首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
This study examined the performance of pilot-scale vertical subsurface flow constructed wetlands (VSF–CWs) planted with three indigenous plants, i.e. Typha latifolia, Cyperus alternifolius, and Cynodon dactylon, in removing heavy metals from secondary treated refinery wastewater under tropical conditions. The T. latifolia-planted VSF–CW had the best heavy metal removal performance, followed by the Cyperus alternifolius-planted VSF–CW and then the Cynodon dactylon-planted VSF–CW. The data indicated that Cu, Cr, Zn, Pb, Cd, and Fe were accumulated in the plants at all the three VSF–CWs. However, the accumulation of the heavy metals in the plants accounted for only a rather small fraction (0.09–16%) of the overall heavy metal removal by the wetlands. The plant roots accumulated the highest amount of heavy metals, followed by the leaves, and then the stem. Cr and Fe were mainly retained in the roots of T. latifolia, Cyperus alternifolius, and Cynodon dactylon (TF < 1), meaning that Cr and Fe were only partially transported to the leaves of these plants. This study showed that VSF–CWs planted with T. latifolia, Cyperus Alternifolius, and Cynodon dactylon can be used for the large-scale removal of heavy metals from secondary refinery wastewater.  相似文献   

2.
We determined leaf and stem strength for Arundo donax from plants grown in different geographic areas and at different times within their growing cycle. Mean leaf strength for plants collected within California was 1.72 Newtons (N) and ranged from 0.36 to 6.32 N, based on 1170 individual determinations. For leaves collected from 30 plants within four states between July 11 and 20, 2007, mean leaf strength was 1.58 N based on 936 determinations. Values ranged from 0.24 to 4.90 N. Overall, leaf strength showed statistically significant changes depending on the sampling date, sampling location, type of leaf sampled, and position within the leaf where the measurement was taken. In general leaf strength was greater near the base of the leaf and decreased with distance away from the base; leaf strength changed as the growing season progressed; and first year leaves had leaf strength values about 25% greater than leaves produced on stems >1-year old. This represents two of the three age categories of leaves which may be present on giant reed at any one time. Stem strength and stem wall thickness were strongly correlated (Kendall's Tau b = 0.92, P < 0.0001, N = 26). Linear regression indicated that mean stem strength decreased by approximately 6.8% (95% confidence limits 5.8-7.7%) from one node to the successive node progressing from the stem base to the shoot tip. These results imply that the ability of biological control agents to damage A. donax leaves may not be the same across the locations this plant occurs or at all times during the growing season within a given location.  相似文献   

3.
We developed an equation for estimating Arundo donax shoot dry weight from shoot length. The equation, shoot dry weight (g) = 14.254 (standard error = ±0.275) × shoot height2 (m), was as effective at explaining a high proportion of total variation in shoot dry weight (R2 = 0.90) as more complicated equations containing additional morphometric parameters. Tested against two independent datasets, the equation provided accurate estimates of dry weight for shoots ranging from 0.3 to 7.06 m height (dataset 1, P < 0.0001, R2 = 0.87, N = 29; dataset 2, P < 0.0001, R2 = 0.82, N = 192). The equation provides aboveground biomass estimates from stem counts and heights more rapidly than harvest methods.  相似文献   

4.
Arundo donax is a tall perennial reed. Once established, it spreads by producing new shoots (ramets) from rhizomes. We performed two separate experiments to test the hypotheses that temperature (7, 8, 14, 16, or 20 °C) and combinations of temperature and nitrate concentration (0, 0.3, 0.6,1.2, 2.4, 3.6, 4.8, and 6.0 mg/l nitrate) regulated the initiation of ramet production. No ramets emerged from rhizome sections at 7 or 8 °C, but ramets emerged at 14, 16, and 20 °C. Neither time to ramet emergence nor the number of ramets that emerged was influenced by nitrate level in the watering solution. We used the above results in combination with ramet emergence data from plants grown outdoors at Davis, California to develop degree-day equations for three separate ramet cohorts. When compared to ramet emergence from different plants in different years, there was very good agreement between predicted and actual ramet emergence indicating that these equations provide a realistic representation of processes involved in ramet emergence. This is an important step in developing integrated management plans for this species.  相似文献   

5.
Xu X  Gao B  Yue Q  Zhong Q 《Bioresource technology》2011,102(9):5278-5282
A sorption process for the removal of phosphate was evaluated under various conditions using a filter bed packed with giant reed (GR) based adsorbent. FTIR spectrum measurement validated the existence of grafted amine groups in the adsorbent and Raman spectrum displayed the characteristic peaks of different forms of phosphate. The column sorption capacity of the adsorbent for phosphate was 54.67 mg g−1 in comparison with the raw GR of 0.863 mg g−1. Influent pH demonstrated an essential effect on the performance of the filter bed as compared to other influent conditions (flow rates and influent concentrations) and the optimal pH was selected at 5.0-10.0. Eluents of HCl, NaOH and NaCl solutions with concentrations of 0.01-0.1 mol l−1 showed the excellent capacities for desorption of phosphate from the adsorbent, and their elution processes could be finished in 90 min.  相似文献   

6.
Phytoremediation is thought to be the most sustainable wastewater treatment option for developing countries. However, its application is often limited by unavailability of suitable candidate species. In the present study, the potentials of Limnocharis flava, Thalia geniculata and Typha latifolia for remediation of heavy metal contaminated wastewater with a constructed wetland system were evaluated. The wetland consisted of three treatment lines each planted with sufficient and equal number of a species. Duplicate plant and water samples were collected bi-monthly and analyzed for Fe, Cu, Zn, Pb, and Hg using the atomic absorption spectrophotometer over a six month period. Bioaccumulation rates generally increased over time and varied among plants for these metals, with Fe (456–1549 mg kg1 roots; 20–183 mg kg?1 shoot) being the most sequestered and Pb (1.2–7.6 mg kg?1 roots; 1.55–3.95 mg kg?1 shoot) the least. Translocation factors differed among the species but generally remained stable over time. L. flava showed potential for hyperaccumulating Hg. Removal efficiencies varied for the studied metals (~ 20–77 %) and were generally related to metal uptake by the plants. These results demonstrate the suitability of the species for phytoremediation, and the usefulness of the technique as an option for improving irrigation water quality in Ghana.

Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file.  相似文献   

7.
Untreated industrial wastewater (IWW) creates a number of problems in ecosystem. This study highlights the possibility of using IWW for forest irrigation. Five tree species were selected for this study, Albizia lebbeck, Bauhinia purpurea, Dalbergia sissoo, Millettia peguensis, and Pongamia pinnata, and these species were grown in pots and were irrigated with different concentrations of IWW, rich in heavy metals. All the species showed positive results for fresh weight, plant height, and stem diameter. The maximum proline content was observed in B. purpurea (6.33), whereas the least quantity was observed in P. pinnata (3.89). Lead uptake (163.801?mg/day) by B. purpurea was promising. Uptake of Cr and Cu was slow in all species. Translocation factor of D. sissoo was maximum, that is 3.37. This study successfully combats wastewater problem. These five species are much tolerant in IWW and can be successfully used for phytoextraction processes. The chromium accumulation in stem is as follows: D. sissoo?>?A. lebbeck?>?M. peguensis?>?P. pinnata?>?B. purpurea. Metal Bioaccumulation in leaf and root was less. The idea is to utilize IWW to generate urban forests (in eco-friendly and sustainable way), which can reduce multiple problems such as IWW toxicity and air pollution through urban forestry.  相似文献   

8.
Several Lupinus species, for example, Lupinus albus, Lupinus luteus, Lupinus angustifolius, and Lupinus hispanicus were used to accumulate Mn(II), Cd(II), Pb(II), Cr(III), Cr(VI), Hg2+, and CH3Hg+ from waste waters. The influence of different species concentrations (50 and 100 mg L-1) and pH on growing behavior as well as the resulting distribution of metals in the plants were investigated. The results obtained showed that lupins were able to germinate and to grow in the presence of the metals mentioned above, even when they were present at levels as high as 50 mg L-1. Accumulation of Pb(II), Cr(III), and Cd(II) was higher in roots than in shoots. As far as mercury is concerned, the highest CH3Hg and Hg2+ accumulation was detected in roots, but fast transport toward the leaves was noticed. In contrast to mercury, the uptake of chromium seems to be influenced by the chemical form of the analyte, remaining Cr(VI) in solution. No differences in growing behavior and accumulation were observed for the four Lupinus species studied. Even though plants were exposed only a relatively short time to the metal solutions, metal concentrations of approximately 2 g/kg of dry matter were detected in the young lupins plants. The feasibility of utilizing Lupinus plants for the removal of heavy metals from wastewater was also investigated. Lupins were able to grow under extreme conditions (wastewater, pH lower than 2) and to remove 98% of the initial amount of toxic metals present in the sample.  相似文献   

9.
In the present investigation, four macrophytes, namely Typha latifolia (L.), Lemna minor (L.), Eichhornia crassipes (Mart.) Solms-Laubach, and Myriophyllum aquaticum (Vell.) Verdc, were evaluated for their heavy metal (Cu, Pb, Hg, and Zn) hyperaccumulation potential under laboratory conditions. Tolerance analyses were performed for 7 days of exposure at five different treatments of the metals mixture (Cu+2, Hg+2, Pb+2, and Zn+2). The production of chlorophyll and carotenoids was determined at the end of each treatment. L. minor revealed to be sensitive, because it did not survive in all the tested concentrations after 72 hours of exposure. E. crassipes and M. aquaticum displayed the highest tolerance to the metals mixture. For the most tolerant species of aquatic macrophytes, The removal kinetics of E. crassipes and M. aquaticum was carried out, using the following mixture of metals: Cu (0.5 mg/L) and Hg, Pb, and Zn 0.25 mg/L. The obtained results revealed that E. crassipes can remove 99.80% of Cu, 97.88% of Pb, 99.53% of Hg, and 94.37% of Zn. M. aquaticum withdraws 95.2% of Cu, 94.28% of Pb, 99.19% of Hg, and 91.91% of Zn. The obtained results suggest that these two species of macrophytes could be used for the phytoremediation of this mixture of heavy metals from the polluted water bodies.  相似文献   

10.
Abstract

The toxicity, mobility, bioavailability and bioaccumulation of metals are dependent on the particular physico-chemical form in which the element occurs in the environment. Special attention has been paid to metals which are essential for the proper functioning of organisms if present in appropriate amounts but are toxic if in excess (i.e. Se, Cr), and also to non-essential elements (i.e. Hg, Pb, Cd, Sn and As). To assess the potential hazard to the health of marine organisms, qualitative and quantitative analyses of metal species accumulating along the food chain needs to be carried out. This paper reviews the available information on the speciation of trace elements in the food chain in marine ecosystems and the analytical tools used for acquiring reliable information in this field. Advantages and limitations of commonly used techniques indicate that all metal species in different samples need diverse extraction, separation and detection conditions. Although not recommending which procedure is the most suitable to determine a given compound, speciation analysis has the potential to be a powerful tool for the identification of trace element species in biological samples.  相似文献   

11.
刘延滨  牟溥 《植物生态学报》2010,34(12):1472-1484
植物根资源捕获塑性是地下生态学研究的重点之一, 在过去二三十年间有长足的进步。菌根塑性是根资源捕获塑性的重要方面, 但由于研究手段的限制, 目前仅有概念上的探讨。缺乏菌根塑性的根塑性研究至少是不全面的。菌根生物学的迅速发展, 尤其是分子生物学手段的介入, 使对菌根塑性进行深入研究成为可能。该文对外生菌根塑性进行讨论, 在简要介绍了外生菌根的生物学基本知识后, 着重讨论了外生菌根形态塑性和生理塑性的定义与内涵。通过文献综述, 分析讨论了外生菌根塑性的研究现状: 很少有研究聚焦在菌根塑性本身, 现有的材料多为其他研究的隐示或研究结果的引申, 并多在形态塑性方面。外生菌根的生理塑性未见有直接的实验数据。该文还对外生菌根研究中发展的、可用于菌根塑性研究的方法进行了综述。由于外生菌根塑性的复杂性, 对菌根塑性的研究会较植物根本身塑性的研究复杂得多, 问题也会相对复杂, 比如植物和外生菌根菌之间的营养需求关系、植物外生菌根塑性的生态意义、实验方法的缺陷等等。对今后外生菌根塑性研究的方向进行了探讨。  相似文献   

12.
Trace metal/metalloid (As, Ag, Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn) bioaccumulation was measured over a period of ten years (1985–1995) in five species of epibenthic macroinvertebrates (EMI) from the San Pedro Shelf, California. Four of the species are numerical dominants in the Southern California Bight (SCB) and two species are commercially harvested. Among three echinoderms, a predatory sea star yielded highest tissue concentrations compared to a sea cucumber and a sea urchin, and concentrations measured in a mantid shrimp exceeded those from a prawn. Comparison of trace metal bioaccumulation from the study area, including the ocean outfall, and elsewhere indicated that bioaccumulation in local EMI was generally low. Measurements from an outfall station and two reference stations were used to evaluate the spatial and temporal relationship between trace metal bioaccumulation and the wastewater discharge. It was concluded that there was no spatial or temporal relationship between EMI trace metal bioaccumulation and the discharge.  相似文献   

13.
Phytoremediation is a technology to clean the environment from heavy metals contamination. The objectives of this study are to threat Pb contaminated wastewater by using phytoremediation technology and to determine if the plant can be mention as hyperaccumulator. Fifty plants of Scirpus grossus were grown in sand medium and 600 L spiked water in various Pb concentration (10, 30 and 50 mg/L) was exposed. The experiment was conducted with single exposure method, sampling time on day-1, day-14, day-28, day-42, day-70, and day-98. The analysis of Pb concentration in water, sand medium and inside the plant tissue was conducted by ICP-OES. Water samples were filtered and Pb concentration were directly analyzed, Pb in sand samples were extracted by EDTA method before analyzed, and Pb in plant tissues were extracted by wet digestion method and analyzed. The results showed that on day-28, Pb concentration in water decreased 100%, 99.9%, 99.7%, and the highest Pb uptake by plant were 1343, 4909, 3236 mg/kg for the treatment of 10, 30, and 50 mg/L respectively. The highest BC and TF were 485,261 on day-42 and 2.5295 on day-70 of treatment 30 mg/L, it can be mentioned that Scirpus grossus is a hyperaccumulator.  相似文献   

14.
Bioaccumulation of heavy metals in aquatic plants is significantly affected by hydrological regime and therefore the accumulation and translocation of cadmium in five organs—panicle, leaf, stem, root, and bud—of an emergent plant (Miscanthus sacchariflorus) were compared between the submerged environment and non-submerged environment. In the submerged condition, the cadmium concentration was higher in the panicle and leaf than in the stem, root, and bud. Cadmium concentration in the root exhibited a positive regression with cadmium concentration in the sediment. However, cadmium concentration in the panicle, leaf, stem, and bud exhibited no significant regression with cadmium concentration in the sediment. In the non-submerged environment, the cadmium concentration was higher in the below-ground organs than in the aboveground organs. The mean bioaccumulation coefficient in the 24 investigated plots in the submerged environment was higher than that in the 20 and 40?mg kg?1 cadmium treatments in the non-submerged environment. The mean translocation factor in the submerged environment was nine times higher than that in non-submerged environment. These results indicate that submergence enhanced cadmium bioaccumulation in the aboveground organs and that this plant can be used to remove heavy metals from polluted rivers and lakes.  相似文献   

15.
5种湿地植物对土壤重金属的富集转运特征   总被引:4,自引:0,他引:4       下载免费PDF全文
选择芦苇、水葱、千屈菜、扁秆藨草、长苞香蒲5种湿地植物进行盆栽实验,比较它们对土壤中的5种重金属镉、铬、汞、铅、锌的富集特性,分析重金属在各植物体和土壤中的动态分布,以评价所测植物对土壤中重金属的综合富集能力,为利用植物修复金属污染土壤提供理论依据和技术支持。结果表明:(1)种植湿地植物对土壤重金属的富集效果显著高于无植物对照,且随着处理时间的延长,土壤中重金属镉、铬、汞、铅、锌的含量均呈下降趋势。(2)湿地植物对重金属镉、铬、汞、铅、锌的富集效果差异显著,其中水葱根部对重金属镉的富集系数最大,芦苇根部对重金属铬、汞、铅、锌的富集系数均最大,千屈菜、扁秆藨草和长苞香蒲根部对5种重金属的富集系数均较小;芦苇地上部分对金属镉的富集系数最大,千屈菜地上部分对金属铬、汞、铅的富集系数均最大,水葱地上部分对金属锌的富集系数最大。(3)5种湿地植物对重金属镉、铬、汞、铅、锌的转移系数差异显著,其中扁秆藨草对土壤中镉、铬、铅、锌的转移系数均为最大,对铬和锌的转移系数均大于1,长苞香蒲对铬的转移系数大于1,仅次于扁秆藨草。其他3种植物对5种重金属的转移系数均小于1。研究表明,5种湿地植物对重金属Cd、Cr、Hg、Pb、Zn都有富集和转移的能力,但不同植物对不同重金属的富集效果不同。  相似文献   

16.
Dispersion and runoff of mine tailings have serious implications for human and ecosystem health in the surroundings of mines. Water, soils and plants were sampled in transects perpendicular to the Santiago stream in Zimapan, Hidalgo, which receives runoff sediments from two acidic and one alkaline mine tailing. Concentrations of potentially toxic elements (PTE) were measured in water, soils (rhizosphere and non-rhizosphere) and plants. Using diethylenetriaminepentaacetic acid (DTPA) extractable concentrations of Cu, Zn, Ni, Cd and Pb in rhizosphere soil, the bioconcentration and translocation factors were calculated. Ruderal annuals formed the principal element of the herbaceous vegetation. Accumulation was the most frequent strategy to deal with high concentrations of Zn, Cu, Ni, Cd and Pb. The order of concentration in plant tissue was Zn>Pb>Cu>Ni>Cd. Most plants contained concentrations of PTE considered as phytotoxic and behaved as metal tolerant species. Rorippa nasturtium-aquaticum accumulated particularly high concentrations of Cu. Parietaria pensylvanica and Commelina diffusa, common tropical weeds, behaved as Zn hyperaccumulators and should be studied further.  相似文献   

17.
Bioaccumulation of metals in mixtures may demonstrate competitive, anticompetitive, or non-competitive inhibition, as well as various combinations of these and/or enhancement of metal uptake. These can be distinguished by plotting (metal in water)/(metal in tissue) against metal in water and comparison to equivalent plots for single-metal exposure. For the special case of pure competitive inhibition where only one site of uptake is involved, inhibition of metal accumulation in any metal mixture can be predicted from bioaccumulation of the metals when present singly. This is consistent with the commonly used Biotic Ligand Model (BLM) but does not explain bioaccumulation of metals in Hyalella azteca. Options for modelling toxicity of metal mixtures include concentration or response addition based on metal concentrations in either water or tissues. If the site of toxic action is on the surface of the organism, if this is the same as the site of metal interaction for bioaccumulation, if there is only one such type of site, and if metal bioaccumulation interactions are purely competitive (as in the BLM), then metal toxicity should be concentration additive and predictable from metal concentrations in either water or tissues. This is the simplest toxicity interaction to model but represents only one of many possibilities. The BLM should, therefore, be used with caution when attempting to model metal interactions, and other possibilities must also be considered.  相似文献   

18.
  总被引:1,自引:0,他引:1  
Toxicity evaluations of heavy metals against three benthic animals, Tympanotonus fuscatus, Clibanarius africanus and Sesarma huzardi of the Lagos Lagoon were carried out under laboratory conditions. On the basis of the 96hLC50 values, Cd was found to be the most toxic metal tested followed by Cu, Zn and Pb, in a descending order of toxicity against T. fuscatus and S. huzardi; however, against C. africanus, Cu was the most toxic followed by Cd, Zn and Pb (least toxic). The determination of the metal concentrations in the water column and sediment of the Lagos Lagoon revealed that these media of the lagoon contained measurable concentrations of heavy metals but the levels were still several folds lower than the concentrations that will cause 50% mortality of exposed animals under laboratory conditions. The significance of the observed differences between the 96hLC50 values of the test metals, the concentration of heavy metals detected in tissues of field animals and ambient levels of the metals in the Lagos lagoon were discussed in relation to the protection of aquatic lives and potential public health risks. The need to verify the possibilities of synergistic interactions between the constituent metals when acting jointly against the exposed animals was recommended.  相似文献   

19.
Waste dumps resulting from metal exploitation create serious environmental damage, providing soil and water degradation over long distances. Phytostabilization can be used to remediate these mining sites. The present study aims to evaluate the behavior of selected plant species (Erica arborea, Ulex europaeus, Agrostis delicatula, and Cytisus multiflorus) that grow spontaneously in three sulfide-rich waste-dumps (Lapa Grande, Cerdeirinha, and Penedono, Portugal). These sites represent different geological, climatic and floristic settings. The results indicate distinctive levels and types of metal contamination: Penedono presents highest sulfate and metal contents, especially As, with low levels of Fe. In contrast, at Lapa Grande and Cerdeirinha Fe, Mn, and Zn are the dominant metals. In accordance, each waste dump develops a typical plant community, providing a specific vegetation inventory. At Penedono, Agrostis delicatula accumulates As, Pb, Cu, Mn, and Zn, showing higher bioaccumulation factors (BF) for Mn (32.1) and As (24.4). At Cerdeirinha, Ulex europaeus has the highest BF for Pb (984), while at Lapa Grande, Erica arborea presents high BF for Mn (9.8) and Pb (8.1). Regarding TF, low values were obtained for most of the metals, especially As (TF < 1). Therefore, the results obtained from representative plant species suggest appropriate behavior for phytostabilization measures.  相似文献   

20.
    
Soil water deficit constrains crop growth more than any other abiotic stress, both per se and in combination with other factors, making drought resistance a key element for the successful exploitation of marginal areas. Arundo donax (Poaceae), is a mesophyte that can adapt to a wide variety of ecological conditions, although its growth can be retarded by a shortage of water. The objective of the present research is to draw a comprehensive picture of the integrated response mechanisms of A. donax to controlled drought conditions, and characterize its ability to recover upon rewatering in terms of photochemical efficiency. Plants were subjected to a gradually applied drought stress for a period of three weeks, after which they were returned to fully hydrated soil conditions for one week. Overall, plant dry weight and key growth parameters were not significantly affected. However, detrimental effects were visible in the form of impaired leaf gas exchange, which influences the performance of photosynthesis, and pre-dawn leaf water potential (pdΨW), ?92.1% of net CO2 assimilation rate and ?0.36 MPa, respectively at the cessation of stress. Nonetheless, a rapid restoration of A. donax physiological functions was observed upon rewatering, testifying to the environmental plasticity of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号