首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Industrial pollutants such as heavy metals and hydrocarbons in soils represent a serious concern due to their persistence and negative effects on the environment, affecting cellular processes in living organisms and even causing mutations and cancer. The main objectives of this work were to evaluate the efficiency of Opuntia ficus in the phytoremediation of a soil polluted with used motor oil. Two other species, one with different and one with similar characteristics, relatively, were used for comparison purposes: Lolium perenne and Aloe barbadensis. The effect of the plants on lead solubility and bioaccumulation, the biomass production of each specie and the microbial counts and bacterial identification for each experiment was studied. Total petroleum hydrocarbons (TPH) were measured every 5 weeks throughout the 20-week phytoremediation experiment. At the end of the experiment soluble Pb, Pb extracted by the plant species, microbiological counts, total biomass and bacterial species in soil were analyzed. Even though Lolium perenne showed the highest TPH removal (47%), Opuntia ficus produced the highest biomass and similar removal (46%). Since Opuntia ficus requires low amounts of water and grows fast, it would be a suitable option in the remediation of soils polluted with hydrocarbons and/or heavy metals.  相似文献   

2.
选择乐安河—鄱阳湖湿地典型植物群落,采用重要值方法评价各样点植物群落特征并筛选出典型优势植物,通过室内理化测试分析不同生境中优势植物植株及其根区土壤中重金属Cu、Pb、Cd的含量;采用生物富集系数(BCF)方法评价不同优势植物对重金属Cu、Pb、Cd的富集特性。结果表明:研究区湿地植物以草本为主,在各样点共发现124种物种,包括蕨类植物2科2属2种,种子植物40科97属122种,并从中筛选出羊蹄、红蓼、鼠曲草、紫云英、苎麻等5种富集能力较强的优势植物;植物根区土壤中的Cu、Cd含量均超过土壤环境质量三级标准,而且Cu、Cd的最高含量分别为824.03、5.03 mg·kg-1;不同优势植物对Cu、Pb、Cd等3种重金属元素中的1种或2种表现出较强的富集能力,其中优势物种红蓼对Cu具有较强的富集能力,含Cu量最高为148.80 mg·kg-1,另一种优势物种鼠曲草对三种元素的生物富集系数均较高,且对Cd的最高富集含量为15.17 mg·kg-1,对Cd的生物富集系数最高值为19.14,高于其他植物10倍以上,鼠曲草对重金属Cd具有富集植物的基本特征,且对Cu和Cd具有共富集特征并具有较高的耐性,紫云英、羊蹄等对Cd的富集能力也较强。上述5种优势植物种群对鄱阳湖湿地Cu、Pb、Cd等重金属污染物的生态修复具有一定参考价值,可作为鄱阳湖湿地重金属污染修复植物的选择对象。  相似文献   

3.
The objective of this research was to screen and search for suitable plant species to phytoextract mercury-contaminated soil. Our effort focused on using some of the known metal-accumulating wild-type plants since no natural plant species with mercury-hyperaccumulat ing properties has yet been identified. Three plant species were evaluated for their uptake efficiency for mercury: Indian mustard (Brassica juncea), beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata). Four sets of experiments were conducted to evaluate the phytoremediation potential of these three plant species: a pot study with potting mix where mercury was provided daily as HgCl2 solution; experiments with freshly mercury-spiked soil; and a study with aged soils contaminated with different mercury sources (HgCl2, Hg(NO3)2, and HgS). Homemade sunlit chambers were also used to study foliar uptake of Hg from ambient air. Among the three plant species, Chinese brake fern showed the least stress symptoms resulting from mercury exposure and had the highest mercury accumulation. Our results indicate that Chinese brake fern may be a potential candidate for mercury phytoextraction. We found that mercury contamination is biologically available for plant uptake and accumulation, even if the original and predominating mercury form is HgS, and also after multiple phytoremediation cycles.  相似文献   

4.
Avoidance and reduction of soil contamination with heavy metals is one of the most serious global challenges. Nowadays, science offers us new opportunities of utilizing plants to extract toxic elements from the soil by means of phytoremediation. Plant abilities to uptake, translocate, and transform heavy metals, as well as to limit their toxicity, may be significantly enhanced via genetic engineering. This paper provides a comprehensive review of recent strategies aimed at the improvement of plant phytoremediation potential using plant transformation and employing current achievements in nuclear and cytoplasmic genome transformation. Strategies for obtaining plants suitable for effective soil clean-up and tolerant to excessive concentrations of heavy metals are critically assessed. Promising directions in genetic manipulations, such as gene silencing and cis- and intragenesis, are also discussed. Moreover, the ways of overcoming disadvantages of phytoremediation using genetic transformation approachare proposed. The knowledge gathered here could be useful for designing new research aimed at biotechnological improvement of phytoremediation efficiency.  相似文献   

5.
Soils contaminated with metals are a serious problem in central Taiwan; 70% of the metals-contaminated soils in Taiwan are distributed there. We used soil turnover and dilution methods to reduce the total concentration of metals in soil, but this technique may be not suitable for other sites because of their shallow soil depths, which were less than 60 cm. Central Taiwan has the largest flower market in Taiwan and we propose that using local flower species to clean up the metals-contaminated soils is a feasible solution. A 1.3-ha area contaminated by multiple metals (As, Cr, Ni, Cu, and Zn) located in central Taiwan was selected for this large-area phytoremediation experiment. According to the Taiwan Environmental Protection Administration project contract, in-situ selection experiments were conducted to select 12 potential species from 33 tested species for further large area experiment. After in-situ planting of 33 species of plants in the contaminated soil for 33 d, bougainvillea and cockscomb showed yellow-colored leaves and withered as the result of the toxicity of metals. Herbaceous plants can accumulate higher concentration of metals and have higher bioconcentration factor in relative to woody plants. Three weighting models of growth condition and the metal-accumulated concentration of plants growing in the site were evaluated and compared. Six woody plants and six herbaceous plants were selected as high potential metal accumulators for a further large-area experiment.  相似文献   

6.
Four gramineous energy plants, Miscanthus sacchariflorus, M. floridulus, Phragmites australis, and Arundo donax were grown on copper tailings in the field for four years. Their phytoremediation potential was examined in terms of their effects on the fractions of heavy metals and soil enzyme activities. Results showed that plantation of these four gramineous plants has improved the proportion of organic material (OM)-binding fraction of heavy metals in copper tailings as a whole, and reduced the proportion of exchangeable and residual fractions. In particular, M. sacchariflorus growth improved significantly the proportion of the OM-binding fractions of Cu (1.73 times), Cd (1.71 times), Zn (1.18 times), and Pb (3.14 times) (P < 0.05) and reduced markedly the residual fractions of Cu (64.45%), Cd (82.38%), Zn (61.43%), and Pb (73.41%) (P < 0.05). Except for A. donax, the growth of other three energy plants improved the activity of phosphatase, urease and dehydrogenase in copper tailings to some extent. In particular, the activity of soil phosphatase and urease in planted tailings differed significantly from that of control (P < 0.05). The effect of M. sacchariflorus growth on soil enzyme was the highest, followed by P. australis, M. floridulus, and A. donax. The content of each heavy metal fraction in soil was correlated with soil enzyme activities, especially the content of OM-binding fraction, which correlated significantly with the activities of phosphatase, urease and dehydrogenase in soil. According to the effects of four gramineous plants growth on activity of soil enzymes and fractions of heavy metals, M. sacchariflorus had the optimal effects for phytoremediation. Therefore, M. sacchariflorus was a candidate plant with great potential for the revegetation of heavy metal tailings.  相似文献   

7.
Despite many studies on phytoremediation of soils contaminated with either heavy metals or organics, little information is available on the effectiveness of phytoremediation of co-occurring metal and organic pollutants especially by using wetland species. Phragmites australis is a common wetland plant and its potential for phytoremediation of cadmium pentachlorophenol (Cd-PCP) co-contaminated soil was investigated. A greenhouse study was executed to elucidate the effects of Cd (0, 10, and 20 mg kg?1) without or with PCP (0, 50, and 250 mg kg?1) on the growth of the wetland plant P. australis and its uptake, accumulation and removal of pollutant from soils. After 75 days, plant biomass was significantly influenced by interaction of Cd and PCP and the effect of Cd on plant growth being stronger than that of PCP. Coexistence of PCP at low level lessened Cd toxicity to plants, resulting in improved plant growth and increased Cd accumulation in plant tissues. The dissipation of PCP in soils was significantly influenced by interactions of Cd, PCP and plant presence or absence. As an evaluation of soil biological activities after remediation soil enzyme was measured.  相似文献   

8.
镉在土壤-香根草系统中的迁移及转化特征   总被引:1,自引:0,他引:1  
马文超  刘媛  孙晓灿  陈锦平  魏虹 《生态学报》2016,36(11):3411-3418
以无植物组处理为对照,采用盆栽试验方式探讨不同Cd浓度胁迫条件下香根草根际土壤中重金属Cd的积累、迁移及转化特征。土壤Cd处理设4个浓度梯度,分别为0、2、20、80 mg/kg土壤干重。结果表明:(1)香根草可以显著降低土壤中生物有效态Cd和总Cd含量。(2)香根草各部分Cd积累量随处理浓度的增加和处理时间的延长而增加,90 d时80 mg/kg处理组地上部分和根的Cd积累量分别高达180.42 mg/kg和241.54 mg/kg。(3)各浓度Cd处理下,富集系数随着Cd处理浓度的增加而显著降低,随处理时间的延长而升高。(4)香根草地上部分Cd含量小于根部,各处理转移系数均小于1。随着处理时间的延长,中低浓度处理组的转移系数稍有降低,高浓度处理组的转移系数则显著上升。(5)种植香根草使其根际土中残渣态的Cd转化为生物有效态Cd,提高Cd清除效率。研究结果表明,香根草能够有效地吸收土壤中的Cd,降低土壤中总Cd含量,提高土壤安全性,可作为Cd污染地区植物修复的备选物种。  相似文献   

9.
Phytoremediation in Wetland Ecosystems: Progress,Problems, and Potential   总被引:1,自引:0,他引:1  
Assessing the phytoremediation potential of wetlands is complex due to variable conditions of hydrology, soil/sediment types, plant species diversity, growing season, and water chemistry. Conclusions about long-term phytoremediation potential are further complicated by the process of ecological succession in wetlands. This review of wetlands phytoremediation addresses the role of wetland plants in reducing contaminant loads in water and sediments, including metals; volatile organic compounds (VOC), pesticides, and other organohalogens; TNT and other explosives; and petroleum hydrocarbons and additives. The review focuses on natural wetland conditions and does not attempt to review constructed wetland technologies. Physico-chemical properties of wetlands provide many positive attributes for remediating contaminants. The expansive rhizosphere of wetland herbaceous shrub and tree species provides an enriched culture zone for microbes involved in degradation. Redox conditions in most wetland soil/sediment zones enhance degradation pathways requiring reducing conditions. However, heterogeneity complicates generalizations within and between systems. Wetland phytoremediation studies have mainly involved laboratory microcosm and mesocosm technologies, with the exception of planted poplar communities. Fewer large-scale field studies have addressed remediation actions by natural wetland communities. Laboratory findings are encouraging with regards to phytoextraction and degradation by rhizosphere and plant tissue enzymes. However, the next phase in advancing the acceptance of phytoremediation as a regulatory alternative must demonstrate sustained contaminant removal by intact natural wetland ecosystems.  相似文献   

10.
Some plants have high ability to absorb heavy metals in high concentrations. In this study, Spartina maritima was tested in conjunction with low molecular weight organic acids (LMWOA), in order to evaluate the possible use of this plant in phytoremediation processes in salt marshes. Three different LMWOA (citric acid, malic acid and acetic acid) were applied to contaminated intact cores of S. maritima colonized sediment and several heavy metals (Cd, Zn, Pb, Cu, Cr and Ni) were analyzed in sediment and plant parts. Acetic acid application proved to be the most efficient, enhancing greatly the uptake of all metals analyzed. Citric acid also showed good results, while malic acid proved to be very inefficient in most of the cases. The highest enhancement was observed for Cr with a 10-fold increase of the uptake upon application of acetic acid, while improving the Pb uptake proved to be the most difficult, probably due to its low solubility.  相似文献   

11.
The aim of the study was to determine the quality and quantity of siderophores produced by bacteria isolated from plants' roots. The second aim was to determine the effect of siderophores on plants growth (Festuca rubra L. and Brassica napus L.). The study was carried out using bacteria isolated from roots of: Arabidopsis thaliana L., F. rubra, and Agrostis capillaris L., growing on the heavy metals contaminated area. The chrome azurol sulfonate (CAS) test, Arnow's test for catechol siderophores, and Csaksy's test for hydroxamate siderophores were performed. Among the bacteria, 42 isolates (39%) had a positive result in the CAS. Endophytic bacteria were mostly producing the catechol siderophores. It was found that F. rubra is the plant which is linked with the highest number of siderophores producing bacteria. The highest concentration of siderophores was noted for ectorhizospheric bacteria associated with A. thaliana, hyperaccumulating plant. It was found that hydroxamate siderophores are mainly produced by ectorhizosphere and rhizoplane bacteria. The siderophores producing bacteria reduced the toxicity of metals and improved the phytoremediation. Siderophores treatment increased the growth of plants in the biological assay, growing on two different soils: one highly contaminated with heavy metals and the second strongly alkaline soil.  相似文献   

12.
The aim of this research was to identify adapted native plant species with potential for use in phytoremediation of a metalliferous mine tailings heap in Guerrero, Mexico. Physico-chemical characterization, total, DTPA-extractable and fractionation of metals in rhizospheric and non-rhizopheric samples were carried out to gain information about their potential risks. Metal concentrations in plant and bioconcentration factors (BCF) were also determined. Organic matter (OM) and total N contents were higher in the rhizospheric samples, which could improve the conditions for plant establishment. Total Cu, Zn, and Pb concentration were above those for normal soils. The highest metals concentration was found in the residual and organic fractions. Eleven plant species were recorded at the site; three behaved as metal accumulator plants: Gnaphalium chartaceum (accumulator of Cu, Mn, Zn, and Pb), Wigandia urens and Senecio salignus (1027 and 2477 mg kg?1 of Zn). These species and Brickellia sp. presented high Pb-BCF; they may be suitable for metals phytoextraction. Seven species behaved as excluder plants; Guardiola tulocarpus, Juniperus flaccida, and Ficus goldmanii, presented low BCFs. These species are well suited to cope with the toxic conditions, and they could be propagated for revegetation and stabilization of these residues and to decrease metal bioavailability.  相似文献   

13.
Plant, soil, and sediment samples were taken from the Fuqiao area within the Huayuan River basin in South China. Concentrations of manganese, zinc, cadmium, and lead in the samples were measured, and the characteristics of the plant samples to absorb, transfer, and accumulate the target metals were analyzed. It was indicated that the concentrations of target metals in 13 plant samples greatly exceeded the background values of target metals in plants over the world, and that the plant species might evolve to the accumulating ecotypes for the target metals under the long-term stress from the contaminated environment. Among 13 plant species, Alternanthera philoxeroides exhibited the highest accumulation capacities for the target metals, amounting to 6511, 13,784, 155, and 104 mg/kg in its shoots for manganese, zinc, cadmium, and lead, respectively. Its bioaccumulation coefficients for manganese, zinc, cadmium, and lead were 5.08, 49.23, 36.78, and 34.81, respectively, and its transfer factors for manganese, zinc, cadmium, and lead were 7.53, 3.19, 7.38, and 1.29, respectively. The results showed that Alternanthera philoxeroides satisfied the criteria for the hyperaccumulator for zinc and cadmium, and that it might be a potential native plant species for phytoremediation of the contaminated soil, sediment, and river water by the target metals within the basin.  相似文献   

14.
Bioaugmentation of soils with selected microorganisms during phytoextraction can be the key solution for successful bioremediation and should be accurately calculated for different physicochemical soil properties and heavy metal availability to guarantee the universality of this method. Equally important is the development of an accurate prediction tool to manage phytoremediation process. The main objective of this study was to evaluate the role of three metallotolerant siderophore-producing Streptomyces sp. B1–B3 strains in the phytoremediation of heavy metals with the use of S. dasyclados L. growing in four metalliferrous soils as well as modeling the efficiency of this process based on physicochemical and microbiological properties of the soils using artificial neural network (ANN) analysis. The bacterial inoculation of plants significantly stimulated plant biomass and reduced oxidative stress. Moreover, the bacteria affected the speciation of heavy metals and finally their mobility, thereby enhancing the uptake and bioaccumulation of Zn, Cd, and Pb in the biomass. The best capacity for phytoextraction was noted for strain B1, which had the highest siderophore secretion ability. Finally, ANN model permitted to predict efficiency of phytoextraction based on both the physicochemical properties of the soils and the activity of the soil microbiota with high precision.  相似文献   

15.
The capacity of plants to uptake heavy metals from contaminated soils has shown great phytoremediation potential. The development, resistibility and Cd extraction of Eucalyptus globulus individuals from metalliferous and clean sites in different years were analyzed under a specific environment. Eucalyptus globulus planted in Guiyu for phytoremediation or cultivated in an uncontaminated, natural environment for economic purposes were transplanted to Yuecheng town, which, in recent years, has been involved in the e-waste dismantling and recycling business, to compare the phytoremediation efficiency of Eucalyptus globulus trees grown in different environments. Trees cultivated in polluted areas can remove far more Cd and Hg from the contaminated soil than the individuals from clean soils because metalliferous Eucalyptus globulus can produce more biomass and uptake more heavy metals than nonmetalliferous plants per year. As polluted environments negatively affect the growth of plants, we speculated that the phytoremediation efficiency of metalliferous Eucalyptus globulus should decrease over time and that nonmetalliferous trees should adapt to the local environment.  相似文献   

16.
尖孢镰孢菌古巴专化型(Fusarium oxysporum f.sp.cubense)是香蕉枯萎病的病原菌,该菌是一种土壤习居菌,了解香蕉根区土壤中真菌多样性及镰孢菌属(Fusarium)真菌所占比例,对如何减少土壤中的病原菌、预防香蕉枯萎病的发生有重要的指导意义。该文通过采集不同宿根年限的香蕉健康植株和枯萎病植株的根区土壤,利用高通量测序技术测定土壤样品中的真菌种群。结果表明:(1)同一宿根年限的香蕉植株中,健康植株根区土壤中所获的reads及OTUs数量均高于枯萎病植株,说明健康植株根区土壤的真菌多样性丰富于枯萎病植株。(2)除了一年生香蕉枯萎病植株以担子菌门(Basidiomycota)为主外,其他土壤样品中均以子囊菌门(Ascomycota)为主,其中的丛赤壳科最高相对丰度来自三年生健康植株的根区土壤(26.02%),其次是五年生的枯萎病植株根区土壤(15.56%)。(3)在丛赤壳科中,镰孢菌属在三年生健康植株土壤中的相对丰度最高(2.54%),在其他样品中的相对丰度在0.1%~0.65%之间;在镰孢菌属中,腐皮镰孢菌(Fusarium solani)的相对丰度(0~1.59%之间)高于尖孢镰孢菌(F.oxysporum),尖孢镰孢菌仅占很小的比例(相对丰度0~0.08%之间)。可见,在不同香蕉植株的根区土壤中,健康植株的根区土壤真菌多样性高于枯萎病植株,无论是健康植株还是枯萎病植株的根区土壤中,作为香蕉枯萎病病原菌的镰孢菌属或尖孢镰孢菌的群体均不占主导地位。  相似文献   

17.
Maximizing uptake of soil-borne metals into plants is important for successful phytoremediation. Arbuscular mycorrhizae (AM) have been shown previously by our group to sequester metals in the roots of plants and prevent translocation to the shoot. If AM colonization of roots can be reduced, it may be possible to increase metal uptake into plants, thus increasing the efficiency of phytoremediation. The fungicide Benomy® was applied to a Pb-contaminated soil and seeded to corn (Zea mays). Because soil pH affects metal solubility, two pHs were also examined. Colonization of roots by AM was significantly decreased by application of Benomyl to soil, but only at the higher soil pH. Benomyl increased the concentration of several elements, including Pb, in shoots. However, the total Pb content in the shoot decreased due to the reduced shoot weight associated with Benomyl application.

  相似文献   


18.
The possibility of using multicomponent systems, including plants, mineral fertilizers, and plant growth promoting microorganisms, has been studied in vegetative experiments in order to stimulate phytoremediation of oil-sludge-contaminated soil. Winter rye (Secale cereale L.) was used as the principal phytoremediating plant species, whereas alfalfa (Medicago sativa L.), nitrogen fertilizer (ammonium nitrate), and a PGPR strain (Azospirillum brasilense SR80) were applied as additional components, individually or in various combinations. The obtained data revealed the critical importance of alfalfa for phytoremediation of hydrocarbon-contaminated soil. Application of different multicomponent treatments resulted in approximately 70% reduction of pollutant concentration in soil. The developed technological approaches were successfully tested in the remediation of an ex-oil-sludge pit on the ground of a petroleum refinery.  相似文献   

19.
Mining is an important source of metal pollution in the environment and abandoned mines are extremely restricted habitats for plants. Some plant species growing on metalliferous soils around mine tailings and spoil-heaps are metal-tolerant and accumulate high concentrations of metals. In this investigation, we aimed to perform a research in the CMC-abandoned copper mining area in Lefke-North Cyprus to assess the recent metal pollution in soil and plant systems. We collected 16 soil samples and 25 plant species from 8 localities around the vicinity of tailing ponds. Some concentrations of metals in soil samples varied from 185 to 1023 mg kg?1 Cu, 15.2 to 59.2 mg kg?1 Ni, 2.3 to 73.6 mg kg?1 Cd and metals for plants ranged from 0.135 to 283 mg kg?1 Cu, 0.26 to 31.2 mg kg?1 Ni, 0.143 to 277 mg kg?1 Cd. Atriplex semibaccata, Acacia cyanophylla, Erodium spp., Inula viscosa, Juncus sp., Oxalis pes-caprea, Pistacia lentiscus, Senecio vulgaris and Tragopogon sinuatus accumulated higher concentrations. BCF for Atriplex semibaccata was found very high, for this reason this plant can tentatively be considered as a hyperaccumulator of Cu and Cd, but it needs further investigation for its potential in phytoremediation.  相似文献   

20.
选取秋华柳(Salix variegata)扦插苗为研究对象,通过设置0、0.5、2、10 mg/kg 4个镉胁迫浓度,研究了水淹条件下秋华柳根、枝、叶亚细胞中镉的分配特征。结果表明:(1)试验各处理组秋华柳存活率均为100%,表现出良好的镉和水淹耐受能力。(2)与对照相比,在水淹条件下,各处理组秋华柳根、枝和叶的细胞壁仍是镉最主要的富集部位。各处理组植株细胞壁中的镉含量显著高于其他组分,质体中镉含量次之,细胞核和线粒体组分中的镉含量始终处于较低水平。(3)水淹显著提高了秋华柳根细胞壁中的镉含量,显著降低了高浓度镉处理(10 mg/kg)下萌枝细胞壁中的镉含量,但对叶细胞壁中的镉含量没有显著影响。(4)水淹显著提高了秋华柳根细胞中质体中的镉含量,对萌枝、叶细胞质体中的镉含量没有显著影响。研究证明,水淹条件下,秋华柳根枝叶细胞壁仍然是镉积累富集的最主要部位,从而减少了重金属对植物细胞的伤害。秋华柳适用于三峡消落带镉污染区域的植物修复。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号