首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Summary In the CAM plant Kalanchoë daigremontiana, kept in an environmental rhythm of 12 h L: 12 h D in a growth chamber at 60% relative humidity and well watered in the root medium, decreasing water potentials and osmotic potentials of the leaves are correlated with malate accumulation in the dark. In the light increasing water and osmotic potentials ( W and S ) are associated with decreasing malate levels. Transpiratory H2O loss is high in dark and low in light.In continuous light, the CAM rhythm rapidly disappears in the form of a highly damped endogenous oscillation. Malate levels, and water and osmotic potentials of the leaves remain correlated as described above. However, transpiration is very high as malate levels decrease and water and osmotic potentials increase.It can concluded, that water relation parameters like total water potential ( W ) and osmotic potential ( S ) change in close correlation with changes of malic acid levels. As an important osmotically active solute in CAM plants, malic acid appears to affect water relations independently of and in addition to transpiration. The question remains open, whether turgor ( P ) is involved in CAM regulation in intact plants in a similar way as it determines malate fluxes in leaf slices.Abbreviations CAM Crassulacean Acid Metabolism - L Light - D Dark  相似文献   

4.
Lipase from Aspergillus niger was obtained from the solid-state fermentation of a novel agroindustrial residue, pumpkin seed flour. The partially purified enzyme was encapsulated in a sol–gel matrix, resulting in an immobilization yield of 71.4 %. The optimum pH levels of the free and encapsulated enzymes were 4.0 and 3.0, respectively. The encapsulated enzyme showed greater thermal stability at temperatures of 45 and 60 °C than the free enzyme. The positive influence of the encapsulation process was observed on the thermal stability of the enzyme, since a longer half-life t 1/2 and lower deactivation constant were obtained with the encapsulated lipase when compared with the free lipase. Kinetic parameters were found to follow the Michaelis–Menten equation. The K m values indicated that the encapsulation process reduced enzyme–substrate affinity and the V max was about 31.3 % lower than that obtained with the free lipase. The operational stability was investigated, showing 50 % relative activity up to six cycles of reuse at pH 3.0 at 37 °C. Nevertheless, the production of lipase from agroindustrial residue associated with an efficient immobilization method, which promotes good catalytic properties of the enzyme, makes the process economically viable for future industrial applications.  相似文献   

5.
Nonspecific interactions between immobilized biomolecules and interfering proteins significantly impede biosensor development and commercialization. Advances in bioinformatics and computer technology have facilitated a greater understanding of biological interactions. We employed two different protein–protein docking programs to simulate the nonspecific interaction between ampicillin antibody and potential interfering proteins (human serum albumin and ovalbumin). To evaluate the contact and probability of association with the active site of the antibody, different amino acid chains from human serum albumin (HSA) and ovalbumin (OVA) were modeled in the simulation. In addition, a well-known specific immune complex, lysozyme and lysozyme antibody, was simulated for comparison. The results demonstrated that the cluster density of nonspecific interactions was smaller than the specific interaction between lysozyme and antibody, and that the dock scores were scattered. However, the active site of ampicillin antibody was prone to nonspecific protein interactions. The strength of interaction was different for specific binding and nonspecific binding. These results provide a platform for detecting the probability of nonspecific interactions and for improving methods of biosensor detection construction with reduced nonspecific adsorption.  相似文献   

6.
A recombinant protein with a cDNA that encodes the putative subunit of a rice heterotrimeric G protein was synthesized in Escherichia coli and purified. The recombinant protein (rGrice ) with an apparent molecular mass of 45 kDa was bound with guanosine 5-(3-O-thio)triphosphate with an apparent association constant (kapp) of 0.36. The protein also hydrolyzed GTP and its Kcat was 0.44. rGrice was ADP-ribosylated by activated cholera toxin.Monoclonal antibodies raised against rGrice reacted with a 45 kDa polypeptide localized in the plasma membrane of rice seedlings. The peptide map of this polypeptide after digestion with V8 protease was identical to that of rGrice . A 45 kDa polypeptide in the plasma membrane, as well as rGrice , was ADP-ribosylated by activated cholera toxin. The GTPase activity of the plasma membrane was stimulated 2.5-fold by mastoparan 7 but not mastoparan 17. These properties were similar to those of the subunits of heterotrimeric G proteins in animals, suggesting that the putative subunit is truly the subunit itself.  相似文献   

7.
The methylenetetrahydrofolate reductase (MTHFR), cystathione-β-synthase (CBS) and methionine synthase (MTR) genes interact with each other and the environment. These interactions could influence homocysteine (Hcy) and diseases contingent thereon. We determined single nucleotide polymorphisms (SNPs) within these genes, their relationships and interactions with total Hcy concentrations within black South Africans to address the increased prevalence of diseases associated with Hcy. The MTHFR 677 TT and MTR 2756 AA genotypes were associated with higher Hcy concentrations (16.6 and 10.1 μmol/L; p < 0.05) compared to subjects harboring the MTHFR 677 CT/CC and the MTR 2756 AG genotypes (10.5, 9.7 and 9.5 μmol/L, respectively). The investigated CBS genotypes did not influence Hcy. We demonstrated interactions between the area of residence and the CBS T833C/844ins68 genotypes (p = 0.005) so that when harboring the wildtype allele, rural subjects had significantly higher Hcy than their urban counterparts, but when hosting the variant allele the environment made no difference to Hcy. Between the CBS T833C/844ins68 or G9276A and MTHFR C677T genotypes, there were two-way interactions (p = 0.003 and = 0.004, respectively), with regard to Hcy. Subjects harboring the MTHFR 677 TT genotype in combination with the CBS 833 TT/homozygous 844 non-insert or the MTHFR 677 TT genotype in combination with the CBS 9276 GA/GG displayed higher Hcy concentrations.  相似文献   

8.
The in situ Proximity Ligation Assay (PLA) is suited for visualizing protein–protein interactions and post-translational protein modifications in both tissue sections and in vitro cell cultures. Accurate identification and quantification of protein–protein interactions are critical for in vitro cell analysis, especially when studying the dynamic involvement of proteins in various processes, including cell proliferation, differentiation, and apoptosis. Here, we monitored the interactions between protein kinase-Cζ (PKCζ) and Bcl10 protein in untreated and etoposide (VP-16)-treated C4-I cells by means of a new combined morphological approach and validated it by taking stock of our previous proteomic and biochemical work (Chiarini et al. in J Proteome Res 11:3996–4012, 2012). We first analyzed the colocalization of PKCζ and Bcl10 proteins through classical immunofluorescent colocalization analysis. On the basis of these results, we developed a novel imaging approach combining immunofluorescence (IF) techniques with in situ PLA to identify the PKCζ·Bcl10 complexes at the level of a specific subcellular compartment, i.e., the nuclear envelope (NE). By this means, we could show that the amount of PKCζ·Bcl10 complexes localized at the NE of C4-I cells during proliferation or after treatment with VP-16 closely corresponded to our previous purely biochemical results. Hence, the present findings demonstrate that the combination of in situ PLA with classical IF detection is a novel powerful analytical tool allowing to morphologically demonstrate new specific protein–protein interactions at level of subcellular organelles, the complexes functions of which can next be clarified through proteomic/biochemical approaches.  相似文献   

9.
 First-strand cDNA was prepared from mRNA of Aspergillus niger MRC11624 induced on oat spelts xylan. Using the cDNA as a template, the α-L-arabinofuranosidase gene (abf B) was amplified with the polymerase chain reaction technique. The abf B DNA fragment was inserted between the yeast phosphoglycerate kinase I gene promoter (PGK1 P ) and terminator (PGK1 T ) sequences on a multicopy episomal plasmid. The resulting construct PGK1 P -abf B-PGK1 T was designated ABF2. The ABF2 gene was expressed successfully in Saccharomyces cerevisiae and functional α-L-arabinofuranosidase was secreted from the yeast cells. The ABF2 nucleotide sequence was determined and verified to encode a 449-amino-acid protein (Abf 2) that is 94% identical to the α-L-arabinofuranosidase B of A. niger N400. Maximum α-L-arabinofuranosidase activities of 0.020 U/ml and 1.40 U/ml were obtained with autoselective recombinant S. cerevisiae strains when grown for 48 h in synthetic and complex medium respectively. Received: 29 January 1996/Received revision: 3 May 1996/Accepted: 9 May 1996  相似文献   

10.
The role of poly ADP-ribosylation in DNA excision repair was studied in experimental models of various complexities. In intact cells in vivo, the unfolding of chromatin during DNA excision repair apparently requires the presence of a functional poly-ADP-ribosylation system. In vitro studies involving a reconstituted poly-ADP-ribosylation system show that the enzyme poly(ADP-ribose)polymerase has the capacity to shuttle core histones on a core DNA fragment of 146 bp. Under these conditions, the polymerase operates in a strictly processive mode. Furthermore, the polymerase adapts to different shuttling targets by producing very distinct polymer patterns. We conclude that the eukaryotic poly-ADP-ribosylation system has the capacity to regulate DNA-protein interactions and this may be an essential part of the unfolding mechanism of chromatin during excision repair in vivo.  相似文献   

11.
Genome scale metabolic model provides an overview of an organism’s metabolic capability. These genome-specific metabolic reconstructions are based on identification of gene to protein to reaction (GPR) associations and, in turn, on homology with annotated genes from other organisms. Cyanobacteria are photosynthetic prokaryotes which have diverged appreciably from their nonphotosynthetic counterparts. They also show significant evolutionary divergence from plants, which are well studied for their photosynthetic apparatus. We argue that context-specific sequence and domain similarity can add to the repertoire of the GPR associations and significantly expand our view of the metabolic capability of cyanobacteria. We took an approach that combines the results of context-specific sequence-to-sequence similarity search with those of sequence-to-profile searches. We employ PSI-BLAST for the former, and CDD, Pfam, and COG for the latter. An optimization algorithm was devised to arrive at a weighting scheme to combine the different evidences with KEGG-annotated GPRs as training data. We present the algorithm in the form of software “Systematic, Homology-based Automated Re-annotation for Prokaryotes (SHARP).” We predicted 3,781 new GPR associations for the 10 prokaryotes considered of which eight are cyanobacteria species. These new GPR associations fall in several metabolic pathways and were used to annotate 7,718 gaps in the metabolic network. These new annotations led to discovery of several pathways that may be active and thereby providing new directions for metabolic engineering of these species for production of useful products. Metabolic model developed on such a reconstructed network is likely to give better phenotypic predictions.  相似文献   

12.
Glioblastoma multiforme (GBM) is the most malignant of all the brain tumors with very low median survival time of one year, as per Central Brain Tumor Registry of the USA, 2001. Efforts are ongoing to understand this disease pathogenesis in complete details. Global gene expression changes in GBM pathogenesis have been studied by several groups using microarray technology (e.g. Carro et al., 2010). One of the many approaches to ‘understand the control mechanisms underlying the observed changes in the activity of a biological process’ (Cline et al., 2007) is integration of gene expression and protein–protein interactions (PPI) datasets. Among several examples, aberrant activation of Wnt/β-catenin signaling pathway as well as sonic hedgehog (SHH) signaling pathway is reported in GBMs (Klaus & Birchmeier, 2008). Further, these two pathways are also involved in proliferation and clonogenicity of glioma cancer stem cells (Li et al., 2009), which are thought to play a role in glioma initiation, proliferation, and invasion, and are one of the important points of intervention. Hedgehog–Gli1 signaling is also found to regulate the expression of stemness genes. In this paper, analyses of the relationship between the significant differential expression of these and other genes and the connectivity as well as topological features of a PPI network would be discussed. This way, genes potentially overlooked when relying solely on expression profiles may be identified which can be biologically relevant as possible drug target/s or disease biomarker/s.  相似文献   

13.
14.
Efficient production of recombinant barley α-amylase has been achieved in Aspergillus niger. The cDNA encoding α-amylase isozyme 1 (AMY1) and its signal peptide was placed under the control of the Aspergillus nidulans glyceraldehyde-3-phosphate dehydrogenase (gpd) promoter and the A. nidulans trpC gene terminator. Secretion yields up to 60 mg/l were obtained in media optimised for α-amylase activity and low protease activity. The recombinant AMY1 (reAMY1) was purified to homogeneity and found to be identical to native barley AMY1 with respect to size, pI, and immunoreactivity. N-terminal sequence analysis of the recombinant protein indicated that the endogenous plant signal peptide is correctly processed in A. niger. Electrospray ionisation/mass spectrometry gave a molecular mass for the dominant form of 44 960 Da, in accordance with the loss of the LQRS C-terminal residues; glycosylation apparently did not occur. The activities of recombinant and native barley α-amylases are very similar towards insoluble and soluble starch as well as 2-chloro-4-nitrophenol β-d-maltoheptaoside and amylose (degree of polymerisation = 17). Barley α-amylase is the first plant protein efficiently secreted and correctly processed by A. niger using its own signal sequence. Received: 22 August 1997 / Received revision: 21 November 1997 / Accepted: 29 November 1997  相似文献   

15.
16.
INTRODUCTIONPlantshavedevelopedseveralbi0chemicaldefensemechanismsinresp0nsetopath0gensandabioticstress.Fo1l0wingpathogenattack,plantsynthesizephenyl-propaniodpr0ductssuchaslignin,l0wm0l.wt.antimicrobia1comp0undsknownasphyt0alexins,andseveraldefense-relatedproteins.Amongthesepr0teinsare"pathogenesis-relatedproteins"includingthefungalcellwalldegradingenzymeschitinaseandP-1,3-glucanase[1].Endochitinasefromhigherplantscatalyzethehydr0lysis0fchitin,aP-1,4-linkedhomop0lymerofN-acetyl-D-glucos…  相似文献   

17.
Chitinase,which catalyzes the hydrolysis of the β-1,4-acetyl-D-glucosamine linkages of the fungal cell wall polymer chitin,is involved in inducible plants defense system.By construction of cabbage(Brassica oleracea var. capitata) genomic library and screening the library with pRCH8,a probe of rice chitinase gene fragment,a chitinase genomic sequence was isolated.The complete uncleotide sequence of the putative cabbage chitinase gene (cabch29) was determined,with its longest open reading frame (ORF) encoding a polypeptide of 413 aa.This polypeptide consists of a 21 aa N-terminal signal peptide,two chitin-binding domains different from those of other classes of plant chitinases,and a catalytic domain.Homology analysis illustrated that this cabch29 gene has 58.8% identity at the nucleotide level with the pRCH8 ORF probe and has 50% identity at the amino acid level tiwh the catalytic domains of chitinase from bean,maize and sugar beet.Meanwhile,several kinds of cis-elements,such as TATA box,CAAT box,GATA motif,ASF-1 binding site,wound-response elements and AATAAA,have also been discovered in the flanking region of cabch29 gene.  相似文献   

18.
Two models have been proposed to explain the interaction of cytochrome c with cardiolipin (CL) vesicles. In one case, an acyl chain of the phospholipid accommodates into a hydrophobic channel of the protein located close the Asn52 residue, whereas the alternative model considers the insertion of the acyl chain in the region of the Met80-containing loop. In an attempt to clarify which proposal offers a more appropriate explanation of cytochrome c–CL binding, we have undertaken a spectroscopic and kinetic study of the wild type and the Asn52Ile mutant of iso-1-cytochrome c from yeast to investigate the interaction of cytochrome c with CL vesicles, considered here a model for the CL-containing mitochondrial membrane. Replacement of Asn52, an invariant residue located in a small helix segment of the protein, may provide data useful to gain novel information on which region of cytochrome c is involved in the binding reaction with CL vesicles. In agreement with our recent results revealing that two distinct transitions take place in the cytochrome c–CL binding reaction, data obtained here support a model in which two (instead of one, as considered so far) adjacent acyl chains of the liposome are inserted, one at each of the hydrophobic sites, into the same cytochrome c molecule to form the cytochrome c–CL complex.  相似文献   

19.
We have isolated an cDNA after applying a DDRT-PCR analysis on mRNA from mature resting cysts of the ciliate Oxytricha (Sterkiella) nova. From this cDNA fragment the complete macronuclear minichromosome was obtained by using the Mac-End-PCR method. After cloning and sequencing, this cDNA shown certain similarity to HMG-like proteins. The analysis of the inferred amino acid sequence shown that this putative HMG-like protein has one HMG-box interrupted by a intron. The analysis of others characteristics (including a 3D model) confirms that it is a HMGB family protein. It is the first time that a macronuclear gene encoding a putative HMG-box protein is isolated from resting cysts of a stichotrich ciliate. The possible implications of this stored mRNA in the ciliate cryptobiotic stage are discussed.  相似文献   

20.
A small library combining two different benzoquinone cores with seven (l) amino acid methyl esters (alanine, Nω-nitro-arginine, Nε-BOC-lysine, isoleucine, methionine, phenylalanine and tryptophan) was prepared and tested for prion replication inhibition in ScGT1 cells. The most potent hit, 6a, displayed an EC50 value of 0.87 μM, which is very close to that of quinacrine (0.4 μM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号