首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the distribution of heavy metals in the suspended particulate matter and the sediments of Kavala Gulf, located in Northern Greece. Particulate trace metals were determined in accordance to water column physicochemical parameters. Metals in sediments were related to the textural characteristics, the organic matter, and carbonate contents of surficial sediments. Results illustrated that the diverse human coastal activities influence the distribution of particulate and sediment metal concentrations, since lower trace metal levels were detected along the western (tourism) and eastern (aquaculture) coast, while increased values were observed at the central (urban and industrial). Overall, particulate metals show moderately low levels compared to other similar sites, with the exception of Ni and Cd depicting local peaks along the industrial coastal zone. Significantly increased levels for particulate lead (123.1 μg/g) and chromium (113.9 μg/g) were detected at the sites near the industrial zone. Direct effluents from a fertilizer plant appeared responsible for the increased Pb, Cr, and Cd levels, while the increased values in Zn, Cu, and Hg appear related to phosphogypsum leaching. Sediment contamination assessment indicated that the Kavala Gulf is characterized by clean to marginally polluted sediments, with moderately severe pollution levels along the urban coastline.  相似文献   

2.
Heavy metals (Cd, Ni, Cu, Pb, and Zn) and total sulfur (TS) in both surficial sediments and adjacent floodplain topsoils of the Lean River catchment are investigated to comprehend the effects of flooding on heavy metals in soils, the evolution of the quality of sediments, and transfer of sediment metals. The results show that concentrations of metals except for Ni in soils are significantly correlated with those in sediments. At most upstream or downstream locations, sediment metal concentrations are found comparable to those in soils (sed/soil≈1). For Cu at locations close to the Dexing Copper Mine (DCM), flooding brought Cu-poor clays into the floodplain soil system and this leads to sed/soil<1, while at locations adjacent to the Yinshan Lead-zinc Mine (YLM), suspended solids containing high concentrations of iron and magnesium oxide absorb large quantities of dissolved Cd, Pb, and Zn and deposit on the floodplain during flooding (sed/soil>1). In spite of an elevated Cu production of the DCM, a significant decrease in sediment Cu concentrations is found as compared to those 10 years ago. The decrease may be due to the elevated Cu ore utilizing efficiency and the use of a new modern tailing pool. At the location closest to the Yinshan Lead-zinc Mine (YLM), Pb and Zn concentrations increased in recent sediments. In the Lean River, metal contamination in sediments cannot reach the location 60 km downstream of their sources in 2005.  相似文献   

3.
Soil heavy metal pollution has become a worldwide environmental issue that has attracted considerable public attention, largely from the increasing concern for the security of agricultural products. Heavy metals refer to some metals and metalloids possessing biological toxicity, such as cadmium, mercury, arsenic, lead, and chromium. These elements enter the soil agro-ecosystem through natural processes derived from parent materials, and through anthropogenic activities. Heavy metal pollution poses a great threat to the health and well-being of organisms and human beings due to potential accumulation risk through the food chain. Remediation using chemical, physical, and biological methods has been adopted to solve the problem. Phytoremediation has proven to be a promising alternative to conventional approaches as it is cost effective, environmentally friendly, and aesthetically pleasing. To date, based on the natural ability of extraction, approximately 500 taxa have been identified as hyperaccumulators of one or more metals. In addition, further research integrating biotechnological approaches with comprehensive multidisciplinary research is needed to improve plant tolerance and reduce the accumulation of toxic metals in soils. This review discusses harmful effects, sources of heavy metals, and the remediation technologies for soil contaminated by heavy metals.  相似文献   

4.
The concentrations of selected heavy metals in sediments and waters in Baychebagh copper mine were determined using ICP-OES. Except for Co, the average concentrations of Cd, Cu, Pb, and Zn in sediments from the Ghalechay River in the district exceed the world-average shale and continental upper crust value. Enrichment factors for Pb, Cu, and Cd were significantly enriched in sediments, indicating environmental contamination. Geoaccumulation index calculated for different sampling stations indicates that the sediments are unpolluted with respect to Co and Zn while unpolluted to moderately polluted with Cu and highly polluted with Pb and Cd. The Sediment Quality Guidelines (SQGs) suggest that Cd and Pb may pose the highest risk for the environment. Sequential extraction analyses of sediments revealed that Cu, Co, Pb, and Zn bound to extractable, carbonate, reducible and oxidizable fractions are lower than residual fraction. About 10% of the total Pb was associated with the exchangeable fraction, indicating remobilization, while Cd (89%), Pb (73%) Co (58%), Cu (76%), and Zn (68%) closely associated with the residual and oxidizable fractions, resulting in their environmental immobility. The residual forms are not expected to be released under normal conditions in the river and could be considered an inert phase.  相似文献   

5.
Soils contaminated simultaneously with polycyclic aromatic hydrocarbons (PAHs) and heavy metals pose major threat to human health and environment by getting released from soil into water environment. The purpose of this study was to evaluate simultaneous desorption and desorption kinetics of PAHs (phenanthrene and anthracene) and heavy metals (lead, nickel, and zinc) from artificially contaminated kaolinite soils with different organic matter content. Batch desorption tests were conducted using single and combined enhancing agents containing Triton X-100 and Tween 80 as non-ionic surfactants, Ethylenediaminetetraacetic acid (EDTA) as a chelating agent, and citric acid as an organic acid. The solution with the highest removal efficiency was the combined solution of Triton X-100 (10% w/w) + EDTA (0.01 M). Removal levels around 92, 46, 92, 95, and 96% were obtained for phenanthrene, anthracene, lead, nickel, and zinc, respectively, by using this combination. Batch desorption kinetics experiments were performed using the mentioned combination. During the first 24 h, desorption kinetics were rapid, followed by a plateau until the end. The data obtained from desorption kinetics experiments were fitted with four kinetics models: pseudo-second-order equation, empirical power function, elovich, and parabolic diffusion. The correlation coefficient of the pseudo-second-order equation was higher than that of other functions. Moreover, batch experiments have showed inverse correlations between removal efficiency and organic matter content of soil.  相似文献   

6.
In this study, concentrations of heavy metals (Fe, Mn, Ni, Co, Zn, Cu, and Pb) were measured in water bodies including streams, bottom sediments and various wetland plants of K?z?l?rmak Delta. K?z?l?rmak Delta is one of the largest and the most important natural wetlands in Turkey and has been protected by Ramsar convention since 1993. The heavy metal concentrations in water were found lower than that of national standards for protected lakes and reserves. In bottom sediments and wetland plants, however, the accumulated amounts of different heavy metals varied in the following order: Fe>Mn>Zn>Ni>Co>Cu>Pb, and Fe>Mn>Zn>Ni>Co respectively. Heavy metal uptake of Hydrocharis morsus-ranae and Myriophyllum verticillatum plants among others were found far above the toxic levels and they might be used as bio-indicators and heavy metal accumulators in polluted natural areas.  相似文献   

7.
The surface sediment of a downstream river (Paira) connected to the marine ecosystems of the Bay of Bengal was assessed by sequential extraction technique. The objectives of this study were to evaluate the mobility and dynamics of heavy metals and their probable ecological risks. The results revealed high environmental risk of Cd due to higher availability in the exchangeable fraction (21%) and a considerable portion in the carbonate bound fraction due to the special affinity towards carbonate and co-precipitation with its minerals. Toxic metals like Cr, Ni, and Cd are of concern, and can occasionally be associated with adverse biological effects. The risk assessment code (RAC) suggests that the highest mobility of Cd poses a higher environmental risk and threat to the aquatic biota, as well.  相似文献   

8.
Monthly (or bi-weekly) water samples were collected from the Yukon River, one of the largest rivers in North America, at a station near the US Geological Survey Stevens Village hydrological station, Alaska from May to September 2002, to examine the quantity and quality of dissolved organic matter (DOM) and its seasonal variations. DOM was further size fractionated into high molecular weight (HMW or colloidal, 1 kDa–0.45 μm) and low molecular weight (LMW, <1 kDa) fractions. Dissolved organic carbon (DOC), colored dissolved organic matter (C-DOM) and total dissolved carbohydrate (TCHO) species were measured in the size fractionated DOM samples. Concentrations of DOC were as high as 2830 μmol-C l−1 during the spring breakup in May and decreased significantly to 508–558 μmol-C l−1 during open-water season (June–September). Within the DOC pool, up to 85% was in the colloidal fraction (1 kDa–0.45 μm) in early May. As DOC concentration decreased, this colloidal portion remained high (70–85% of the bulk DOC) throughout the sampling season. Concentrations of TCHO, including monosaccharides (MCHO) and polysaccharides (PCHO), varied from 722 μmol-C l−1 in May to 129 μmol-C l−1 in September, which comprised a fairly constant portion of bulk DOC (24±2%). Within the TCHO pool, the MCHO/TCHO ratio consistently increased from May to September. The C-DOM/DOM ratio and the size fractionated DOM increased from May to September, indicating that DOM draining into the Yukon River contained increased amounts of humified materials, likely related to a greater soil leaching efficiency in summer. The average composition of DOM was 76% pedogenic humic matter and 24% aquagenic CHO. Characteristics of soil-derived humic substances and low chlorophyll-a concentrations support a dominance of terrestrial DOM in Yukon River waters.  相似文献   

9.
Dredged sediments from the Leie catchment (Belgium) that were deposited on land between 70 and 10 years ago were characterized according to their physico-chemical properties, total metal concentrations and porewater composition. Actual and potential heavy metal availability was assessed by means of single extractions with 0.01 M CaCl 2 , 0.05 M EDTA and 0.43 M acetic acid. A modified version of the BCR (Community Bureau of Reference) extraction procedure, adapted to the elevated acid neutralizing capacity of the sediments, was applied. Information on element mobility was assessed and the used methodologies were critically evaluated.

The favorable physico-chemical characteristics of dredged sediments from the catchment of the Leie River (N-Belgium) indicated a rather low actual heavy metal mobility. Based on CaCl 2 and EDTA extractions, the distribution of Cd, Zn and Ni between the solution and sorbed phase could be described as a function of pH and organic carbon content. Cd and Zn were found to be the elements with the highest potential availability, while Cu and Ni displayed a medium availability. It is stressed that different types of extractions deal with heavy metal mobility in a different way and that the measurement of “key-factors” such as the pH of the extracts can be helpful for the interpretation of the results.  相似文献   


10.
This study provides geochemical partitioning, potential bioavailability, and enrichment of Cd, Cu, Pb, and Zn in bottom sediments collected from the Matanza-Riachuelo River and its main tributary streams. A modified Tessier sequential extraction procedure, complemented with acid volatile sulfide (AVS) and simultaneous extracted metals (SEM) measurements, was applied to determine the partitioning of metals into four fractions (metals bound to amorphous sulfide, carbonate, and exchangeable), bound to Fe/Mn oxides (reducible), bound to organic matter/sulfide (oxidizable) and residual. Spatial and vertical distributions of metals were studied. The core sediments show a decreasing concentration of metals with depth. In top sediments, non-residual Cu was mainly associated with oxidizable phase, whereas Pb, Cd, and Zn were mainly associated with amorphous sulfide. Pb exhibited the highest enrichment in all sites. The ratio AVS/SEM was greater than one at sediment sections close to the water column, indicating that metals extracted with hydrochloric acid were mainly associated with the amorphous sulfide. The strong influence of amorphous sulfide in the retention of Cd, Pb, and Zn in anoxic sediments of Matanza-Riachuelo river system suggests that dredging and aeration could lead to the remobilization of metals from sediments to the water column, hence making the metals more available to the biota.  相似文献   

11.
Contamination of freshwater bodies and consequently freshwater fish with toxic heavy metals is a serious environmental issue. The trophic transfer of potentially toxic heavy metals in the human food chains, especially in fish has important implications for human health. The present research study was designed to assess the concentrations of the heavy metals Cr, Ni, Cd, and Pb in the water, sediments, and different freshwater fish species of River Kabul, Pakistan. The heavy metals were quantified in the samples with Atomic Absorption Spectrophotometer. Heavy metal contamination in fish muscles was characterized in terms of metal pollution index and biota-sediments accumulation factor, while human health risk was assessed through calculation of estimated weekly intake. The average concentrations of Cr, Ni, Cd, and Pb in muscle samples of the analyzed fish species at different sampling sites of the river ranged from 12.3 to 33.0, 33.2 to 109.2, 0.98 to 1.5, and 13.9 to 29.6 mg kg?1 wet weight, respectively. Based on the current study data, consumption of the analyzed freshwater fish species from River Kabul was generally safe in terms of potential risk from Cd and Pb but the observed Ni accumulation may pose a potential health risk to regular/excessive fish consumers.  相似文献   

12.
Access to safe water is the primary goal of all development plans, yet population increase, urbanization lead to contamination of water resources. This paper focuses on microbial contamination and aims to analyze the fate and transport of Escherichia coli in the Kabul River Basin using SWAT model to evaluate the contribution of different sources. The SWAT is calibrated and validated for the monthly time step using observed E. coli concentrations for April 2013–July 2015. The model skill score; coefficients of determination (R2) equal 0.72 and 0.70, Nash–Sutcliffe efficiencies (NSE) equal 0.69 and 0.66, and percentages bias (PBIAS) equal 3.7 and 1.9 respond well for both calibration and validation, respectively. Regional measured and modeled concentrations are very high with peaks of up to 5.2 10log cfu/100?ml in the wet season. Overall, point sources that are comprised of human feces from the big cities and livestock manure from animal sheds, contribute most (44%) to the E. coli concentrations. During peak discharge the non-point sources become the most important contributors due to wash-off from the land and diluted point sources. Allthough such studies are lacking in developing countries, they can be helpful for sanitation management by developing and accessing regional sanitation scenarios.  相似文献   

13.
This present study considers the adsorption of cations of heavy metals (zinc, cadmium, copper) which are frequently encountered in industrial wastewaters. The solid material used as adsorbent is nonactivated carbon obtained from a local cereal byproduct. In order to assess this material, adsorbents obtained from other agricultural byproducts, such as almond and peanuts shells, have also been tested. Adsorption isotherms have been determined and the influence of various parameters, such as the particle size, the solid‐liquid contacting time, the pH of the solution, the initial concentration, the mixing velocity, the temperature and the ratio solid mass over solution volume, have been considered. The case of simultaneous presence of metallic cations in the solution has also been considered in order to examine their affinity towards the adsorbent. An attempt to determine whether the retention of the cations is a pure adsorption or an ion exchange has also been carried out. Retention yield values exceeding 90 % have been reached with an initial concentration of 10 mg/L, a temperature of 20 °C, a particle size smaller than 0.1 mm, a mixing velocity of 600 rev/min, a ratio of 0.5 g adsorbent over 50 ml of solution and a pH varying between 3 and 6.  相似文献   

14.
Trace metals concentrations in sediments from the Egyptian Mediterranean coast were determined to evaluate the levels of contamination. The highest concentrations of metals were generally found in the middle region of the coast. Sediment pollution assessment was carried out using Enrichment Factor (EF), Geoaccumulation Factor (Igeo), Contamination Factor (CF), Modified Degree of Contamination (mCd), and Pollution Load Index (PLI). Association of adverse effects to aquatic life was determined using the classification of sediments according to three sets of sediment quality guidelines. The mean EF values were found to fall in the following sequence: Cr > Pb > Ni > Zn > Cu > Mn. The results demonstrated that the EF of metals in the sediments of the middle region was lower than those recorded in the western region and Rafah Station at the eastern region; the difference in the EF levels was significantly correlated with Fe concentrations along the study area. Based on the average Igeo of target elements, the Egyptian Mediterranean coast could be considered not polluted with Cr, Cu, Mn, Ni, Pb, and Zn (Igeo ≤ 0). The modified degree of contamination was >1.5, indicating zero to very low contamination. The calculated PLI were less than 1, indicating only baseline levels of pollution. There were small differences between the results obtained with the three used SQGs. Highly significant correlations were found between the concentrations of Fe, Mn, Co, Cr, and Ni, suggesting similar sources and/or similar geochemical processes controlling the occurrence of these metals in the sediments.  相似文献   

15.
Total concentrations of Hg, Al, Fe, As, Pb, Cu, Cr, Ni, Mn, Co, V, and Zn were determined in surface sediments collected from 21 locations within the gold mining impacted Pra River basin in southwestern Ghana. Samples were collected during both the rainy and dry seasons. We hypothesized that in the rural southwestern portion of Ghana, the lack of industrial activities makes artisanal gold mining (AGM) by Hg amalgamation the main source of water resource contamination with heavy metals. Therefore, metals showing concentration trends similar to that of Hg in the studied system are likely impacted by AGM. We found that total-Hg (THg) concentrations in riverine sediments are rather low as compared to other aquatic systems that are impacted by similar mining activities. Measured THg concentrations ranged from 0.018 to 2.917 mg/kg in samples collected in the rainy season and from about 0.01 to 0.043 mg/kg in those collected during the dry season. However, the determination of the enrichment factor (EF) calculated using shale data as reference background values showed signs of severe contamination in most of the sampled sites. In the dry season, THg concentrations correlated positively and significantly to the concentrations of As (r = 0.864, p < 0.01), Cu (r = 0.691, p < 0.05), and Ni (r = 0.579, p < 0.05). Based on our previously stated hypothesis, this could then be an indication of the impact of AGM on ambient levels of these 3 elements. However, the determined concentrations of Cu, and Ni co-varied significantly with Al, suggesting that natural sources do account for the observed levels. Accordingly, both AGM and metal inputs from weathered natural deposits are likely co-responsible for the observed levels of Cu and Ni. In contrast, the lack of correlation between As and Al tends to suggest an impact of AGM on As levels. Overall, our data suggest that besides Hg and to some extent As, the impact of AGM on ambient levels of investigated metals in the gold mining impacted Pra River remains negligible. Finally, the increase in metal concentrations from the dry to the rainy season underlines the impact of changes in hydrologic conditions on levels and fate of metals in this tropical aquatic system.  相似文献   

16.
To investigate the relevance of biochemical parameters in biogeochemical mechanisms of the soil, it is important to gather data related to different soil types under different pedogeoclimatic conditions. In this study, we investigated on the calcareous agricultural soils in the Saiss plain (North Morocco). Four agricultural soils exposed to multi-metal (Cr, Cu, Zn, and Ni) and organic matter (OM) contamination as a result of irrigation with Oued Fez and Oued Sebou waters that are affected by urban and industrial activities around the city of Fez were studied and compared to a reference site irrigated with uncontaminated water. The study concerned soil physicochemical properties and the activity of a range of enzymes [phosphatase (PHOS), arylsulfatase (SULF), urease (UREA), arylamidase (AMID), β-galactosidase (GALA), glucosidase (GLUC), and laccase (LACA)] related to nutrients cycles. Pearson's correlations between these parameters showed that soil enzymatic activities (PHOS, SULF, UREA, GALA, GLUC, and LACA) were correlated positively with heavy metals (Cu, Zn, and Cr) concentrations in the soil and also with dissolved organic carbon (DOC), and negatively with the aromaticity (AROM) of these compounds. Interestingly, analysis of intra-site correlations showed strong relationships among enzyme activities in the reference soil, while in contaminated soils, these activities were largely unrelated to each other. It was concluded that soil irrigation with heavy-metal- and OM-contaminated watercourses over decades has resulted in soils with high enzymatic activities function and nutrient turnover but altered relationships among geochemical cycles.  相似文献   

17.
Wastewater particularly from electroplating, paint, leather, metal and tanning industries contain enormous amount of heavy metals. Microorganisms including fungi have been reported to exclude heavy metals from wastewater through bioaccumulation and biosorption at low cost and in eco-friendly way. An attempt was, therefore, made to isolate fungi from sites contaminated with heavy metals for higher tolerance and removal of heavy metals from wastewater. Seventy-six fungal isolates tolerant to heavy metals like Pb, Cd, Cr and Ni were isolated from sewage, sludge and industrial effluents containing heavy metals. Four fungi (Phanerochaete chrysosporium, Aspegillus awamori, Aspergillus flavus, Trichoderma viride) also were included in this study. The majority of the fungal isolates were able to tolerate up to 400 ppm concentration of Pb, Cd, Cr and Ni. The most heavy metal tolerant fungi were studied for removal of heavy metals from liquid media at 50 ppm concentration. Results indicated removal of substantial amount of heavy metals by some of the fungi. With respect to Pb, Cd, Cr and Ni, maximum uptake of 59.67, 16.25, 0.55, and 0.55 mg/g was observed by fungi Pb3 (Aspergillus terreus), Trichoderma viride, Cr8 (Trichoderma longibrachiatum), and isolate Ni27 (A. niger) respectively. This indicated the potential of these fungi as biosorbent for removal of heavy metals from wastewater and industrial effluents containing higher concentration of heavy metals.  相似文献   

18.

The Eastern Mediterranean Sea hosts several deep hypersaline anoxic basins (DHABs) such as the Bannock, L'Atalante, Discovery, and Urania which, due to strong salinity gradients, have a limited exchange with the overlying seawater. In the present study, a series of environmental variables associated with the origin and quality of organic matter were thoroughly investigated in an attempt to understand the function of these unique ecosystems. The redox potential of sediments collected from the brines as well as from reference sites varied from ?136 to 543 mV and salinity varied from 38 to 380 psu. Principal component analysis of chemical characteristics, including salinity, redox potential, organic carbon and nitrogen content, and C/N ratio grouped the sediments into two major clusters according to their redox state. Aliphatic hydrocarbon analysis revealed that the organic matter in the DHABs was predominantly of terrestrial origin but there was also evidence for petroleum inputs and for organic matter of phototrophic origin. Phospholipid linked fatty acids (PLFA) which were employed to assess the composition of microbial communities were found in greater abundance in stations situated inside the anoxic basins providing also strong evidence for the presence of methanotrophs and sulfate reducers. These results may represent an enhanced preservation of organic matter and an accumulation of microorganisms in these extreme environments. Heterogeneity in microbial community fatty acid profiles was documented between the anoxic sediments and the oxic and suboxic stations. However there were no significant correlations between PLFA and organic matter parameters. Redox conditions appear to influence microbial community composition, highlighting the role of the redox state as a regulator of organic matter preservation and microbial community accumulations in these ancient hypersaline anoxic lakes.  相似文献   

19.
Sediment samples from the Ave river basin were collected with the aim of determining metal total pollution contents. Cr, Cu, Fe, Mn, Pb, Zn and VM at 550 °C were determined. Some physico-chemical parameters were also quantified in water samples collected in the water column just above the sediments.

Metal contamination factors (CF) indicated that sediments were not contaminated with Cu and Pb, slightly with Zn and moderately with Cr.

For sediments with high metal pollution loadings, the original BCR (Community Bureau of Reference) metal speciation protocol was also applied. Speciation studies showed that chromium was mainly associated with the oxidisable plus residual fractions (>85%). These results suggest that changes in the physico-chemical properties of the river water (e.g. pH, Eh) should not be accompanied by a significative release of chromium from sediments.

The relationships between chromium speciation fractions, physic-chemical parameters of the sediments and water samples were studied by Principal Component Analysis, and allowed to reduce the dimensionality of the data matrix from 14 to 3 significant components accounting for 89% of the variance. It was found that hydrous Fe/Mn oxides and organic matter are the “carriers” of chromium associated to fractions exchangeable and oxidable.  相似文献   


20.
Thirty-seven surface sediment samples were taken in the Pontevedra Ria (NW Iberian Peninsula), and metal concentrations (Cd, Co, Cr, Cu, Fe, Ni, Pb, and Zn) and organic/inorganic parameters were determined in order to obtain a mapping of their distribution, background values and the status of contamination. Background values were obtained from Metal/Fe ratios obtained by regression lines using “clean” stations. Contamination was assessed by the use of normalized enrichment factors (NEF). The middle and outer parts of the ria, mostly influenced by oceanic water and scarce anthropogenic activities, showed a low/null contamination (NEF ~ 1) for all the metals studied. However, the inner part of the ria, where most of the anthropogenic (urban and industrial) activities are located, showed a significant enrichment for Zn, Cu, and Pb, with NEF up to 5.2, 18, and 3.4, respectively. The rest of the metals were not significantly affected. Due to the hydrographic characteristics of the rias coastal systems, contamination sources are generally located well inland but in the high salinity region. Therefore rapid flocculation and accumulation of metal contaminants in sediments is favored close to their emission sources. Cadmium also showed a significant enrichment, strongly influenced by the presence of organic-rich sediments rather than contamination from point-sources. In the estuarine part of the ria, a significant enrichment was found for Cd, Cu, and Zn. However, it is unclear whether this is due to contamination by these two metals in the area or simply due to a difference in the lithogenic composition of the riverine sediments compared to the ria sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号