首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Deoxyribonucleoside kinases (dNKs) catalyze the transfer of a phosphoryl group from ATP to a deoxyribonucleoside (dN), a key step in DNA precursor synthesis. Recently structural information concerning dNKs has been obtained, but no structure of a bacterial dCK/dGK enzyme is known. Here we report the structure of such an enzyme, represented by deoxyadenosine kinase from Mycoplasma mycoides subsp. mycoides small colony type (Mm-dAK). Superposition of Mm-dAK with its human counterpart's deoxyguanosine kinase (dGK) and deoxycytidine kinase (dCK) reveals that the overall structures are very similar with a few amino acid alterations in the proximity of the active site. To investigate the substrate specificity, Mm-dAK has been crystallized in complex with dATP and dCTP, as well as the products dCMP and dCDP. Both dATP and dCTP bind to the enzyme in a feedback-inhibitory manner with the dN part in the deoxyribonucleoside binding site and the triphosphates in the P-loop. Substrate specificity studies with clinically important nucleoside analogs as well as several phosphate donors were performed. Thus, in this study we combine structural and kinetic data to gain a better understanding of the substrate specificity of the dCK/dGK family of enzymes. The structure of Mm-dAK provides a starting point for making new anti bacterial agents against pathogenic bacteria.  相似文献   

2.
Abstract

Deoxynucleoside kinases are key enzyme in deoxyribonucleoside salvage, phosphorylating many important anti cancer and anti viral drugs. There are four kinases in animal cells; cytosolic thymidine kinase (TK1) and deoxycytidine kinase (dCK) and the mitochondrial thymidine kinase (TK2) and deoxyguanosine kinase (dGK). The biochemical properties of the purified enzymes and the sequences of their cDNA;s have been determined. In case of TK2 and dGK this was done very recently and they show high homology to dCK and the herpes virus kinases but not to TK1. The evolutionary and functional consequences of this fact will be discussed.  相似文献   

3.
The antiviral activity of L-nucleoside analogs depends in part on the enantioselectivity of nucleoside kinases which catalyse their monophosphorylation. The substrate properties of human recombinant deoxycytidine kinase (dCK) and human recombinant deoxyguanosine kinase (dGK) with respect to L-adenosine and L-guanosine analogs, in the presence of saturating amounts of ATP and relatively high concentrations of substrates, demonstrated a marked lack of enantioselectivity of both these enzymes. Human dCK catalysed the phosphorylation of D- and L-enantiomers of beta-dA, beta-araA, and beta-dG with enantioselectivities favoring the unnatural enantiomer for the adenosine derivatives and the natural enantiomer for 2'-deoxyguanosine. No other tested L-adenosine or L-guanosine analog was a substrate of dCK. Similarly, D- and L-enantiomers of beta-dA, beta-araA, and beta-dG were substrates of human dGK but with different enantioselectivities compared to dCK, especially concerning beta-dA. The present results indicate that human dCK and dGK have similar properties including substrate properties, relaxed enantioselectivities, and possibly catalytic cycles.  相似文献   

4.
Free radical biology - terminology and critical thinking   总被引:1,自引:0,他引:1  
Azzi A  Davies KJ  Kelly F 《FEBS letters》2004,560(1-3):3-6
Deoxyribonucleoside kinases, which catalyse the phosphorylation of deoxyribonucleosides, are present in several copies in most multicellular organisms and therefore represent an excellent model to study gene duplication and specialisation of the duplicated copies through partitioning of substrate specificity. Recent studies suggest that in the animal lineage one of the progenitor kinases, the so-called dCK/dGK/TK2-like gene, was duplicated prior to separation of the insect and mammalian lineages. Thereafter, insects lost all but one kinase, dNK (EC 2.7.1.145), which subsequently, through remodelling of a limited number of amino acid residues, gained a broad substrate specificity.  相似文献   

5.
Deoxyribonucleoside kinases (dNKs) are essential in the mammalian cell but their 'importance' in bacteria, especially aquatic ones, is less clear. We studied two aquatic bacteria, Gram-negative Flavobacterium psychrophilum JIP02/86 and Polaribacter sp. MED152, for their ability to salvage deoxyribonucleosides (dNs). Both had a Gram-positive-type thymidine kinase (TK1), which could phosphorylate thymidine, and one non-TK1 dNK, which could efficiently phosphorylate deoxyadenosine and slightly also deoxycytosine. Surprisingly, the four tested dNKs could not phosphorylate deoxyguanosine, and apparently, these two bacteria are missing this activity. When tens of available aquatic bacteria genomes were examined for the presence of dNKs, a majority had at least a TK1-like gene, but several lacked any dNKs. Apparently, among aquatic bacteria, the role of the dN salvage varies.  相似文献   

6.
Deoxynucleoside kinases catalyze the 5'-phosphorylation of 2'-deoxyribonucleosides with nucleoside triphosphates as phosphate donors. One of the cellular kinases, deoxycytidine kinase (dCK), has been shown to phosphorylate several L-nucleosides that are efficient antiviral agents. In this study we investigated the potentials of stereoisomers of the natural deoxyribonucleoside to serve as substrates for the recombinant cellular deoxynucleoside kinases. The cytosolic thymidine kinase exhibited a strict selectivity and phosphorylated only beta-D-Thd, while the mitochondrial thymidine kinase (TK2) and deoxyguanosine kinase (dGK) as well as dCK all had broad substrate specificities. TK2 phosphorylated Thd and dCyd stereoisomers in the order: beta-D- > or = beta-L- > alpha-D- > or = alpha-L-isomer. dCK activated both enantiomers of beta-dCyd, beta-dGuo, and beta-dAdo with similar efficiencies, and alpha-D-dCyd also served as a substrate. dGK phosphorylated the beta-dGuo enantiomers with no preference for the ribose configuration; alpha-L-dGuo was also phosphorylated, and beta-L-dAdo and beta-L-dCyd were substrates but showed reduced efficiencies. The anomers of the 2',3'-dideoxy-D-nucleosides (ddNs) were tested, and TK2 and dCK retained their low selectivities. Unexpectedly, alpha-dideoxycytidine (ddC) was a 3-fold better substrate for dCK than beta-ddC. Similarly, alpha-dideoxythymidine (ddT) was a better substrate for TK2 than beta-ddT. dGK did not accept any D-ddNs. Thus, TK2, dCK, and dGK, similar to herpes simplex virus type 1 thymidine kinase (HSV-1 TK), showed relaxed stereoselectivities, and these results substantiate the functional similarities within this enzyme family. Docking simulations with the Thd isomers and the active site of HSV-1 TK showed that the viral enzyme may in some respects serve as a model for studying the substrate specificities of the cellular enzymes.  相似文献   

7.
Here bicyclo[3.1.0]hexane locked deoxycytidine (S-MCdC, N-MCdC), and deoxyadenosine analogs (S-MCdA and N-MCdA) were examined as substrates for purified preparations of human deoxynucleoside kinases: dCK, dGK, TK2, TK1, the ribonucleoside kinase UCK2, two NMP kinases (CMPK1, TMPK) and a NDP kinase.

dCK can be important for the first step of phosphorylation of S-MCdC in cells, but S-MCdCMP was not a substrate for CMPK1, TMPK, or NDPK.

dCK and dGK had a preference for the S-MCdA whereas N-MCdA was not a substrate for dCK, TK1, UCK2, TK2, dGK nucleoside kinases. The cell growth experiments suggested that N-MCdC and S-MCdA could be activated in cells by cellular kinases so that a triphosphate metabolite was formed.

List of abbreviations: ddC, 2′, 3′-didioxycytosine, Zalcitabine; 3TC, β-L-(-)-2′,3′-dideoxy-3′-thiacytidine, Lamivudine; CdA, 2-cloro-2′-deoxyadenosine, Cladribine; AraA, 9-β-D-arabinofuranosyladenine; hCNT 1–3, human Concentrative Nucleoside Transporter type 1, 2 and 3; hENT 1–4, human Equilibrative Nucleoside Transporter type 1, 2, 3, and 4.  相似文献   

8.
Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a heterogeneous group of mitochondrial disorders, manifested by a decreased mtDNA copy number and respiratory chain dysfunction. Primary MDS are inherited autosomally and may affect a single organ or multiple tissues. Mutated mitochondrial deoxyribonucleoside kinases; deoxyguanosine kinase (dGK) and thymidine kinase 2 (TK2), were associated with the hepatocerebral and myopathic forms of MDS respectively. dGK and TK2 are key enzymes in the mitochondrial nucleotide salvage pathway, providing the mitochondria with deoxyribonucleotides (dNP) essential for mtDNA synthesis. Although the mitochondrial dNP pool is physically separated from the cytosolic one, dNP's may still be imported through specific transport. Non-replicating tissues, where cytosolic dNP supply is down regulated, are thus particularly vulnerable to dGK and TK2 deficiency. The overlapping substrate specificity of deoxycytidine kinase (dCK) may explain the relative sparing of muscle in dGK deficiency, while low basal TK2 activity render this tissue susceptible to TK2 deficiency. The precise pathophysiological mechanisms of mtDNA depletion due to dGK and TK2 deficiencies remain to be determined, though recent findings confirm that it is attributed to imbalanced dNTP pools.  相似文献   

9.
Inorganic tripolyphosphate (PPP(i)) and pyrophosphate (PP(i)) were examined as potential phosphate donors for human deoxynucleoside kinase (dCK), deoxyguanosine kinase (dGK), cytosolic thymidine kinase (TK1), mitochondrial TK2, and the deoxynucleoside kinase (dNK) from Drosophila melanogaster. PPP(i) proved to be a good phosphate donor for dGK, as well as for dCK with dCyd, but not dAdo, as acceptor substrate, illustrating also the dependence of donor properties on acceptor. Products of phosphorylation were shown to be 5(')-phosphates. In striking contrast to ATP, the phosphorylation reaction follows strict Michaelis-Menten kinetics, with K(m) values of 74 and 92 microM for dCK and dGK, respectively, and V(max) values 40-50% that for ATP. With the other three enzymes, as well as for dCK with dAdo as acceptor, no, or only low levels (相似文献   

10.
Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a heterogeneous group of mitochondrial disorders, manifested by a decreased mtDNA copy number and respiratory chain dysfunction. Primary MDS are inherited autosomally and may affect a single organ or multiple tissues. Mutated mitochondrial deoxyribonucleoside kinases; deoxyguanosine kinase (dGK) and thymidine kinase 2 (TK2), were associated with the hepatocerebral and myopathic forms of MDS respectively. dGK and TK2 are key enzymes in the mitochondrial nucleotide salvage pathway, providing the mitochondria with deoxyribonucleotides (dNP) essential for mtDNA synthesis. Although the mitochondrial dNP pool is physically separated from the cytosolic one, dNP's may still be imported through specific transport. Non ‐replicating tissues, where cytosolic dNP supply is down regulated, are thus particularly vulnerable to dGK and TK2 deficiency. The overlapping substrate specificity of deoxycytidine kinase (dCK) may explain the relative sparing of muscle in dGK deficiency, while low basal TK2 activity render this tissue susceptible toTK2 deficiency. The precise patho‐physiological mechanisms of mtDNA depletion due to dGK and TK2 deficiencies remain to be determined, though recent findings confirm that it is attributed to imbalanced dNTP pools.  相似文献   

11.
Abstract A cytosol deoxyguanosine kinase (dGK) is induced in either growing or human cytomegalovirus (HCMV, AD169)-infected human fibroblasts (HEF). Data obtained from polyacrylamide gel electrophoresis, heat inactivation and phosphorylation kinetic experiments proved that these dGKs are identical, but completely differ from HCMV-induced thymidine kinase (TK) or deoxycytidine kinase (dCK). In contrast to TK or dCK, only dGK interacts with Acyclovir ( K i = 590 μ M). It is suggested that dGK is an important enzyme determining the antiviral activity of Acyclovir.  相似文献   

12.
Abstract

Cytosolic thymidine kinase (TK1) and deoxycytidine kinase (dCK) and the mitochondrial thymidine kinase (TK2) and deoxyguanosine kinase (dGK), phosphorylate deoxynucleosides and their analogs. Recombinant human TK1 only phosphorylated β-D Thd, but recombinant TK2, dCK and dGK all phosphorylated equally well β-D and β-L as well as to some extent α-D and α-L deoxynucleosides.  相似文献   

13.
Deoxyribonucleoside kinases (dNKs) carry out the rate-determining step in the nucleoside salvage pathway within all domains of life where the pathway is present, and, hence, are an indication on whether or not a species/genus retains the ability to salvage deoxyribonucleosides. Here, a phylogenetic tree is constructed for the thymidine kinase 2-like dNK gene family in metazoa. Each enzyme class (deoxycytidine, deoxyguanosine, and deoxythymidine kinases, as well as the multisubstrate dNKs) falls into a monophyletic clade. However, in vertebrates, dCK contains an apparent duplication with one paralog lost in mammals, and a number of crustacean genomes (like Caligus rogercresseyi and Lepeophtheirus salmonis) unexpectedly contain not only the multisubstrate dNKs, related to Drosophila multisubstrate dNK, but also a TK2-like kinase. Additionally, crustaceans (Daphnia, Caligus, and Lepeophtheirus) and some insects (Tribolium, Danaus, Pediculus, and Acyrthosiphon) contain several multisubstrate dNK-like enzymes which group paraphyletically within the arthropod clade. This might suggest that the multisubstrate dNKs underwent multiple rounds of duplications with differential retention of duplicate copies between insect families and more complete retention within some crustaceans and insects. Genomes of several basal animalia contain more than one dNK-like sequence, some of which group outside the remaining eukaryotes (both plants and animals) and/or with bacterial dNKs. Within the vertebrates, the mammalian genomes do not contain the second dCK, while birds, fish, and amphibians do retain it. Phasianidae (chicken and turkey) have lost dGK, while it has been retained in other bird lineages, like zebra finch. Reconstruction of the ancestral sequence between the multisubstrate arthropod dNKs and the TK2 clade of vertebrates followed by homology modeling and discrete molecular dynamics calculations on this sequence were performed to examine the evolutionary path which led to the two different enzyme classes. The structural models showed that the carboxyl terminus of the ancestral sequence is more helical than dNK, in common with TK2, although any implications of this for enzyme specificity will require biochemical validation. Finally, rate-shift and conservation-shift analysis between clades with different specificities uncovered candidate residues outside the active site pocket which may have contributed to differentiation in substrate specificity between enzyme clades.  相似文献   

14.
The thymidine mimics isocarbostyril nucleosides and difluorophenyl nucleosides were tested as deoxynucleoside kinase substrates using recombinant human cytosolic thymidine kinase (TK1) and deoxycytidine kinase (dCK), and mitochondrial thymidine kinase (TK2) and deoxyguanosine kinase (dGK). The isocarbostyril nucleoside compound 1‐(2‐deoxy‐β‐D‐ribofuranosyl)‐isocarbostyril (EN1) was a poor substrate with all the enzymes. The phosphorylation rates of EN1 with TK1 and TK2 were < 1% relative to Thd, where as the phosphorylation rates for EN1 were 1.4% and 1.1% with dCK and dGK relative to dCyd and dGuo, respectively. The analogue 1‐(2‐deoxy‐β‐D‐ribofuranosyl)‐7‐iodoisocarbostyril (EN2) showed poor relative‐phosphorylation efficiencies (k cat /K m ) with both TK1 and dGK, but not with TK2. The k cat /K m value for EN2 with TK2 was 12.6% relative to that for Thd. Of the difluorophenyl nucleosides, 5‐(1′‐(2′‐deoxy‐β‐D‐ribofuranosyl))‐2,4‐difluorotoluene (JW1) and 1‐(1′‐(2′‐deoxy‐β‐D‐ribofuranosyl))‐2,4‐difluoro‐5‐iodobenzene (JW2) were substrates for TK1 with phosphorylation efficiencies of about 5% relative to that for Thd. Both analogues were considerably more efficient substrates for TK2, with k cat /K m values of 45% relative to that for Thd. 2,5‐Difluoro‐4‐[1‐(2‐deoxy‐β‐L‐ribofuranosyl)]‐aniline (JW5), a L‐nucleoside mimic, was phosphorylated up to 15% as efficiently as deoxycytidine by dCK. These data provide a possible explanation for the previously reported lack of cytotoxicity of the isocarbostyril‐ and difluorophenyl nucleosides, but potential mitochondrial effects of EN2, JW1 and JW2 should be further investigated.  相似文献   

15.
Deoxynucleoside analogues (dNAs) are cytotoxic towards both replicating and indolent malignancies. The impact of fluctuations in the metabolism of dNAs in relation to cell cycle could have strong implications regarding the activity of dNAs. Deoxycytidine kinase (dCK) and deoxyguanosine kinase (dGK) are important enzymes for phosphorylation/activation of dNAs. These drugs can be dephosphorylated/deactivated by 5'-nucleotidases (5'-NTs) and elevated activities of 5'-NTs and decreased dCK and/or dGK activities represent resistance mechanisms towards dNAs. The activities of dCK, dGK, and three 5'-NTs were investigated in four human leukemic cell lines in relationship to cell cycle progression and cytotoxicity of dNAs. Synchronization of cell cultures to arrest in G0/G1 by serum-deprivation was performed followed by serum-supplementation for cell cycle progression. The activities of dCK and dGK increased up to 3-fold in CEM, HL60, and MOLT-4 cells as they started to proliferate, while the activity of cytosolic nucleotidase I was reduced in proliferating cells. CEM, HL60, and MOLT-4 cells were also more sensitive to cladribine, cytarabine, 9-beta-D-arabinofuranosylguanine and clofarabine than K562 cells which demonstrated lower levels and less alteration of these enzymes and were least susceptible to the cytotoxic effects of most dNAs. The results suggest that, in the cell lines studied, the proliferation process is associated with a general shift in the direction of activation of dNAs by inducing activities of dCK/dGK and reducing the activity of cN-I which is favourable for the cytotoxic effects of cladribine, cytarabine and, 9-beta-D-arabinofuranosylguanine. These results emphasize the importance of cellular proliferation and dNA metabolism by both phosphorylation and dephosphorylation for susceptibility to dNAs. It underscores the need to understand the mechanisms of action and resistance to dNAs in order to increase efficacy of dNAs treatment by new rational.  相似文献   

16.
Resistance toward nucleoside analogues is often due to decreased activities of the activating enzymes deoxycytidine kinase (dCK) and/or deoxyguanosine kinase (dGK). With small interfering RNA (siRNA), dCK and dGK were downregulated by approximately 70% in CEM cells and tested against six nucleoside analogues using the methyl thiazol tetrazolium assay. SiRNA-transfected cells reduced in dCK activity were 3- to 6-fold less sensitive to CdA, AraC, and CAFdA. The sensitivity to AraG and FaraA was unchanged, while the sensitivity toward gemcitabine was significantly increased. dGK depletion in cells resulted in lower sensitivity to FaraA, dFdC, CAFdA, and AraG, but slightly higher sensitivity to CdA and AraC.  相似文献   

17.
Resistance toward nucleoside analogues is often due to decreased activities of the activating enzymes deoxycytidine kinase (dCK) and/or deoxyguanosine kinase (dGK). With small interfering RNA (siRNA), dCK and dGK were downregulated by approximately 70% in CEM cells and tested against six nucleoside analogues using the methyl thiazol tetrazolium assay. SiRNA-transfected cells reduced in dCK activity were 3- to 6-fold less sensitive to CdA, AraC, and CAFdA. The sensitivity to AraG and FaraA was unchanged, while the sensitivity toward gemcitabine was significantly increased. dGK depletion in cells resulted in lower sensitivity to FaraA, dFdC, CAFdA, and AraG, but slightly higher sensitivity to CdA and AraC.  相似文献   

18.
In eukaryotic cells deoxyribonucleoside kinases belonging to three phylogenetic sub-families have been found: (i) thymidine kinase 1 (TK1)-like enzymes, which are strictly pyrimidine deoxyribonucleoside-specific kinases; (ii) TK2-like enzymes, which include pyrimidine deoxyribonucleoside kinases and a single multisubstrate kinase from Drosophila melanogaster (Dm-dNK); and (iii) deoxycytidine/deoxyguanosine kinase (dCK/dGK)-like enzymes, which are deoxycytidine and/or purine deoxyribonucleoside-specific kinases. We cloned and characterized two new deoxyribonucleoside kinases belonging to the TK2-like group from the insect Bombyx mori and the amphibian Xenopus laevis. The deoxyribonucleoside kinase from B. mori (Bm-dNK) turned out to be a multisubstrate kinase like Dm-dNK. But uniquely for a deoxyribonucleoside kinase, Bm-dNK displayed positive cooperativity with all four natural deoxyribonucleoside substrates. The deoxyribonucleoside kinase from X. laevis (Xen-PyK) resembled closely the human and mouse TK2 enzymes displaying their characteristic Michaelis-Menten kinetic with deoxycytidine and negative cooperativity with its second natural substrate thymidine. Bm-dNK, Dm-dNK and Xen-PyK were shown to be homodimers. Significant differences in the feedback inhibition by deoxyribonucleoside triphosphates between these three enzymes were found. The insect multisubstrate deoxyribonucleoside kinases Bm-dNK and Dm-dNK were only inhibited by thymidine triphosphate, while Xen-PyK was inhibited by thymidine and deoxycytidine triphosphate in a complex pattern depending on the deoxyribonucleoside substrate. The broad substrate specificity and different feedback regulation of the multisubstrate insect deoxyribonucleoside kinases may indicate that these enzymes have a different functional role than the other members of the TK2-like group.  相似文献   

19.
9-beta-D-arabinofuranosylguanine (Ara-G) is an important and relatively new guanosiue analog with activity in patients with T-cell malignancies. The biochemical and molecular events leading to resistance to Ara-G are not fully understood. Therefore we generated two Ara-G-resistant human MOLT-4 leukemic cell lines with different levels of resistance. The mitochondrial enzyme deoxyguanosine kinase (dGK) and the nuclear/cytosol enzyme deoxycytidine kinase (dCK) are key enzymes in the activation of Ara-G. Decreased levels of dGK protein and mRNA were found in both resistant cell sublines. The activity of dCK was decreased in the subline with higher resistance to Ara-G and these cells were highly cross-resistant to other nucleosides activated by dCK. Increased activity of the mitochondrial enzyme thymidine kinase 2 was observed in both resistant sublines and this could be related to the dGK deficiency. In search for other resistance mechanisms it was found that the resistant cells overexpress the mdr1 gene, while no changes were detected in the levels of multidrug resistance-associated protein 1 through 6, lung resistance-associated protein or topoisomerase IIalpha or IIbeta. Taken together, our findings demonstrate that multiple mechanisms are involved in the acquired resistance to Ara-G. However, low expression of dGK is the most apparent alteration in both resistant cell lines. Partial deficiency of dCK was found in the subline cells with higher resistance to Ara-G. Furthermore, Ara-G may select for high expression of the multidrug resistance (mdr1) which could be a specific resistance mechanism but more likely part of an overall cellular stress response.  相似文献   

20.
ABSTRACT

Carefully balanced deoxynucleoside triphosphate (dNTP) pools are essential for both nuclear and mitochondrial genome replication and repair. Two synthetic pathways operate in cells to produce dNTPs, e.g., the de novo and the salvage pathways. The key regulatory enzymes for de novo synthesis are ribonucleotide reductase (RNR) and thymidylate synthase (TS), and this process is considered to be cytosolic. The salvage pathway operates both in the cytosol (TK1 and dCK) and the mitochondria (TK2 and dGK). Mitochondrial dNTP pools are separated from the cytosolic ones owing to the double membrane structure of the mitochondria, and are formed by the salvage enzymes TK2 and dGK together with NMPKs and NDPK in postmitotic tissues, while in proliferating cells the mitochondrial dNTPs are mainly imported from the cytosol produced by the cytosolic pathways. Imbalanced mitochondrial dNTP pools lead to mtDNA depletion and/or deletions resulting in serious mitochondrial diseases. The mtDNA depletion syndrome is caused by deficiencies not only in enzymes in dNTP synthesis (TK2, dGK, p53R2, and TP) and mtDNA replication (mtDNA polymerase and twinkle helicase), but also in enzymes in other metabolic pathways such as SUCLA2 and SUCLG1, ABAT and MPV17. Basic questions are why defects in these enzymes affect dNTP synthesis and how important is mitochondrial nucleotide synthesis in the whole cell/organism perspective? This review will focus on recent studies on purine and pyrimidine metabolism, which have revealed several important links that connect mitochondrial nucleotide metabolism with amino acids, glucose, and fatty acid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号