首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil heavy metal contamination is a major environmental concern, and health risk associated with heavy metals is not fully explored. A combination of spatial analysis and Monte Carlo simulation was successfully used to identify the possible sources and health risk of cadmium (Cd), arsenic (As), mercury (Hg), lead (Pb), chromium (Cr), and copper (Cu) in soils collected from a rapidly developing region of China. It was found that mean concentrations of Cd (0.17 mg/kg ), As (8.74 mg/kg ), Hg (0.15 mg/kg ), Pb (27.28 mg/kg ), and Cu (33.32 mg/kg ) were greater than the soil background values. Accumulation and spatial variability of heavy metals were significantly affected by anthropogenic activities and soil properties. The risk assessment indicated that non-carcinogenic risk was not significant. However, 95% of the total cumulative carcinogenic risk of children was greater than 1E-05, implying high potential carcinogenic risk with As and Pb representing the major contributors. Ingestion of heavy metals in the soils was the main exposure pathway compared with the inhalation and the dermal exposure. Concentration of heavy metals in the soils, particulate emission factor, and dermal exposure ratio were the major parameters affecting health risk. This study highlights the importance of assessment of soil direct exposure health risk in studying heavy metal exposures.  相似文献   

2.
Manganese mining activities in the Drama district, northern Greece, have resulted in a legacy of abandoned mine wastes at the “25 km Mn-mine” site. Current research was focused on the western Drama plain (WDP), constituting the recipient of the effluents from Xiropotamos stream, which passes through the “25 km Mn-mine” place. A total of 148 top soil samples were collected and their heavy metals (HMs) concentrations (Mn, Pb, Zn, Cu, Cd, and As) were determined using inductively coupled plasma mass spectrometry. Enrichment factor (EF), geoaccumulation index (Igeo), and pollution load index (PLI) were calculated as an effort to assess metal accumulation, distribution, and pollution status of the soils due to the former mining activity. The overall potential ecological risk of HMs to the environment was also evaluated using the potential toxicity response index (RI). Results showed that peak values of the elements (13 wt% for Mn, 0.2 wt% for Pb, 0.2 wt% for Zn, 0.1 wt% for As, 153 mg/kg for Cu, and 27.5 mg/kg for Cd) were found in soils from sites close to and along both sides of the Xiropotamos stream. In this sector of WDP, values of EF, Igeo, and PLI classify the soils as moderately to highly polluted with Mn, Pb, Zn, Cd, and As. Based on RI values, soils in this part of WDP display considerable to very great potential ecological risk and, therefore, a remediation has to be applied. The main cause of soil contamination is considered the Xiropotamos downstream transfer and dispersion of Mn mine wastes via flooding episodes.  相似文献   

3.
The concentration of heavy metals in water, sediment, and various food-web components like plankton, shrimp, bivalve, and fishes were collected from Muthupet mangrove ecosystem. Heavy metal concentration in water samples was relatively lesser than the biological and sediment samples. Among the heavy metals studied, zinc showed highest concentration ranged from 1.81 to 81.5 mg/kg or mg/L, whereas Cd (0–26.06 mg/kg or mg/L) was found to be lesser in all the samples except a few organisms viz. Anadara sp. (26.06 mg/kg), Coilia sp. (10.09 mg/kg), Anguila sp. (9.14 mg/kg), and Tachysurus maculates (6.95 mg/kg) observed during this study. Pb and Cu were ranged from 10.29 to 14.99 mg/kg and 0.59 to 16.06 mg/kg, respectively. The reported values of heavy metals were several folds higher than permissible levels of international regulatory agencies like WHO, FAO, and USEPA. The order of accumulation of heavy metals in biological samples are as follows: Pb > Cu > Zn > Cd. All the biota showed a higher degree of bioconcentration factor for Zn, in the range of 3.90–34.39. Principal component analysis concluded that Muthupet was contaminated by lithogenic as well as anthropogenic activities.Therefore, field observation and sample analysis clearly indicated that sampling sites were polluted with both point and nonpoint source of pollution.  相似文献   

4.
In selected urban parks of the Silesian agglomeration, samples of soil, sand and dust were collected and analyzed for Zn, Pb and Fe contents.The highest soil concentrations of the metals were found in park no. I (Ko?ciuszki) in Katowice (average concentrations 244, 341 and 9375 mg/kg, respectively) and slightly lower soil concentrations were found in the park no. III (Silesian) in Chorzów (131, 211 and 9017 mg/kg, respectively). Lower contents of Zn (average 38 mg/kg) as well as Pb (71 mg/kg) and Fe (3226 mg/kg) characterize the soils of park no. II in Katowice. Concentrations of the metals in sands are on average, significantly lower, equivalent to two to three times, than those of the soil samples. The contents of metals in dusts are more variable than in soils and sands. While comparing the amount of Pb in the dust to their concentration in soils, it must be noted that for the majority of the samples they are lower. They account for 76% of the total concentration in the soil. The calculated quotient hazards of health clearly indicate a potential health risk caused by Pb, especially for young children due to their low weight. The highest health risk was established for park no. I, slightly lower for park no. III and the lowest for park no. II.  相似文献   

5.
Mining activities produce waste tailings that can be a significant source of pollution in the surrounding ecosystem. This study was designed to estimate the magnitude of Fe, As, Pb, Cd, Mn, Ni, Zn, and Cr in soil impacted by activities in the Moeil iron ore mine area of northwestern Iran and initially assess the potential risk to nearby residents and ecological habitats. For this, concentrations of elements in 24 samples from 8 locations were analyzed by inductivity coupled plasma optical emission spectrometry. Concentrations of heavy metals reported for samples collected from the area ranged from 50,247–466,200 mg/kg for Fe, 40–10,827 mg/kg for As, 9–84 mg/kg for Pb, 0.2–58.4 mg/kg for Cd, 32–424 mg/kg for Mn, 4–32 mg/kg for Ni, 37–60 mg/kg for Zn, and 32–337 mg/kg for Cr. Reported levels of Fe and As in particular are indicative of severe contamination and imply a high risk to ecological receptors. Reported levels of arsenic also imply elevated cancer and non-cancer health risks to residents who work in or pass through the area. Reported levels of Cd and Cr in soil samples also indicate an elevated cancer risk posed by these metals. The result of this study indicates it is important to estimate potential contamination of soils and drinking water wills in the vicinity of Moeil village to arsenic and heavy metals.  相似文献   

6.
Effects of CaCl2, CuCl2, ZnCl2 and PbCl2 on development and hatching success of eggs of Folsomia candida (Collembola) were studied under laboratory conditions. Thousands of healthy eggs from synchronized cultures were incubated in soils treated with different concentrations of the metals. Compared with the water control, egg hatch significantly decreased when concentrations of Cu, Pb and Zn reached 400, 1600 and 800 mg/kg dry soil, respectively. Values of EC50 (hatching), calculated according to the exponential model (with 95% confidence limits in brackets), were 625 (407–875), 2361 (2064–2687) and 1763 (1548–2000) mg/kg dry soils for Cu, Pb and Zn, respectively. When Cu concentration reached 1600 mg/kg dry soil, eggs became green and the percentage of green eggs changed from 5%–20% after incubation for 2 days to 15%–30% after incubation for 4 days. At 3200 mg Cu/kg dry soil, tissues inside eggs were black and shrunken.  相似文献   

7.
Phytoextraction is a green technique for the removal of soil contaminants by plants uptake with the subsequent elimination of the generated biomass. The halophytic plant Suaeda vera Forssk. ex J.F.Gmel. is an native Mediterranean species able to tolerate and accumulate salts and heavy metals in their tissues. The objective of this study was to explore the potential use of S. vera for soil metal phytoextraction and to assess the impact of different chelating agents such as natural organic acids (oxalic acid [OA], citric acid [CA]), amino acids (AA) and Pseudomonas fluorescens bacteria (PFB) on the metal uptake and translocation. After 12 months, the highest accumulation of Cu was observed in the root/stem of PFB plots (17.62/8.19 mg/kg), in the root/stem of CA plots for Zn (31.16/23.52 mg/kg) and in the root of OA plots for Cr (10.53 mg/kg). The highest accumulation of metals occurred in the roots (27.33–50.76 mg/kg). Zn was the metal that accumulated at the highest rates in most cases. The phytoextraction percentages were higher for Cu and Zn (~2%) with respect to Cr (~1%). The percentages of metal removal from soil indicate the need to monitor soil properties, to recognize the influence of each treatment and to increase the concentration of bioavailable metals by the use of agricultural management practices aimed at promoting plant growth.  相似文献   

8.
Due to rapid industrialization and urbanization during the last two decades, contamination of urban agricultural soils by heavy metals is on an increase all over China. In this study, fifty soil samples were collected from urban vegetable fields in a chemical industrial area and non chemical industrial area in Jilin City to investigate the heavy metal pollution level. The mean Pb, Cr, Cu, Ni, Zn, and Cd contents (30.84, 65.65, 26.41, 23.07, 135.14, and 0.1434 mg kg?1 dry weight, respectively) in the urban vegetable soils were higher than their corresponding natural background values. The principal component analysis (PCA) was performed to identify the possible sources of metal contamination in the study area. The results indicated that Cu and Zn were mainly from industrial activities, while Pb and Cd were derived from traffic activities and agricultural activities, and Cr and Ni tended to be from parent material. The distribution of comprehensive pollution index values showed that Pb, Cr, Cu, Ni, Zn, and Cd concentrations in most of the agricultural fields did not exceed the baseline values affecting the safety of agricultural production and human health according to the soil environmental quality standard of China, indicating an insignificant contamination of these metals in Jilin City.  相似文献   

9.
In the present investigation, four macrophytes, namely Typha latifolia (L.), Lemna minor (L.), Eichhornia crassipes (Mart.) Solms-Laubach, and Myriophyllum aquaticum (Vell.) Verdc, were evaluated for their heavy metal (Cu, Pb, Hg, and Zn) hyperaccumulation potential under laboratory conditions. Tolerance analyses were performed for 7 days of exposure at five different treatments of the metals mixture (Cu+2, Hg+2, Pb+2, and Zn+2). The production of chlorophyll and carotenoids was determined at the end of each treatment. L. minor revealed to be sensitive, because it did not survive in all the tested concentrations after 72 hours of exposure. E. crassipes and M. aquaticum displayed the highest tolerance to the metals mixture. For the most tolerant species of aquatic macrophytes, The removal kinetics of E. crassipes and M. aquaticum was carried out, using the following mixture of metals: Cu (0.5 mg/L) and Hg, Pb, and Zn 0.25 mg/L. The obtained results revealed that E. crassipes can remove 99.80% of Cu, 97.88% of Pb, 99.53% of Hg, and 94.37% of Zn. M. aquaticum withdraws 95.2% of Cu, 94.28% of Pb, 99.19% of Hg, and 91.91% of Zn. The obtained results suggest that these two species of macrophytes could be used for the phytoremediation of this mixture of heavy metals from the polluted water bodies.  相似文献   

10.
In this study, concentrations of trace metals such as As, Cd, Cu, Cr, Fe, Pb, Ni, Sn, Se, and Zn were determined in sediments, water, and a kind of fish (Mugil cephalus) of the central Black Sea coasts by employing Inductively Coupled Plasma Mass Spectrometry and microwave digestion technique. Gill, muscle, liver, and other tissues were analyzed separately for each sample. The accuracy of the results were checked by using a certified reference material (DORM-4). In water samples, the metal determined at highest concentrations was Cu (1645.44 µg/L). In sediment samples, the metal determined at highest concentrations was Fe (12223.50 mg/kg). The levels of trace metals found in the different parts of the fish were: Zn in muscle tissue (30393.28 mg/kg), Sn in gill tissue (5140.08 mg/kg), and Cu in liver tissue (289.31 mg/kg). These results were also compared with various relevant guidelines and literature.  相似文献   

11.
The Qingshan district of Wuhan City is a typical Chinese industrial area. An increase in heavy metal pollution in the region's soil, due to industrialization and urbanization, has become a serious environmental problem. Surface soil samples from 155 sites were collected and analyzed. The median concentrations of cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) in soil were 2.3, 46.2, 24.3, 28.2, and 86.8 mg/kg, respectively. Principal component analysis coupled with hierarchical cluster analysis showed that (1) in residential and industrial areas, Pb, Cu, and Zn concentrations were mainly affected by industrial emissions and traffic emissions, whereas in agricultural areas Cu and Zn were less affected by industrial emission and traffic emission, whereas Pb was affected by agricultural activities; and (2) Cd originated from a combination of sources, including industrial activities, traffic emission, and hypergene geochemical characteristics. The integrated pollution index varied from 1.1 to 16.6 with a mean of 3.9, and 70.6% of the area is extremely contaminated, 28.1% is heavily contaminated, and the remainder is moderately contaminated.  相似文献   

12.
Concentrations and spatial distribution of Zn, Cu, Cd, and Pb along two landscapes including a wastewater-irrigated area and a control area were determined to assess the impact of long-term wastewater irrigation and landscape properties on heavy metal contamination. Some disturbed and undisturbed soil samples were taken from soil trenches and soil cores, located on three main landscape positions (upper slope, midslope, and lower slope) in northwestern Iran. The investigation showed that the mean concentration of the heavy metals followed the order Zn > Cu > Pb > Cd in the wastewater-irrigated soil and Pb > Zn > Cu > Cd in the control soils. On average, compared to similar positions in the control region, the wastewater-irrigated regions contained 3.0 (midslope) to 4.9 (lower slope), 2.7 (midslope) to 4.6 (lower slope), 3.3 (upper slope) to 4.1 (lower slope), and 1.7 (upper slope) to 2.6 (lower slope) times higher amounts of Zn, Cu, Cd, and Pb, respectively. Significant positive relationships (P < 0.05) were recorded between the heavy metals concentration with <0.002 mm particle-size fraction and organic matter content, the fractions linked to runoff and soil erosion. It is believed that the two soil fractions play a crucial role in the distribution of the metals along the wastewater-irrigated landscape. Despite the significant increase of heavy metals (P < 0.05) in the wastewater-irrigated soils compared with control soils, the concentration of all evaluated metals was below the maximum accepted limits (Zn < 300 mg/kg, Cu < 100 mg/kg, Cd < 5 mg/kg, and Pb < 100 mg/kg), and grouped as “not-enriched” to “moderately-enriched” categories regarding the topsoil enrichment index. Overall, the lower slope was shown to be more contaminated with the heavy metals compared to the other positions.  相似文献   

13.
A total of 455 agricultural soil samples from four nonferrous mines/smelting sites in Shaoguan City, China, were investigated for concentrations of 10 heavy metals (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn). The mean concentrations of the metals were 72.4, 5.16, 13.3, 54.8, 84.5, 1.52, 425, 28.2, 529, and 722 mg kg?1, respectively. The values for As, Cd, Hg, Pb, and Zn were more than 8 and 1.5 times higher than their background values in this region and the limit values of Grade II soil quality standard in China, respectively. Estimated ecological risks based on contamination factors and potential ecological risk factors were also high or very high for As, Cd, Hg, and Pb. Multivariate analysis (Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis) strongly implied three distinct groups; i.e., As/Cu/Hg/Zn, Co/Cr/Mn/Ni, and Cd/Pb. Local anomalies for As, Cu, Hg, and Zn by a probably anthropogenic source (identified as mining activity), Co, Cr, Mn, and Ni by natural contribution, and a mixed source for Cd and Pb, were identified. This is one of the few studies with a focus on potential sources of heavy metals in agricultural topsoil around mining/smelting sites, providing evidence for establishing priorities in the reduction of ecological risks posed by heavy metals in Southern China and elsewhere.  相似文献   

14.
A study on identification of hotspots, spatial patterns, and risk evaluation of heavy metals in urban soils of Malayer city (Iran) was carried out. Fifty-nine composite surface soil samples were collected from six different land uses (urban parks, streets, and squares, boulevards, residential and agricultural areas) in Malayer city, and the total heavy metals were measured by atomic absorption spectroscopy. Average concentrations of Cd, Pb, Cu, and Zn, As, Cd, and Pb were 0.66, 15.51, 12.25, and 96.8 mg/kg, respectively. Among the six land uses, heavy metal contamination was heavier for street, while low contamination could be found for residential and urban parks. The spatial distribution of Pb in surface soil was similar to those of Cd, and Cu was similar to those of Zn with decreasing values from the central areas to the suburb. Also, there were several hotspots for studied heavy metals that Cd and Pb were mainly occurred in locations of heavy traffic in the city center and Cu and Zn in the west and northwestern in the city. The calculated result of risk evaluation showed that much of the city suffered from moderate to severe pollution by four of these heavy metals.  相似文献   

15.
To facilitate the application of anaerobic ammonium oxidation (anammox) to a nitrogen removal process, the effects of heavy metals (Ni, Cu, Co, Zn, and Mo) on anammox bacteria entrapped in gel carriers were examined by conducting continuous feeding tests for each metal. The results show that all anammox activities decreased by more than 10 % when influent concentrations of Ni, Cu, Co, Zn, and Mo were 5, 5, 5, 10, and 0.2 mg/L, respectively. It was observed that the effects of Ni, Cu, Co, and Zn on anammox activity were reversible and that of Mo on anammox activity was irreversible. Anammox activity was not affected when influent containing mixed Ni, Cu, Co, and Zn (0.5 mg/L) was fed into the reactor.  相似文献   

16.
蜈蚣草耐铅、铜、锌毒性和修复能力的研究   总被引:27,自引:5,他引:22  
安志装  陈同斌  雷梅  肖细元  廖晓勇 《生态学报》2003,23(12):2594-2598
重金属复合污染是主要土壤污染类型之一。为了探明蜈蚣草修复土壤重金属复合污染的能力,土培试验研究了分别添加不同浓度铅、铜、锌条件下蜈蚣草生物量变化,结果表明,不同浓度铅和较低浓度锌处理下蜈蚣草生物量呈显著性地增加,土壤Pb、Zn添加浓度分别为1750mg/kg和1350mg/kg,蜈蚣草生物量最大。说明蜈蚣草有极强的耐Pb、Zn毒性能力,能在较高有效态Pb或Zn污染土壤上正常生长。蜈蚣草具有一定的耐Cu毒性能力,在Cu耐性方面,蜈蚣草可能存在生态型的差异。以上结果说明,利用蜈蚣草修复萃取Pb—As,Zn—As,Cu-As等复合污染土壤上As有重要的意义。  相似文献   

17.
In-situ remediation is a practical approach to remediate soils contaminated with heavy metals. The MnFe2O4 microparticles (MM) were prepared for the in-situ remediation of contaminated soils from a lead–zinc polymetallic mine in Inner Mongolia province, China. The effects of MM dosage, pH on remediation efficiency, were determined with static vibration leaching experiment, and the release risk of heavy metals of treated soil was studied by column leaching experiment. The results showed that the leached Cu, Pb, Zn, and As concentration decreased drastically with increasing MM dosage, when the dosage was lower than 10 g/kg. Moreover, the decrease of pH caused increase of leached concentration of Cu, Pb, Zn, but slight decrease of leached As concentration. For the amended soil, concentrations of leached heavy metals were lower than Grade III limit of Chinese Environmental Quality Standards for Ground and Surface water (GB3838-2002) under simulated acid rain leaching condition. In comparison with non-amended soils, the total amount of Cu, Pb, Zn, and As release from amended soils was reduced by 93.6%, 69.2%, 57.0%, and 99.7%, respectively. The MM is a kind of promising amendment for heavy metals contaminated soil.  相似文献   

18.
The objective of this research was to use a counter-current leaching process (CCLP) with leachate treatment to develop a remediation process for contaminated soils at a small-arms shooting range (SASR). The soil contaminant concentrations were 245 mg Cu kg?1, 3,368 mg Pb kg?1, 73 mg Sb kg?1, and 177 mg Zn kg?1. The CCLP includes three acid leaching steps (1M H2SO4 + 4M NaCl, t = 1 h, T = 20°C, soil suspension = 100 g L?1), followed by one water rinsing step (1 h). Seven counter-current remediation cycles were completed, and the average resulting metal removals were 93.2 ± 3.5% of Cu, 91.5 ± 5.7% of Pb, 82.2 ± 10.9% of Sb, and 30.0 ± 11.4% of Zn. The metal leaching performances decreased with the number of completed cycles. Soil treated with the CCLP with leachate treatment process met the USEPA threshold criteria of 5 mg Pb L?1 in the TCLP leachate. The CCLP allows a decrease of the water use by 32.9 m3 t?1 and the chemicals’ consumption by approximately 2,650 kg H2SO4, 6,014 kg NaCl, and 1,150 kg NaOH per ton of treated soil, in comparison to standard leaching processes. This corresponds to 78%, 69%, 83%, and 67% of reduction, respectively.  相似文献   

19.
Northeast China is an intensive area of resource-exhausted city, which is facing the challenges of industry conversion and sustainable development. In order to evaluate the soil environmental quality influenced by mining activities over decades, the concentration and spatial distribution of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and Zinc (Zn) in surface soils (0-20cm) of a typical resource-exhausted city were investigated by analyzing 306 soil samples. The results showed that the average concentrations in the samples were 6.17 mg/kg for As, 0.19 mg/kg for Cd, 51.08 mg/kg for Cr, 23.27 mg/kg for Cu, 31.15 mg/kg for Ni, 22.17 mg/kg for Pb, and 54.21 mg/kg for Zn. Metals distribution maps produced by using the inverse distance weighted interpolation method and results revealed that all investigated metals showed distinct geographical patterns, and the concentrations were higher in urban and industrial areas than in farmland. Pearson correlation and principal component analysis showed that there were significant positive correlations (p<0.05) between all of the metals, and As, Cd, Cr, Mn, Ni, Pb, and Zn were closely associated with the first principal component (PC1), which explained 39.81% of the total variance. Cu and As were mainly associated with the second component (PC2). Based on the calculated Nemerow pollution index, percentage for slightly polluted (1<P ≤ 2) surface soils were reached 57.33%, while 42.65% topsoil samples are moderate polluted (2<P≤ 3). According to the results above-mentioned, different soil environmental function areas were classified and proper soil environmental management policy was proposed to decrease the environmental risks in the process of industrial city transformation.  相似文献   

20.
Concentrations of trace metals (Cu, Pb, Zn, Cd, Cr, Hg, and As) were determined for the first time in seawater, sediment, and Manila clam from Deer Island, Liaoning Province, China. The seawater, sediment, and clam samples were collected seasonally at three clam farming sites around Deer Island during 2010–2011. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg, and As in the seawater samples were 4.16, 0.72, 5.88, 0.45, 2.51, 0.03, and 1.02 μg/l, respectively. The seasonal variations of trace metals in seawater showed a significant difference in the concentrations of Cu, Pb, Zn, Hg, and As among seasons. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg, and As in the sediment samples were 6.43, 13.80, 53.08, 1.10, 36.40, 0.05, and 4.78 mg/kg dry weight, respectively. Trace metal concentrations in sediment seasonally varied significantly except for Cd and Hg. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg, and As in the clam samples were 11.28, 0.61, 92.50, 0.58, 3.98, 0.03, and 1.98 mg/kg dry weight, respectively. Concentrations of Cu, Zn, Cd, Cr, and As in Manila clam showed marked seasonal fluctuations with significant difference. Cu and Zn were the metals with the highest mean biosediment accumulation factor values in Manila clam. Besides, significant correlations for the concentrations of Cu and Zn relative to their concentrations in sediment were also found. Such differences in regression analyzes may be explained by differential bioaccumulation of essential and xenobiotic metals. Concentrations of trace metals in Manila clam did not exceed the maximum established regulatory concentrations for human consumption. Moreover, the calculations revealed that the estimated daily intake values for the examined clam samples were below the internationally accepted dietary guidelines and the calculated hazard quotient values were well less than 1, thus strongly indicating that health risk associated with the intake studied metals through the consumption of Manila clam from Deer Island was absent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号