首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Structural investigations on native collagen type I fibrils using AFM   总被引:1,自引:0,他引:1  
This study was carried out to determine the elastic properties of single collagen type I fibrils with the use of atomic force microscopy (AFM). Native collagen fibrils were formed by self-assembly in vitro characterized with the AFM. To confirm the inner assembly of the collagen fibrils, the AFM was used as a microdissection tool. Native collagen type I fibrils were dissected and the inner core uncovered. To determine the elastic properties of collagen fibrils the tip of the AFM was used as a nanoindentor by recording force-displacement curves. Measurements were done on the outer shell and in the core of the fibril. The structural investigations revealed the banding of the shell also in the core of native collagen fibrils. Nanoindentation experiments showed the same Young's modulus on the shell as well as in the core of the investigated native collagen fibrils. In addition, the measurements indicate a higher adhesion in the core of the collagen fibrils compared to the shell.  相似文献   

2.
Langmuir-Blodgett (LB) films of two heteroacid phospholipids of biological interest 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), as well as a mixed monolayer with χPOPC = 0.4, were transferred onto mica in order to investigate by a combination of atomic force microscopy (AFM) and force spectroscopy (FS) their height, and particularly, their nanomechanical properties. AFM images of such monolayers extracted at 30 mN m− 1 revealed a smooth and defect-free topography except for the POPE monolayer. Since scratching such soft monolayers in contact mode was proved unsuccessful, their molecular height was measured by means of the width of the jump present in the respective force-extension curves. While for pure POPC a small jump occurs near zero force, for the mixed monolayer with χPOPC = 0.4 the jump occurs at ∼ 800 pN. Widths of ∼ 2 nm could be established for POPC and χPOPC = 0.4, but not for POPE monolayer at this extracting pressure. Such different mechanical stability allowed us to directly measure the threshold area/lipid range value needed to induce mechanical stability to the monolayers. AFM imaging and FS were next applied to get further structural and mechanical insight into the POPE phase transition (LC-LC′) occurring at pressures > 36.5 mN m− 1. This phase transition was intimately related to a sudden decrease in the area/molecule value, resulting in a jump in the force curve occurring at high force (∼ 1.72 nN). FS reveals to be the unique experimental technique able to unveil structural and nanomechanical properties for such soft phospholipid monolayers. The biological implications of the nanomechanical properties of the systems under investigation are discussed considering that the annular phospholipids region of some transmembrane proteins is enriched in POPE.  相似文献   

3.
Techniques used in studies of polysaccharides, including chemical composition, linkage pattern, and higher order structures are in constant development. They provide information necessary for understanding of the polysaccharide properties and functions. Here, recent advancements in studies of the polysaccharides at the single-molecule level are highlighted. Over the last few years, single-molecule techniques such as force spectroscopy have improved in sensitivity and can today be used to detect forces in the pN range. In addition, these techniques can be used to investigate properties of single molecules close to physiological conditions. The challenges in the interpretation of the observations are aided by control experiments using well-characterised polysaccharides and by data provided by complementary methods. This field is expected to have increasing impact on the further advancement of the molecular understanding of the role of polysaccharides in various biological processes such as recognition and cell adhesion.  相似文献   

4.
细胞表面电荷的光镊测量方法及应用研究   总被引:1,自引:0,他引:1  
分析了细胞表面电荷测量的意义、方法和现状,提出采用光镊技术测量细胞表面电荷的方法,介绍了实现该方法的系统构成和检测原理。在电场力的作用下,处于悬浮液中的带电细胞产生电泳。在外加电场力为零时利用激光的陷阱力捕获该细胞,然后施加并逐渐加大外加电场力,直到细胞刚好逃脱光阱力的束缚时的瞬间光阱力,理论上就是细胞所带电荷在电场中产生的库仑力与粘滞力之和。  相似文献   

5.
  总被引:1,自引:0,他引:1  
Fibrin aggregation is of vital importance in many physiological and pathological processes, such as blood coagulation, wound healing, and thrombosis. In the present study, we investigated the forces involved in the initial steps of the fibrinogen fibrin aggregation by force spectroscopy using the atomic force microscope. Our data confirm the existence of strong specific interactions between fibrin and fibrin(ogen), with unbinding forces ranging from 290 to 375 pN and a logarithmic dependence on the loading rate between 0.8 and 23 nN/s.  相似文献   

6.
    
Simultaneous photoreduction and Raman spectroscopy with 532 nm laser has been used to study the effects of organophosphate (chlorpyrifos [CPF]) exposure on human red blood cells (RBCs). Since in RBCs, auto‐oxidation causes oxidative stress, which, in turn, is balanced by the cellular detoxicants, any possible negative effect of CPF on this balance should results in an increased level of damaged (permanently oxygenated) hemoglobin. Therefore, when 532 nm laser, at a suitable power, was applied to photoreduce the cells, only common oxygenated form of hemoglobin got photoreduced leaving the permanently oxygenated hemoglobin detectable in the Raman spectra simultaneously excited by the same laser. Using the technique effects of CPF to build up oxidative stress on RBCs could be detected at concentrations as low as 10 ppb from a comparison of relative strengths of different Raman bands. Experiments performed using simultaneously exposing the cells, along with CPF, to H2O2 (oxidative agent) and/or 3‐Aminotriazole (inhibitor of anti‐oxidant catalase), suggested role of CPF to suppress the cellular anti‐oxidant mechanism. Since the high level of damaged hemoglobin produced by the action of CPF (at concentrations >100 ppm) is expected to cause membrane damage, atomic force microscopy (AFM) was used to identify such damages.Upper panel: Raman spectra of normal, photoreduced CPF exposed and unexposed RBCs. Lower panel: The weak Fe‐O2 Raman band for CPF exposed cells shown on the left. The AFM images of unexposed and exposed cells are shown on the right. Scale bar, 2.5 μm.   相似文献   

7.
We report a new approach to probing DNA-protein interactions by combining optical tweezers with a high-throughput DNA curtains technique. Here we determine the forces required to remove the individual lipid-anchored DNA molecules from the bilayer. We demonstrate that DNA anchored to the bilayer through a single biotin-streptavidin linkage withstands ∼20 pN before being pulled free from the bilayer, whereas molecules anchored to the bilayer through multiple attachment points can withstand ?65 pN; access to this higher force regime is sufficient to probe the responses of protein-DNA interactions to force changes. As a proof-of-principle, we concurrently visualized DNA-bound fluorescently-tagged RNA polymerase while simultaneously stretching the DNA molecules. This work presents a step towards a powerful experimental platform that will enable concurrent visualization of DNA curtains while applying defined forces through optical tweezers.  相似文献   

8.
Optical traps exploit the radiation forces of laser light to manipulate microscopic particles. The ability to manipulate biological material and quantify the force required has been exploited in the biosciences; from the isolation of single cells to kinetic measurements of single motor molecules. This review describes the theory of optical trapping and using recent publications gives examples of how it has been employed across a broad spectrum of biological research.  相似文献   

9.
Alginates are (1→4)-linked structural copolyuronans consisting of β-d-mannuronic acid (M) and its C-5 epimer -l-guluronic acid (G). The residue sequence variation is introduced in a unique postpolymerisation step catalysed by a family of C-5 epimerases named AlgE enzymes. The seven known AlgE’s are composed of two modules, designated A and R, present in different number. The molecular details of the structure–function relationship of these seven epimerases, introducing specific residue sequences, are not understood. In this study, single-molecular pair interactions between alginate and AlgE enzymes were investigated using dynamic force spectroscopy. The AlgE enzymes AlgE4 and AlgE6, the recombinant construct PKA1 composed of A- and R-modules from various AlgE’s, as well as separate R- and A-modules were studied. The strength of the protein–mannuronan interaction, when applying a loading rate of 0.6 nN/s, varied from 73 pN (AlgE4) to 144 pN (A-module). The determined potential width, that is, the distance from the activation barrier to the bound substrate molecule, was 0.23 nm for AlgE4, 0.19 nm for AlgE6 and 0.1 nm for the A-module. No attraction was observed between the R-module and the substrate. The observations indicate that the A-module contains the substrate binding site and that the R-module modulates the enzyme–substrate binding strength. The observed AlgE4-polymer residence times, two orders of magnitude longer than expected from kcat reported for AlgE4, not observed for PKA1, led us to propose a processive mode of action of AlgE4.  相似文献   

10.
Possible covert damage from the use of the laser optical force trap (laser tweezers) to reposition micronuclei in Paramecium tetraurelia was assessed by measuring proliferation rates and postautogamous survival and mutation rates of cells after laser manipulations. No differences in subsequent daily proliferation rates among laser manipulated and various control classes of cells were seen. Similarly, the rates of postautogamous lethality and of “slow growth mutations” after repositioning of both micronuclei were not different from such rates in unmanipulated controls. In spite of extensive manipulations of micronuclei by the laser tweezers, there is no evidence of any damage induced by these manipulations. The laser tweezers therefore appears to be a tool of benign effect upon living cells, with tremendous potential use in many cell and developmental biological investigations.  相似文献   

11.
    
Lipopolysaccharide (LPS) on gram‐negative bacterial outer membranes is the first target for antimicrobial agents, due to their spatial proximity to outer environments of microorganisms. To develop antibacterial compounds with high specificity for LPS binding, the understanding of the molecular nature and their mode of recognition is of key importance. In this study, atomic force microscopy (AFM) and single molecular force spectroscopy were used to characterize the effects of antibiotic polymyxin B (PMB) to the bacterial membrane at the nanoscale. Isolated LPS layer and the intact bacterial membrane were examined with respect to morphological changes at different concentrations of PMB. Our results revealed that 3 hours of 10 μg/mL of PMB exposure caused the highest roughness changes on intact bacterial surfaces, arising from the direct binding of PMB to LPS on the bacterial membrane. Single molecular force spectroscopy was used to probe specific interaction forces between the isolated LPS layer and PMB coupled to the AFM tip. A short range interaction regime mediated by electrostatic forces was visible. Unbinding forces between isolated LPS and PMB were about 30 pN at a retraction velocity of 500 nm/s. We further investigated the effects of the polycationic peptide PMB on bacterial outer membranes and monitored its influences on the deterioration of the bacterial membrane structure. Polymyxin B binding led to rougher appearances and wrinkles on the outer membranes surface, which may finally lead to lethal membrane damage of bacteria. Our studies indicate the potential of AFM for applications in pathogen recognition and nano‐resolution approaches in microbiology.  相似文献   

12.
    
Although CD69 is well known as an early T cell‐activation marker, the possibility that CD69 are distributed as nano‐structures on membrane for immune regulation during T cell activation has not been tested. In this study, nanoscale features of CD69 expression on activated T cells were determined using the atomic force microscopy (AFM) topographic and force‐binding nanotechnology as well as near‐field scanning optical microscopy (NSOM)‐/fluorescence quantum dot (QD)‐based nanosacle imaging. Unstimulated CD4+ T cells showed neglectable numbers of membrane CD69 spots binding to the CD69 Ab‐functinalized AFM tip, and no detectable QD‐bound CD69 as examined by NSOM/QD‐based imaging. In contrast, Phytohemagglutinin (PHA)‐activated CD4+ T cells expressed CD69, and displayed many force‐binding spots binding to the CD69 Ab‐functionalized AFM tip on about 45% of cell membrane, with mean binding‐rupture forces 276 ± 71 pN. Most CD69 molecules appeared to be expressed as 100–200 nm nanoclusters on the membrane of PHA‐activated CD4+ T cells. Meanwhile, NSOM/QD‐based nanoscale imaging showed that CD69 were non‐uniformly distributed as 80–200 nm nanoclusters on cell‐membrane of PHA‐activated CD4+ T cells. This study represents the first demonstration of the nano‐biology of CD69 expression during T cell activation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
本文从激光的生物效应出发,简要阐述了激光微束与光钳系统的出现历程及其装置构造,系统分析了其作用原理,并介绍了其作为一新技术,在外源基因导入,体外辅助受精,细菌融合和显微操作染色体与生物大分子等方面的应用状况,同时对其应用前景作一展望。  相似文献   

14.
    
AFMBioMed is the founding name under which international conferences and summer schools are organized around the application of atomic force microscopy in life sciences and nanomedicine. From its inception at the Atomic Energy Commission in Marcoule near 2004 to its creation in 2007 and to its 10th anniversary conference in Krakow, a brief narrative history of its birth and rise will demonstrate how and what such an organization brings to laboratories and the AFM community. With the current planning of the next AFMBioMed conference in Münster in 2019, it will be 15 years of commitment to these events.  相似文献   

15.
P-pili of uropathogenic Escherichia coli mediate the attachment to epithelial cells in the human urinary tract and kidney and therefore play an important role in infection. A better understanding of this mechanism could help to prevent bacteria from spreading but also provides interesting insights into molecular mechanics for future nanotech applications. The helical rod design of P-pili provides an efficient design to withstand hydrodynamic shear forces. The adhesive PapG unit at the distal end of the P-pilus forms a specific bond with the glycolipid Galabiose. This bond has a potential width Deltax = 0.7 +/- 0.15 nm and a dissociation rate K (Off) = 8.0.10(-4) +/- 5.0.10(-4) s(-1). It withstands a force of approximately 49 pN under physiological conditions. Additionally, we analyzed the behavior of unstacking and restacking of the P-pilus with dynamic force spectroscopy at velocities between 200 and 7,000 nm/s. Up to a critical extension of 66% of the totally stretched P-pilus, un/re-stacking was found to be fully reversible at velocities up to 200 nm/s. If the P-pilus is stretched beyond this critical extension a characteristic hysteresis appears upon restacking. This hysteresis originates from a nucleation process comparable to a first-order phase transition in an undercooled liquid. Analysis of the measurement data suggests that 20 PapA monomers are involved in the formation of a nucleation kernel.  相似文献   

16.
    
Recently, it was revealed that tumor cells are significantly softer than normal cells. Although this phenomenon is well known, it is connected with many questions which are still unanswered. Among these questions are the molecular mechanisms which cause the change in stiffness and the correlation between cell mechanical properties and their metastatic potential. We studied mechanical properties of cells with different levels of cancer transformation. Transformed cells in three systems with different transformation types (monooncogenic N-RAS, viral and cells of tumor origin) were characterized according to their morphology, actin cytoskeleton and focal adhesion organization. Transformation led to reduction of cell spreading and thus decreasing the cell area, disorganization of actin cytoskeleton, lack of actin stress fibers and decline in the number and size of focal adhesions. These alterations manifested in a varying degree depending on type of transformation. Force spectroscopy by atomic force microscopy with spherical probes was carried out to measure the Young's modulus of cells. In all cases the Young's moduli were fitted well by log-normal distribution. All the transformed cell lines were found to be 40–80% softer than the corresponding normal ones. For the cell system with a low level of transformation the difference in stiffness was less pronounced than for the two other systems. This suggests that cell mechanical properties change upon transformation, and acquisition of invasive capabilities is accompanied by significant softening.  相似文献   

17.
Lipid bilayers determine the architecture of cell membranes and regulate a myriad of distinct processes that are highly dependent on the lateral organization of the phospholipid molecules that compose the membrane. Indeed, the mechanochemical properties of the membrane are strongly correlated with the function of several membrane proteins, which demand a very specific, highly localized physicochemical environment to perform their function. Several mesoscopic techniques have been used in the past to investigate the mechanical properties of lipid membranes. However, they were restricted to the study of the ensemble properties of giant bilayers. Force spectroscopy with AFM has emerged as a powerful technique able to provide valuable insights into the nanomechanical properties of supported lipid membranes at the nanometer/nanonewton scale in a wide variety of systems. In particular, these measurements have allowed direct measurement of the molecular interactions arising between neighboring phospholipid molecules and between the lipid molecules and the surrounding solvent environment. The goal of this review is to illustrate how these novel experiments have provided a new vista on membrane mechanics in a confined area within the nanometer realm, where most of the specific molecular interactions take place. Here we report in detail the main discoveries achieved by force spectroscopy with AFM on supported lipid bilayers, and we also discuss on the exciting future perspectives offered by this growing research field.  相似文献   

18.
19.
Protein misfolding is conformational transition dramatically facilitating the assembly of protein molecules into aggregates of various morphologies. Spontaneous formation of specific aggregates, mostly amyloid fibrils, was initially believed to be limited to proteins involved in the development of amyloidoses. However, recent studies show that, depending on conditions, the majority of proteins undergo structural transitions leading to the appearance of amyloidogenic intermediates followed by aggregate formation. Various techniques have been used to characterize the protein misfolding facilitating the aggregation process, but no direct evidence as to how such a conformational transition increases the intermolecular interactions has been obtained as of yet. We have applied atomic force microscopy (AFM) to follow the interaction between protein molecules as a function of pH. These studies were performed for three unrelated and structurally distinctive proteins, alpha-synuclein, amyloid beta-peptide (Abeta) and lysozyme. It was shown that the attractive force between homologous protein molecules is minimal at physiological pH and increases dramatically at acidic pH. Moreover, the dependence of the pulling forces is sharp, suggesting a pH-dependent conformational transition within the protein. Parallel circular dichroism (CD) measurements performed for alpha-synuclein and Abeta revealed that the decrease in pH is accompanied by a sharp conformational transition from a random coil at neutral pH to the more ordered, predominantly beta-sheet, structure at low pH. Importantly, the pH ranges for these conformational transitions coincide with those of pulling forces changes detected by AFM. In addition, protein self-assembly into filamentous aggregates studied by AFM imaging was shown to be facilitated at pH values corresponding to the maximum of pulling forces. Overall, these results indicate that proteins at acidic pH undergo structural transition into conformations responsible for the dramatic increase in interprotein interaction and promoting the formation of protein aggregates.  相似文献   

20.
SfiI belongs to a family of restriction enzymes that function as tetramers, binding two recognition regions for the DNA cleavage reaction. The SfiI protein is an attractive and convenient model for studying synaptic complexes between DNA and proteins capable of site-specific binding. The enzymatic action of SfiI has been very well characterized. However, the properties of the complex before the cleavage reaction are not clear. We used single-molecule force spectroscopy to analyze the strength of interactions within the SfiI-DNA complex. In these experiments, the stability of the synaptic complex formed by the enzyme and two DNA duplexes was probed in a series of approach-retraction cycles. In order to do this, one duplex was tethered to the surface and the other was tethered to the probe. The complex was formed by the protein present in the solution. An alternative setup, in which the protein was anchored to the surface, allowed us to probe the stability of the complex formed with only one duplex in the approach-retraction experiments, with the duplex immobilized at the probe tip. Both types of complexes are characterized by similar rupture forces. The stability of the complex was determined by measuring the dependence of rupture forces on force loading rates (dynamic force spectroscopy) and the results suggest that the dissociation reaction of the SfiI-DNA complex has a single energy barrier along the dissociation path. Dynamic force spectroscopy was instrumental in revealing the role of the 5 bp spacer region within the palindromic recognition site on DNA-SfiI in the stability of the complex. The data show that, although the change of non-specific sequence does not alter the position of the activation barrier, it changes values of the off rates significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号