‐review, the dual roles of Treg and Th17 cells are discussed in the context of autoimmunity and infections, highlighting recent advances in the field. Development of novel strategies specifically designed to target these critical immune response pathways will become increasingly important in maintenance of human health.  相似文献   

15.

Background

Membrane trafficking is a defining feature of eukaryotic cells, and is essential for the maintenance of organelle homeostasis and identity. We previously identified Scy1-like 1 (Scyl1), a member of the Scy1-like family of catalytically inactive protein kinases, as a high-affinity binding partner of COPI coats. COPI-coated vesicles control Golgi to endoplasmic reticulum trafficking and we observed that disruption of Scyl1 function leads to a decrease in trafficking of the KDEL receptor via the COPI pathway. We reasoned that if Scyl1 plays a major role in COPI trafficking its disruption could influence Golgi homeostasis.

Methodology/Principal Findings

We performed Scyl1 knock down in cultured cells using previously established methods and observed an alteration in Golgi morphology. Both the surface area and volume of the Golgi is increased in Scyl1-depleted cells, but the continuity and polarity of the organelle is unperturbed. At the ultrastructural level we observe a decrease in the orderly structure of the Golgi with an increase in cisternal luminal width, while the number of Golgi cisternae remains unchanged. The golgin family of proteins forms a detergent resistant network that controls Golgi homeostasis. Disruption of this protein network by knock down of the golgin p115 disrupts the Golgi localization of Scyl1. Moreover, we find that Scyl1 interacts with 58K/formiminotransferase cyclodeaminase (FTCD), a protein that is tightly associated with the cis face of the Golgi.

Conclusions/Significance

Our results place Scyl1 at an interface between the golgin network and COPI trafficking and demonstrate that Scyl1 is required for the maintenance of Golgi morphology. Coupled with the observation from others that Scyl1 is the gene product responsible for the neurodegenerative mouse model mdf, our results additionally implicate the regulation of COPI trafficking and Golgi homeostasis in neurodegeneration.  相似文献   

16.
The comparison between immune and neuroendocrine systems in vertebrates and invertebrates suggest an ancient origin and a high degree of conservation for the mechanisms underlying the integration between immune and stress responses. This suggests that in both vertebrates and invertebrates the stress response involves the integrated network of soluble mediators (e.g., neurotransmitters, hormones and cytokines) and cell functions (e.g., chemotaxis and phagocytosis), that interact with a common objective, i.e., the maintenance of body homeostasis. During evolution, several changes observed in the stress response of more complex taxa could be the result of new roles of ancestral molecules, such as ancient immune mediators may have been recruited as neurotransmitters and hormones, or vice versa. We review older and recent evidence suggesting that immune and neuro-endocrine functions during the stress response were deeply intertwined already at the dawn of multicellular organisms. These observations found relevant reflections in the demonstration that immune cells can transdifferentiate in olfactory neurons in crayfish and the recently re-proposed neural transdifferentiation in humans.  相似文献   

17.
BackgroundPeriodontitis (PD) is a multifaceted inflammatory disease connected to bacterial infection that results in the destruction of tooth supporting structures and eventually tooth loss. Given their involvement in infection and inflammation, both metallothionein (MT) and zinc (Zn) might play vital roles in the development and progression of PD. More specifically, both MT and Zn are heavily involved in regulating immune functions, controlling bacterial infection, balancing inflammatory responses, and reducing oxidative stress, all of which are associated with the pathogenesis of PD.ObjectiveThis review paper will explore the physiological functions of MT and Zn and hypothesise how dysregulation could negatively affect periodontal health, leading to PD.FindingsBacterial lipopolysaccharide (LPS) derived from periodontal pathogens, namely P. gingivalis initiates the acute phase response, thus upregulating the expression of MT which leads to the subsequent deficiency of Zn, a hallmark of periodontal disease. This deficiency leads to ineffective NETosis, increases the permeability of the gingival epithelium, and disrupts the humoral immune response, collectively contributing to PD. In addition, the presence of LPS in Zn deficient conditions favours M1 macrophage polarisation and maturation of dendritic cells, and also inhibits the anti-inflammatory activity of regulatory T cells. Collectively, these observations could theoretically give rise to the chronic inflammation seen in PD.ConclusionA disrupted MT and Zn homeostasis is expected to exert an adverse impact on periodontal health and contribute to the development and progression of PD.  相似文献   

18.
Invariant CD1d-restricted natural killer T cells play an important immunoregulatory role and can influence a broad spectrum of immunological responses including against bacterial infections. They are present at the fetal–maternal interface and although it has been reported that experimental systemic iNKT cell activation can induce mouse abortion, their role during pregnancy remain poorly understood. In the present work, using a physiological Chlamydia muridarum infection model, we have shown that, in vaginally infected pregnant mice, C. muridarum is cleared similarly in C57BL/6 wild type (WT) and CD1d−/− mice. We have also shown that infected- as well as uninfected-CD1d−/− mice have the same litter size as WT counterparts. Thus, CD1d-restricted cells are required neither for the resolution of chlamydial infection of the lower-genital tract, nor for the maintenance of reproductive capacity. However, unexpected differences in T cell populations were observed in uninfected pregnant females, as CD1d−/− placentas contained significantly higher percentages of CD4+ and CD8+ T cells than WT counterparts. However, infection triggered a significant decrease in the percentages of CD4+ T cells in CD1d−/− mice. In infected WT pregnant mice, the numbers of uterine CD4+ and CD8+ T cells, monocytes and granulocytes were greatly increased, changes not observed in infected CD1d−/− mice. An increase in the percentage of CD8+ T cells seems independent of CD1d-restricted cells as it occurred in both WT and CD1d−/− mice. Thus, in the steady state, the lack of CD1d-restricted NKT cells affects leukocyte populations only in the placenta. In Chlamydia-infected pregnant mice, the immune response against Chlamydia is dampened in the uterus. Our results suggest that CD1d-restricted NKT cells play a role in the recruitment or homeostasis of leukocyte populations at the maternal–fetal interface in the presence or absence of Chlamydia infection.  相似文献   

19.
Distinct T helper cells, including Th9 cells help maintain homeostasis in the immune system. Vitamins play pivotal role in the immune system through many mechanisms, including regulating the differentiation of T helper cells. Calcitriol (1,25-dihydroxyvitamin D3) and retinoic acid possess hormone-like properties and are the bioactive metabolites of vitamin D and A, respectively, that signal through heterodimers containing the common retinoid X receptor. In contrast to individual treatment with the vitamins that significantly attenuates IL-9 production from Th9 cells, Th9 cells treated with both vitamins demonstrated IL-9 production similar to untreated Th9 cells. This is associated with reciprocal expression of PU.1 and Foxp3. While the recruitment of PU.1 was significantly impaired to the Il9 gene in the presence of calcitriol or retinoic acid in Th9 cells, addition of both vitamins together increased the recruitment of PU.1 to the Il9 gene. Calcitriol and retinoic acid together impaired the recruitment of HDAC1 to the Il9 gene without impacting Gcn5 recruitment. Importantly, retinoic acid negated the effect of calcitriol and impaired the binding of VDR on the Il9 gene by dampened VDR-RXR formation. Collectively, our data show that calcitriol and retinoic acid antagonize each other to regulate the differentiation of Th9 cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号