首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated possible healing effects of melatonin (MEL) on biochemical and histological changes in the lungs of rat offspring caused by exposure to nicotine (NT) in utero. Pregnant rats were divided randomly into five groups. The SP group was treated with physiological saline. The EA group was treated with ethyl alcohol. The MEL group was treated with MEL. The NT group was treated with NT. The NT + MEL group was treated with NT and MEL. At the end of the study, the biochemistry and histopathology of lung tissue of the offspring were examined. Reduced alveolar development and increased numbers of alveolar macrophages and mast cells were observed in the NT group compared to the SP, EA and MEL groups. We also found increased malondialdehyde (MDA) levels and decreased total glutathione (GSH) levels in the NT group. Application of MEL ameliorated the histological and biochemical damage caused by NT. The number of alveoli was greater in the NT + MEL group than in the NT group. Also, the increased numbers of alveolar macrophages and mast cells resulting from exposure to NT were decreased following MEL treatment. We found that MEL caused a significant decrease in the level of MDA. Maternal exposure to NT caused significant structural and biochemical changes in the lungs of the offspring and administration of MEL ameliorated the changes.  相似文献   

2.
Doxorubicin (DOX) is a chemotherapeutic agent widely used in human malignancies. Its long‐term use cause neurobiological side effects. The aim of the present study was to investigate the prophylactic effect exerted by daily administration of ellagic acid (EA) and rosmarinic acid (RA) on DOX‐induced neurotoxicity in rats. Our data showed that DOX‐induced significant elevation of brain malondialdehyde, tumor necrosis factor‐alpha (TNF‐α), inducible nitric oxide synthase (iNOS), caspase‐3, and cholinesterase associated with significant reduction in reduced glutathione, monoamines namely serotonin, dopamine, as well as norepinephrine. Concomitant administration of EA (10 mg/kg/day, p.o. for 14 days) and/or RA (75 mg/kg/day, p.o. for 14 days) with DOX significantly mitigated the neural changes induced by DOX. Meanwhile, treatment ameliorated pro‐inflammatory cytokines as TNF‐α, iNOS, and attenuated oxidative stress biomarkers as well as brain monoamines. In conclusion, EA and RA can effectively protect against DOX‐induced neurotoxicity, and the mechanisms underlying the neuroprotective effect are potentially associated with its antioxidant, anti‐inflammatory, and antiapoptotic properties.  相似文献   

3.
The pesticide malathion (MT), an organophosphate, is highly neurotoxic and causes cholinergic disorders as well as cytotoxicity, genotoxicity, mutagenicity, carcinogenicity and reproductive toxicity. Our purpose was to study the effect of ellagic acid (EA) and Vitamin C on the testis against MT-induced toxicity in the rats. Thirty-six adult Wistar rats were employed, separated into six groups and were given treatment for 14 days. The toxicity of MT on the testis was evaluated using a variety of physical parameters, such as mortality rate and body weight, as well as biochemical parameters, such as total protein, total cholesterol, serum glutamic-oxaloacetic transaminase and serum glutamic-pyruvic transaminase, and haematological parameters, such as counts of red blood cells, haemoglobin (Hb) and white blood cells, as well as mean corpuscular volume, mean corpuscular Hb, and mean corpuscular Hb concentration. At the end of the experiment, rats were killed and a histological examination of the testis was performed. A sperm count technique and an analysis of sperm motility were used to determine the sperm quality. Biochemical indicators, sperm count, motility, viability and morphology were significantly decreased with MT. When compared with MT and the control group, EA and Vitamin C administration significantly increased sperm motility and count (p < 0.05). After receiving EA and Vitamin C, biochemical indicators and histological characteristics are also intensified. The results of the current investigation show that EA and Vitamin C can both reduce increased levels of biochemical markers and improve pathological alterations in the testis brought on by MT treatment.  相似文献   

4.
BACKGROUND: Halogenated hydrocarbons such as trichloroacetic acid (TCA) are among the most common water supply contaminants in the world. This study examines the effect of TCA on the developing brain of the Charles Foster rat. METHODS: Adult pregnant rats were placed in the test group and exposed to various concentration of TCA (i.e., 1000, 1200, 1400, 1600, and 1800 mg/kg body weight [b.w.]) by oral gavage throughout the period of organogenesis from Gestation Day (GD) 6-15 of gestation. Trichloroacetic acid was administered in the form of trichloroacetate, which is reduced to TCA in the body. The control mother rats were administered an equal volume of distilled water. Fetal brains were examined for their external and histological malformation. RESULTS: On GD 19, TCA administration led to an initial increase of brain weight at 1000 mg/kg b.w. and then a weight reduction after TCA doses of 1200 mg/kg b.w. and over. The brain of the formalin-fixed fetuses at 1000 and 1200 mg/kg b.w. showed hydrocephalus with breech of the ependymal lining, altered choroids plexus architecture, and increased apoptosis. At doses of 1400 mg/kg b.w. and above, the brain showed not only enhanced apoptosis of the neuronal cells, but extravasation of erythrocytes within the cortical parenchyma, vacuolation of the neuropil, and multiple cavity formation. CONCLUSION: With an increase in dose of TCA i.e., 1200 mg/kg b.w. and above, there is enhanced apoptosis, leading to increased neuronal death, which consequently led to the reduction in the brain weight as compared to controls. The fetal central nervous system is susceptible to the toxic effect of TCA.  相似文献   

5.
Abstract

The antioxidant effects of ellagic acid (EA) and hesperidin (HES) against skeletal muscle ischemia/reperfusion injury (I/R) were performed. Hindlimb ischemia has been induced by tourniquet occlusion for 2?h on left hindlimb. At the end of ischemia, the tourniquate has been removed and initiated reperfusion for 2?h. EA (100?mg/kg) has been applied orally before ischemia/reperfusion in the EA?+?I/R group. HES (100?mg/kg) has been given orally in the HES?+?I/R group. The left gastrocnemius muscle has been harvested and stored immediately at??80?°C until assessed for the levels of MDA and antioxidant enzymes activities. MDA level has statistically increased in I/R group (p?<?0.05) compared to other groups. The muscle tissue antioxidant enzymes activities were lower than the other groups in the I/R group (p?<?0.05). EA and HES treatments significantly reversed the damage level in I/R, also activity of tissue SOD increased in the EA?+?I/R and HES?+?I/R groups.  相似文献   

6.
The alteration of Ca2+-binding protein regucalcin mRNA expression in the kidney cortex of rats administered cisplatin and cephaloridine, which can induce kidney damage, was investigated. Cisplatin (0.25, 0.5 and 1.0 mg/100 g body weight) or cephaloridine (25, 50 and 100 mg/100 g) was intraperitoneally administered in rats, and 1, 2 and 3 days later they were sacrificed. The alteration in serum findings after the administration of cisplatin (1.0 mg/100 g) or cephaloridine (50 and 100 mg/100 g) demonstrated chemically induced kidney damage; blood urea nitrogen (BUN) concentration increased markedly and serum inorganic phosphorus or calcium concentration decreased significantly. Moreover, the administration of cisplatin (1.0 mg/100 g) or cephaloridine (100 mg/100 g) caused a remarkable increase of calcium content in the kidney cortex of rats, indicating kidney damage. The expression of regucalcin mRNA in the kidney cortex was markedly reduced by the administration of cisplatin or cephaloridine in rats, when the mRNA levels were analyzed by Northern blotting using rat liver regucalcin cDNA (0.9 kb). The mRNA decreases were seen with the used lowest dose of cisplatin or cephaloridine. The present study clearly demonstrates that the mRNA expression of Ca2+-binding protein regucalcin in the kidney cortex of rats is decreased by chemically induced kidney damage.  相似文献   

7.
Traumatic brain injury (TBI) was induced by a weight-drop device using 300 g–1 m weight-height impact. The study groups were: control, alpha-lipoic acid (LA) (100 mg/kg, po), TBI, and TBI + LA (100 mg/kg, po). Forty-eight hours after the injury, neurological scores were measured and brain samples were taken for histological examination or determination of thiobarbituric acid reactive substances (TBARS) and glutathione (GSH) levels, myeloperoxidase (MPO) and Na+-K+ ATPase activities, whereas cytokines (TNF-α, IL-1β) were determined in blood. Brain oedema was evaluated by wet–dry weight method and blood–brain barrier (BBB) permeability was evaluated by Evans Blue (EB) extravasation. As a result, neurological scores mildly increased in trauma groups. Moreover, TBI caused a significant decrease in brain GSH and Na+-K+ ATPase activity, which was accompanied with significant increases in TBARS level, MPO activity and plasma proinflammatory cytokines. LA treatment reversed all these biochemical indices as well as histopathological alterations. TBI also caused a significant increase in brain water content and EB extravasation which were partially reversed by LA treatment. These findings suggest that LA exerts neuroprotection by preserving BBB permeability and by reducing brain oedema probably by its anti-inflammatory and antioxidant properties in the TBI model.  相似文献   

8.
To determine if meconium fatty acid ethyl esters (FAEE) in rat pups is a good biomarker of prenatal exposure and effect to alcohol, three groups of pregnant rats were studied: one control (pair fed) and two treatment groups given 25% alcohol at 2.2 or 5.5 g−1 kg−1 d−1. The pups were delivered on day 20 and, for each dam, were separated into a male and female group. The body, brain, intestines, and placenta of the pups were obtained, weighed, and stored at −20°C. The pups’ intestines (as surrogate of meconium) from each group were pooled, and meconium was analyzed by gas chromatography/mass spectroscopy for FAEE. The meconium showed the following FAEE: ethyl palmitate, ethyl stearate, and ethyl linolenate and were only found in the alcohol-treated group and with high specificity but low sensitivity. Mean body weight of the pups was lower in the treatment groups compared to the control groups. Ethyl palmitate concentration correlated negatively to the pups’ mean body and brain weights. Therefore, ethyl palmitate, stearate, and linolenate, in meconium of rat pups prenatally exposed to alcohol, are useful biomarkers of prenatal alcohol exposure, with ethyl palmitate a good biomarker of adverse effect on the pups’ body and brain weight.  相似文献   

9.
Developmental processes of the fetal rat kidney from uninephrectomized mothers were studied. The uninephrectomy was performed on day 5 of gestation. Glomerular number and volume in the fetal kidneys on days 18, 20, and 22 of gestation were morphometrically determined. To investigate the anionic site formation in the glomerular basement membrane, distribution of cationized ferritin (CF) in the fetal glomerulus was examined electron microscopically after CF injection. Blood urea nitrogen (BUN) concentration in the pregnant rats was also determined on various days after uninephrectomy. On fetal days 20 and 22, the glomerular volume was significantly larger in the fetuses from uninephrectomized mothers than in those from sham-operated ones. On fetal day 20, the CF particles were clustered in the laminae rarae interna and externa of the glomerular basement membrane in the fetuses from uninephrectomized mothers, while the clusters were arrayed in three to four layers in the glomerular basement membrane in the fetuses from sham-operated ones. On fetal day 22, the CF particles noted in the lamina rara externa in the fetuses from uninephrectomized mothers were slightly larger in number than such particles in the age-matched control fetuses. The BUN concentration of the uninephrectomized pregnant rats was significantly higher than that of the sham-operated pregnant ones on each postoperative day. These results suggest that the development of the fetal renal glomerulus is accelerated by the elevated BUN level following maternal uninephrectomy when the fetal kidney is functional in effective filtration in the rat. J. Morphol. 238:337–342, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
11.
We investigated the protective effects of L-carnitine on hippocampus tissue damage in rats during experimental formaldehyde (FA) intoxication. Male Wistar albino rats were assigned into four groups: (1) control (C), (??2) formaldehyde (FA), (3) formaldehyde + 0.5 g/kg of L-carnitine (FA + 0.5 LC) (4) formaldehyde + 1 g/kg L-carnitine (FA + 1 LC). At the end of the 14 day trial period, animals were sacrificed by decapitation under anesthesia. The hippocampus tissue samples were extracted to measure MDA, GSH and SOD activity. Neuronal degeneration was assessed based on histopathological (hematoxylin and eosin) and immunohistochemical (anti-ubiquitin) examination. To detect oxidative stress, specimens were reacted with anti-Cu/Zn-SOD antibody. After administering L-carnitine with FA to the animals, the activities of SOD and GSH increased, but the levels of MDA decreased in hippocampus tissue. Neuronal degeneration was observed in the FA group. L-carnitine administration reduced neuronal degeneration and histological structure was similar to controls. After FA application, degenerated hippocampus neurons were stained with anti-ubiquitin and Cu/Zn-SOD antibodies; weakly positive staining was observed in L- carnitine-treated groups. L-carnitine may be useful for preventing oxidative damage in the hippocampus tissue due to formaldehyde intoxication.  相似文献   

12.
Summary Explants of fetal rat liver maintained in organ culture lost about 40% of their mass in 42 hr of incubation as a result of decrease in blood cells and hepatocytes. Proteins from the cytosol and particulate elements of the tissue were found in the culture medium. About 60% of this protein was degraded to peptides during culture. The transfer of malate and lactate dehydrogenases from tissue to medium paralleled that of proteins. Glutamate dehydrogenase was lost from the mitochondria and in part leaked through the cell membrane into the medium. Net loss of activity of the three enzymes occurred, probably as a consequence of proteolytic degradation. Of 12 enzymes in liver tissue, the specific activities of eight—soluble malate dehydrogenase, glutamate dehydrogenase, succinate dehydrogenase, phosphopyruvate carboxylase, hexosediphosphatase, glucose-6-phosphatase, tyrosine, aminotransferase, and alanine aminotransferase—were unchanged or increased. Glycogen synthetase, aspartate aminotransferase, pyruvate kinase, and lactate dehydrogenase decreased. Although changes in membrane permeability may have had some influence on the results reported, the predominant effect was due to loss of protein from tissue as a result of discharge of total contents of some of the cells into the medium. The residual explanted tissue retained its structural integrity. It is concluded that fetal rat liver in organ culture provides a suitable model system for controlled studies with this organ in vitro. This investigation was supported by grants from the National Institute of Child Health and Human Development (RO 1 HD09715), National Cancer Institute (CA 14194), and United States Public Health Service General Research Support Grant RR 5589.  相似文献   

13.
In the present study, we investigated the in vitro effect of hypoxanthine on the activities of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase, as well as on thiobarbituric‐acid‐reactive substances (TBA‐RS), in the renal cortex and medulla of rats. Results showed that hypoxanthine, at a concentration of 10.0 μM, enhanced the activities of CAT and SOD in the renal cortex of 15‐, 30‐ and 60‐day‐old rats, enhanced SOD activity in the renal medulla of 60‐day‐old rats and enhanced TBA‐RS levels in the renal medulla of 30‐day‐old rats, as compared with controls. Furthermore, we also verified the influence of allopurinol (an inhibitor of xanthine oxidase), as well as of the antioxidants, trolox and ascorbic acid on the effects elicited by hypoxanthine on the parameters tested. Allopurinol and/or administration of antioxidants prevented most alterations caused by hypoxanthine in the oxidative stress parameters evaluated. Data suggest that hypoxanthine alters antioxidant defences and induces lipid peroxidation in the kidney of rats; however, in the presence of allopurinol and antioxidants, some of these alterations in oxidative stress were prevented. Our findings lend support to a potential therapeutic strategy for this condition, which may include the use of appropriate antioxidants for ameliorating the damage caused by hypoxanthine. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Propionibacterium acnes is an opportunistic pathogen which has become notorious owing to its ability to form a recalcitrant biofilm and to develop drug resistance. The current study aimed to develop anti-biofilm treatments against clinical isolates of P. acnes under in vitro and in vivo conditions. A combination of ellagic acid and tetracycline (ETC; 250 μg ml?1 + 0.312 μg ml?1) was determined to effectively inhibit biofilm formation by P. acnes (80–91%) without affecting its growth, therefore potentially limiting the possibility of the bacterium attaining resistance. In addition, ETC reduced the production of extracellular polymeric substances (EPS) (20–26%), thereby making P. acnes more susceptible to the human immune system and antibiotics. The anti-biofilm potential of ETC was further substantiated under in vivo conditions using Caenorhabditis elegans. This study reports a novel anti-biofilm combination that could be developed as an ideal therapeutic agent with broad cosmeceutical and pharmaceutical applicability in the era of antibiotic resistance.  相似文献   

15.
目的:建立慢性酒精诱导的成年大鼠肝损伤动物模型,并进行茶多酚的干预,观察茶多酚的干预对慢性酒精诱导的肝损伤大鼠的防护作用及其可能的机制。方法:将36只SD大鼠适应性喂养一周后,随机分为对照组、酒精损伤组和茶多酚干预组(每组12只)。对照组大鼠用0.9%生理盐水按7 g/kg灌胃,酒精组用体积分数56%的红星牌白酒同剂量灌胃,茶多酚干预组在酒精灌胃同时给予0.25 g/kg剂量的茶多酚。每天定时灌胃一次,连续8周。8周后处死大鼠,取内脏脂肪和肝脏组织,以脂体比衡量内脏脂肪含量,以肝体比和油红O染色结果衡量肝脂质沉积,测定超氧化物歧化酶(SOD)活力、丙二醛(MDA)含量、总抗氧化能力(T-AOC)和谷胱甘肽过氧化物酶(GSH-Px)活力等氧化应激指标,测定肝脏组织中脂肪酸转位酶(FAT/CD36)蛋白水平。结果:与对照组相比,酒精损伤组大鼠内脏脂肪含量、SOD/MDA比值、T-AOC和GSH-Px活力显著下降((P<0.05或P<0.01),肝体比、FAT/CD36蛋白水平显著提高(P<0.01),肝细胞中脂滴增加;与酒精损伤组相比,茶多酚干预组大鼠内脏脂肪含量、SOD/MDA比值、T-AOC和GSH-Px活力显著增加((P<0.05或P<0.01),肝体比、FAT/CD36蛋白水平显著下降(P<0.01),肝细胞中脂滴减少。结论:茶多酚干预能改善慢性酒精中毒大鼠肝脏的脂质沉积和氧化应激状态,并伴有肝细胞膜上FAT/CD36表达的减少。  相似文献   

16.
Folic acid (FA), is a group B vitamin, has high reactive oxygen radicals quenching ability, resulting in protection against oxidative damage in aerobic cell. Acetaminophen (N-acetyl-p-aminophenol, APAP) is a nonsteroidal anti-inflammatory drug, and can promote oxidative damage in liver and kidney tissues. The aim of this study was to investigate whether folic acid has protective effects on oxidative liver and kidney injury caused by experimental APAP toxication. Forty female Sprague dawley rats were divided into 5 groups; control, APAP, FA, APAP+FA, and APAP+N-acetylcysteine (NAC) groups. APAP toxication was induced by oral gavage (3 g/kg bodyweight). FA (20 mg/kg bodyweight) and NAC (150 mg/kg bodyweight) were given by oral gavage to the specified groups. Oxidant and antioxidant parameter were determined in liver and kidney tissues. In addition, the liver and kidney tissues were histological evaluated. When compared with APAP group, superoxide dismutase (SOD) and catalase activities and glutathione levels were statistically higher, malondialdehyde (MDA) level and myeloperoxidase activity (except liver tissue) were statistically lower in both APAP+FA and APAP+NAC. Liver and kidney MDA level and kidney SOD activity were significantly lower in APAP+NAC group compared with APAP+FA group. Co-administration of NAC with APAP was found to provide protection, but hepatic cords were defective in some places and some glomerular tubules also had dilatation. Necrotic areas was reduced in the liver and the glomerular structure was in good condition in the APAP+FA group. As a result, FA might have a protective effect against APAP-induced hepato-nephrotoxicity and oxidative stress in rat.  相似文献   

17.
目的:观察脑缺血预处理(CIP)的持续时间、CIP与后续损伤性缺血之间的间隔时间对CIP抗全脑缺血所致海马锥体神经元迟发性死亡(DND)作用的影响。方法:采用四血管闭塞法(4VO),制作大鼠全脑缺血模型。脑组织切片硫堇染色法观察海马CA1区锥体神经元DND程度,确定组织学分级(HG)。结果:Sham组和3minCIP组海马未见DND。损伤性脑缺血组海马CA1区有明显的DND,其中6min、10min缺血组的HG为2~3级,15min缺血组的HG主要为3级。CIP+损伤性脑缺血组中,3min-3d-6min(3minCIP后间隔三天给予6min损伤性脑缺血,下同)和3min-3d-10min组DND不明显,提示CIP可有效地保护海马CAl区神经元,防止6min或10min损伤性脑缺血诱导的DND。在3min-1d-10min组和3min-3d-15min组中,CIP的保护效应较3min-3d-10min组明显减弱。定量分析CIP对海马神经元的保护效应发现,3min-3d-6min组的神经元保护数(PN)和保护指数(PI)与3min-3d-10min组相比无明显差别(P〉0.05);但3min-3d-10min组的神经元增长指数(GI)较3min一3d一6min组明显升高(P〈0.05)。结论:虽然3min-3d-6min组与3min-3d-10min组中CIP对神经元的保护作用相近,但3min-3d-10min组中,CIP的保护作用更容易被观察到,且CIP的保护潜能可得到最大程度的显现。应用3min-3d-10min组的时间参数建立全脑缺血耐受模型可以诱导出CIP最大的保护潜能。  相似文献   

18.
The effect of maternal nutrition level during the periconception period on the muscle development of fetus and maternal–fetal plasma hormone concentrations in sheep were examined. Estrus was synchronized in 55 Karayaka ewes and were either fed ad libitum (well-fed, WF, n=23) or 0.5×maintenance (under-fed, UF, n=32) 6 days before and 7 days after mating. Non-pregnant ewes (WF, n=13; UF, n=24) and ewes carrying twins (WF, n=1) and female (WF, n=1; UF, n=3) fetuses were removed from the experiment. The singleton male fetuses from well-fed (n=8) and under-fed (n=5) ewes were collected on day 90 of gestation and placental characteristics, fetal BWs and dimensions, fetal organs and muscles weights were recorded. Maternal (on day 7 after mating) and fetal (on day 90 of pregnancy) blood samples were collected to analyze plasma hormone concentrations. Placental characteristics, BW and dimensions, organs and muscles weights of fetuses were not affected by maternal feed intake during the periconception period. Maternal nutrition level did not affect fiber numbers and the muscle cross-sectional area of the fetal longissimus dorsi (LD), semitendinosus (ST) muscles, but the cross-sectional area of the secondary fibers in the fetal LD and ST muscles from the UF ewes were higher than those from the WF ewes (P<0.05). Also, the ratio of secondary to primary fibers in the ST muscle were tended to be lower in the fetuses from the UF ewes (P=0.07). Maternal nutrition level during the periconception period did not cause any significant changes in fetal plasma insulin and maternal and fetal plasma IGF-I, cortisol, progesterone, free T3 and T4 concentrations. However, maternal cortisol concentrations were lower while insulin concentrations were higher in the WF ewes than those in the UF ewes (P<0.05). These results indicate that the reduced maternal feed intake during the periconception period may alter muscle fiber diameter without affecting fiber types, fetal weights and organ developments and plasma hormone concentrations in the fetus.  相似文献   

19.
The effect of regucalcin (RC) on neutral proteolytic activity in the cytosol of rat kidney cortex was investigated. Proteolytic activity was significantly increased by the presence of RC (0.01 + 0.10 M) in the enzyme reaction mixture. This increase was completely abolished by the addition of anti-RC monoclonal antibody (150 ng/ml). When the renal cortex cytosol was incubated without RC addition, the degradation of globin of substrate was demonstrated by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. This degradation was clearly inhibited by the addition of anti-RC antibody (150 ng/ml), indicating that protein degradation results partly from the cytosolic endogenous RC. Meanwhile, proteolytic activity was significantly decreased in the renal cortex cytosol of rats with saline ingestion for 2, 7, and 14 days. The effect of RC (0.1 M) in increasing proteolytic activity was weakened in the kidney cortex cytosol of saline-ingested rats. The present study suggests that endogenous RC plays a role in the activation of proteases in the renal cortex cytosol, and that the RC effect is impaired in saline-ingested rats.  相似文献   

20.
Adriamycin, which is widely used in the treatment of various neoplastic conditions, exerts toxic effects in several organs. Adriamycin nephrotoxicity has been recently documented in a variety of animal species. The present study was designed to investigate the effect of lipoic acid on the nephrotoxic potential of adriamycin. The study was carried out with adult male albino rats of Wistar strain. Test animals were divided into four groups of six rats each as follows: Group I (control) received only normal saline throughout the course of the experiment. Group II (ADR) received intravenous injections of adriamycin through the tail vein (1 mg kg–1 body wt day–1) once a week for a period of 12 weeks. Group III (LA) received lipoic acid (35 mg kg–1 body wt day–1) intraperitoneally once a week for a period of 12 weeks. Group IV (ADR + LA) received a single injection of lipoic acid intraperitoneally 24 h prior to the administration of adriamycin through the tail vein once a week for a period of 12 weeks. Intravenous injections of adriamycin resulted in decreased activities of the glycolytic enzymes; hexokinase, phosphoglucoisomerase, aldolase and lactate dehydrogenase in the rat renal tissue. The gluconeogenic enzymes; glucose-6-phosphatase and fructose-1,6-diphosphatase, showed a decline in their activities on adriamycin administration. The transmembrane enzymes namely the Na+,K+-ATPase, Ca2+-ATPase, Mg2+-ATPase and the brush-border enzyme alkaline phosphatase also showed a decrease in their activities. This decrease in the activities of ATPases and alkaline phosphatase suggests basolateral and brush-border membrane damage. Decreased activities of the TCA cycle enzymes isocitrate dehydrogenase, succinate dehydrogenase and malate dehydrogenase, suggest a loss in mitochondrial function and integrity. Nephrotoxicity was evident from the increased excretions of N-acetyl--D-glucosaminidase and -glutamyl transferase in the urine of adriamycin administered rats. These biochemical disturbances were effectively counteracted on pretreatment with lipoic acid, which brought about an increase in the activities of glycolytic enzymes, ATPases and the TCA cycle enzymes. On the other hand, the gluconeogenic enzymes showed a further decrease in their activities on lipoic acid pretreatment. LA pretreatment also restored the activities of the urinary enzymes to normal. These observations shed light on the nephroprotective action of lipoic acid rendered against experimental aminoglycoside toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号