首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The trophoblast, i.e. the peripheral part of the human conceptus, exerts a crucial role in implantation and placentation. Both processes properly occur as a consequence of an intimate dialogue between fetal and maternal tissues, fulfilled by membrane ligands and receptors, as well as by hormone and local factor release. During blastocyst implantation, generation of distinct trophoblast cell types begins, namely the villous and the extravillous trophoblast, the former of which is devoted to fetal-maternal exchanges and the latter binds the placental body to the uterine wall. Physiological placentation is characterized by the invasion of the uterine spiral arteries by extravillous trophoblast cells arising from anchoring villi. Due to this invasion, the arterial structure is replaced by amorphous fibrinoid material and endovascular trophoblastic cells. This transformation establishes a low-resistance, high-capacity perfusion system from the radial arteries to the intervillous space, in which the villous tree is embedded. The physiology of pregnancy depends upon the orderly progress of structural and functional changes of villous and extravillous trophoblast, whereas a derangement of such processes can lead to different types of complications of varying degrees of gravity, including possible pregnancy loss and maternal life-threatening diseases. In this review we describe the mechanisms which regulate trophoblast differentiation, proliferation, migration and invasiveness, and the alterations in these mechanisms which lead to pathological conditions. Furthermore, based on the growing evidence that proper inflammatory changes and oxidative balance are needed for successful gestation, we explain the mechanisms by which agents able to influence such processes may be useful in the prevention and treatment of pregnancy disorders.  相似文献   

2.
ABSTRACT

The establishment of a functional placenta is pivotal for normal fetal development and the maintenance of pregnancy. In the course of early placentation, trophoblast precursors differentiate into highly invasive trophoblast subtypes. These cells, referred to as extravillous trophoblasts (EVTs), penetrate the maternal uterus reaching as far as the inner third of the myometrium. One of the most fundamental functions of EVTs is the transformation of spiral arteries to establish the uteroplacental blood circulation assuring an adequate nutrient and gas supply to the developing fetus. To achieve this, specialized EVT subpopulations interact with maternal immune cells, provoke elastolysis in the arterial wall and replace the endothelial cells lining the spiral arteries to induce intraluminal vascular remodeling. These and other trophoblast-mediated processes are tightly controlled by paracrine signals from the maternal decidua and furthermore underlie an intrinsic cell-type specific program. Various severe pregnancy complications such as preeclampsia or intrauterine growth retardation are associated with abnormal EVT function, shallow invasion, and decreased blood flow to the placenta. Hence a better understanding of human trophoblast invasion seems mandatory to improve therapeutic intervention. This approach, however, requires a profound knowledge of the human placenta, its various trophoblast subtypes and in particular a better understanding of the regulatory network that controls the invasive phenotype of EVTs.  相似文献   

3.
Invasion of trophoblasts into maternal uterine tissue is essential for establishing mature feto-maternal circulation. The trophoblast invasion associated with placentation is similar to tumor invasion. In this study, we investigated the role of KAI1, an anti-metastasis factor, at the maternal-fetal interface during placentation. Mouse embryos were obtained from gestational days 5.5 (E5.5) to E13.5. Immunohistochemical analysis revealed that KAI1 was expressed on decidual cells around the track made when a fertilized ovum invaded the endometrium, at days E5.5 and E7.5, and on trophoblast giant cells, along the central maternal artery of the placenta at E9.5. KAI1 in trophoblast giant cells was increased at E11.5, and then decreased at E13.5. Furthermore, KAI1 was upregulated during the forskolinmediated trophoblastic differentiation of BeWo cells. Collectively, these results indicate that KAI1 is differentially expressed in decidual cells and trophoblasts at the maternal-fetal interface, suggesting that KAI1 prevents trophoblast invasion during placentation. [BMB Reports 2013; 46(10): 507-512]  相似文献   

4.
Preeclampsia is defined as new-onset hypertension with proteinuria after 20 wk gestation and is hypothesized to be due to shallow trophoblast invasion in the spiral arteries thus resulting in progressive placental ischemia as the fetus grows. Many animal models have been developed that mimic changes in maternal circulation or immune function associated with preeclampsia. The model of reduced uterine perfusion pressure in pregnant rats closely mimics the hypertension, immune system abnormalities, systemic and renal vasoconstriction, and oxidative stress in the mother, and intrauterine growth restriction found in the offspring. The model has been successfully used in many species; however, rat and primate are the most consistent in comparison of characteristics with human preeclampsia. The model suffers, however, from lack of the ability to study the mechanisms responsible for abnormal placentation that ultimately leads to placental ischemia. Despite this limitation, the model is excellent for studying the consequences of reduced uterine blood flow as it mimics many of the salient features of preeclampsia during the last weeks of gestation in humans. This review discusses these features.  相似文献   

5.
Intrauterine trophoblast cell invasion is an essential part of hemochorial placentation. Aberrant trophoblast cell invasion has been associated with pathologies including preeclampsia and fetal growth restriction. In this study, we describe an in vivo method to assess trophoblast cell invasion using a transgenic rat model, constitutively expressing heat stable human placental alkaline phosphatase (Rosa 26 promoter driven human placental alkaline phosphatase, R26-hAP). Wild-type female Fischer 344 inbred rats were mated with hemizygous R26-hAP transgenic male Fischer 344 rats and sacrificed during the second half of pregnancy. Heat stable alkaline phosphatase (AP) activity associated with the invasive transgenic trophoblast cells was monitored in the wild-type uterine mesometrial compartment and used as an index of trophoblast cell invasion. The expression pattern of cytokeratins by invasive trophoblast cells mimicked the uterine mesometrial distribution of AP activity. Trophoblast cell invasion exhibited a gestation-dependent profile with peak invasion between days 18-20 of pregnancy. In summary, we have devised a simple in vivo method for assessing intrauterine trophoblast cell invasion. This technique should facilitate the discovery of endogenous regulatory mechanisms controlling trophoblast cell invasion and should represent an effective method of testing the impact of various environmental stressors on an essential part of hemochorial placentation.  相似文献   

6.
The successful transformation of uterine spiral arteries by invasion trophoblasts is critical for the formation of the human hemochorial placenta. Placental trophoblast migration and invasion are well regulated by various autocrine/paracrine factors at maternal–fetal interface. Human placental multipotent mesenchymal stromal cells (hPMSCs) are a subpopulation of villous mesenchymal cells and have been shown to produce a wide array of soluble cytokines and growth factors including HGF (hepatocyte growth factor). The function of hPMSCs in placental villous microenvironment has not been explored. The interaction between hPMSCs and trophoblasts was proposed in vitro in a recent article. HGF produced by hPMSCs was able to engage c-Met receptor on trophoblast and induced the trophoblast cAMP expression. The cAMP activated PKA, which in turn, signaled to Rap1 and led to integrin β1 activation. The total integrin β1 protein expression by trophoblasts was not affected by HGF stimulation. Hypoxia downregulated HGF expression by hPMSCs. HGF and PKA activator 6-Bnz-cAMP increased trophoblast adhesion and migration that were inhibited by PKA inhibitor H89 or Rap1 siRNA. Thus, hPMSCs-derived paracrine HGF can regulate trophoblast migration during placentation. These findings provided insight revealing at least one mechanism by which hPMSCs implicated in the development of preeclampsia.  相似文献   

7.

Background  

In human pregnancy, a correct placentation depends on trophoblast proliferation, differentiation, migration and invasion. These processes are highly regulated by placental hormones, growth factors and cytokines. Recently, we have shown that adiponectin, an adipokine, has anti-proliferative effects on trophoblastic cells. Here, we complete this study by demonstrating that adiponectin modulates BeWo and human villous cytotrophoblast cell differentiation.  相似文献   

8.
Summary In human placentation, events of implantation and early blastocyst development are mediated by fetal trophoblastic cells which penetrate into the maternal endometrium and myometrium. Although highly regulated in its biological behavior, trophoblast simulates a malignant neoplasm by virtue of invading the uterine wall and uterine spiral arteries and by embolizing throughout the systemic circulation. This process is at least in part dependant on the regulated production of proteolytic enzymes to degrade extracellular matrix. The most abundant extracellular protein is connective tissue type (interstitial) collagen. The uterine remodeling during the establishment of the embryo requires collagenase which catalyzes the intial step in the breakdown of collagen. This study demonstrates the presence of interstitial collagenase in villous and extravillous trophoblast of first trimester placenta using immunocytochemical methods on light microscopic and ultrastructural levels. Intracytoplasmic staining for interstitial collagenase was present in cyto- and syncytiotrophoblast covering the chorionic villi as well as in extravillous intermediate trophoblast invading spiral arteries in the placental bed. Furthermore, outgrowth cultures of chorionic villi were studied with the immunogold method. Gold labelling was associated with the cell surface of trophoblastic cells as well as with fibrillary collagen like proteins of newly synthesized extracellular matrix. We speculate that interstitial collagenase plays a role in the degradation of uterine collagen within the developing human placenta.  相似文献   

9.
U M Moll  B L Lane 《Histochemistry》1990,94(5):555-560
In human placentation, events of implantation and early blastocyst development are mediated by fetal trophoblastic cells which penetrate into the maternal endometrium and myometrium. Although highly regulated in its biological behavior, trophoblast simulates a malignant neoplasm by virtue of invading the uterine wall and uterine spiral arteries and by embolizing throughout the systemic circulation. This process is at least in part dependant on the regulated production of proteolytic enzymes to degrade extracellular matrix. The most abundant extracellular protein is connective tissue type (interstitial) collagen. The uterine remodeling during the establishment of the embryo requires collagenase which catalyzes the initial step in the breakdown of collagen. This study demonstrates the presence of interstitial collagenase in villous and extravillous trophoblast of first trimester placenta using immunocytochemical methods on light microscopic and ultrastructural levels. Intracytoplasmic staining for interstitial collagenase was present in cyto- and syncytiotrophoblast covering the chorionic villi as well as in extravillous intermediate trophoblast invading spiral arteries in the placental bed. Furthermore, outgrowth cultures of chorionic villi were studied with the immunogold method. Gold labelling was associated with the cell surface of trophoblastic cells as well as with fibrillary collagen like proteins of newly synthesized extracellular matrix. We speculate that interstitial collagenase plays a role in the degradation of uterine collagen within the developing human placenta.  相似文献   

10.
11.
Uterine leukocytes: key players in pregnancy   总被引:11,自引:0,他引:11  
In species with hemochorial placentation, which includes humans, mice and rats, antigen-specific T and B lymphocytes which are responsible for acquired immunity are virtually absent from the maternal-fetal interface. In contrast, non-antigen specific natural killer cells and macrophages which provide innate immunity are abundant and highly specialized. Autocrine/paracrine factors such as steroid and polypeptide hormones, prostaglandins and anti-inflammatory cytokines that are present in the uterine environment during pregnancy re-program their secretory profiles. Recent studies using transgenic mice and other approaches indicate that these environmentally modified leukocytes have major pregnancy-associated functions that include facilitation of implantation, modulation of the maternal uterine vasculature, supply of growth factors to the placenta, promotion of trophoblast differentiation and facilitation of parturition.  相似文献   

12.
Oxygen is a critical regulator of placentation. Early placental development occurs in a predominantly low oxygen environment and is, at least partially, under the control of hypoxia signaling pathways. In the present study, in vivo hypobaric hypoxia was used as an experimental tool to delineate hypoxia-sensitive events during placentation. Pregnant rats were exposed to the equivalent of 11% oxygen between days 6.5 and 13.5 of gestation. Pair-fed pregnant animals exposed to ambient conditions were included as a control group. Uterine mesometrial blood vessels in the hypoxia-exposed animals were greatly expanded and some contained large cuboidal cells that were positive for cytokeratin and other markers characteristic of invasive trophoblast cells. Unlike later in gestation, the route of trophoblast cell invasion in the hypoxia-exposed animals was restricted to endovascular, with no interstitial invasion observed. Hypoxia-activated endovascular trophoblast invasion required exposure to hypoxia from gestation day 8.5 to day 9.5. Activation of the invasive trophoblast lineage was also associated with an enlargement of the junctional zone of the chorioallantoic placenta, a source of invasive trophoblast cell progenitors. In summary, maternal hypoxia during early stages of placentation activates the invasive endovascular trophoblast cell lineage and promotes uterine vascular remodeling.  相似文献   

13.
The successful transformation of uterine spiral arteries by invasion trophoblasts is critical for the formation of the human hemochorial placenta. Placental trophoblast migration and invasion are well regulated by various autocrine/paracrine factors at maternal–fetal interface. Human placental multipotent mesenchymal stromal cells (hPMSCs) are a subpopulation of villous mesenchymal cells and have been shown to produce a wide array of soluble cytokines and growth factors including HGF (hepatocyte growth factor). The function of hPMSCs in placental villous microenvironment has not been explored. The interaction between hPMSCs and trophoblasts was proposed in vitro in a recent article. HGF produced by hPMSCs was able to engage c-Met receptor on trophoblast and induced the trophoblast cAMP expression. The cAMP activated PKA, which in turn, signaled to Rap1 and led to integrin β1 activation. The total integrin β1 protein expression by trophoblasts was not affected by HGF stimulation. Hypoxia downregulated HGF expression by hPMSCs. HGF and PKA activator 6-Bnz-cAMP increased trophoblast adhesion and migration that were inhibited by PKA inhibitor H89 or Rap1 siRNA. Thus, hPMSCs-derived paracrine HGF can regulate trophoblast migration during placentation. These findings provided insight revealing at least one mechanism by which hPMSCs implicated in the development of preeclampsia.  相似文献   

14.
Maternal uteroplacental blood flow increases during pregnancy. Altered uteroplacental blood flow is a core predictor of abnormal pregnancy. Normally, the uteroplacental arteries are invaded by endovascular trophoblast and remodeled into dilated, inelastic tubes without maternal vasomotor control. Disturbed remodeling is associated with maintenance of high uteroplacental vascular resistance and intrauterine growth restriction (IUGR) and preeclampsia. Herein, we review routes, mechanisms, and control of endovascular trophoblast invasion. The reviewed data suggest that endovascular trophoblast invasion involves a side route of interstitial invasion. Failure of vascular invasion is preceded by impaired interstitial trophoblast invasion. Extravillous trophoblast synthesis of nitric oxide is discussed in relation to arterial dilation that paves the way for endovascular trophoblast. Moreover, molecular mimicry of invading trophoblast-expressing endothelial adhesion molecules is discussed in relation to replacement of endothelium by trophoblast. Also, maternal uterine endothelial cells actively prepare endovascular invasion by expression of selectins that enable trophoblast to adhere to maternal endothelium. Finally, the mother can prevent endovascular invasion by activated macrophage-induced apoptosis of trophoblast. These data are partially controversial because of methodological restrictions associated with limitations of human tissue investigations and animal studies. Animal models require special care when extrapolating data to the human due to extreme species variations regarding trophoblast invasion. Basal plates of delivered placentas or curettage specimens have been used to describe failure of trophoblast invasion associated with IUGR and preeclampsia; however, they are unsuitable for these kinds of studies, since they do not include the area of pathogenic events, i.e., the placental bed.  相似文献   

15.
Remodeling of uterine spiral arteries by trophoblast cells is a requisite process for hemochorial placentation and successful pregnancy. The rat exhibits deep intrauterine trophoblast invasion and accompanying trophoblast-directed vascular modification. The involvement of phosphatidylinositol 3 kinase (PI3K), AKT, and Fos-like antigen 1 (FOSL1) in regulating invasive trophoblast and hemochorial placentation was investigated using Rcho-1 trophoblast stem cells and rat models. Disruption of PI3K/AKT with small-molecule inhibitors interfered with the differentiation-dependent elaboration of a signature invasive-vascular remodeling trophoblast gene expression profile and trophoblast invasion. AKT isoform-specific knockdown also affected the signature invasive-vascular remodeling trophoblast gene expression profile. Nuclear FOSL1 increased during trophoblast cell differentiation in a PI3K/AKT-dependent manner. Knockdown of FOSL1 disrupted the expression of a subset of genes associated with the invasive-vascular remodeling trophoblast phenotype, including the matrix metallopeptidase 9 gene (Mmp9). FOSL1 was shown to occupy regions of the Mmp9 promoter in trophoblast cells critical for the regulation of Mmp9 gene expression. Inhibition of FOSL1 expression also abrogated trophoblast invasion, as assessed in vitro and following in vivo trophoblast-specific lentivirally delivered FOSL1 short hairpin RNA (shRNA). In summary, FOSL1 is a key downstream effector of the PI3K/AKT signaling pathway responsible for development of trophoblast lineages integral to establishing the maternal-fetal interface.  相似文献   

16.
abstract

The objective of the present review is to synthesize the information on the cellular and molecular players responsible for maintaining a homeostatic balance between a naturally invasive human placenta and the maternal uterus in pregnancy; to review the roles of decorin (DCN) as a molecular player in this homeostasis; to list the common maladies associated with a break-down in this homeostasis, resulting from a hypo-invasive or hyper-invasive placenta, and their underlying mechanisms. We show that both the fetal components of the placenta, represented primarily by the extravillous trophoblast, and the maternal component represented primarily by the decidual tissue and the endometrial arterioles, participate actively in this balance. We discuss the process of uterine angiogenesis in the context of uterine arterial changes during normal pregnancy and preeclampsia. We compare and contrast trophoblast growth and invasion with the processes involved in tumorigenesis with special emphasis on the roles of DCN and raise important questions that remain to be addressed. Decorin (DCN) is a small leucine-rich proteoglycan produced by stromal cells, including dermal fibroblasts, chondrocytes, chorionic villus mesenchymal cells and decidual cells of the pregnant endometrium. It contains a 40 kDa protein core having 10 leucine-rich repeats covalently linked with a glycosaminoglycan chain. Biological functions of DCN include: collagen assembly, myogenesis, tissue repair and regulation of cell adhesion and migration by binding to ECM molecules or antagonising multiple tyrosine kinase receptors (TKR) including EGFR, IGF-IR, HGFR and VEGFR-2. DCN restrains angiogenesis by binding to thrombospondin-1, TGFβ, VEGFR-2 and possibly IGF-IR. DCN can halt tumor growth by antagonising oncogenic TKRs and restraining angiogenesis. DCN actions at the fetal-maternal interface include restraint of trophoblast migration, invasion and uterine angiogenesis. We demonstrate that DCN overexpression in the decidua is associated with preeclampsia (PE); this may have a causal role in PE by compromising endovascular differentiation of the trophoblast and uterine angiogenesis, resulting in poor arterial remodeling. Elevated DCN level in the maternal blood is suggested as a potential biomarker in PE.  相似文献   

17.
Following implantation in rodents, the uterine stromal fibroblasts differentiate into densely packed decidual cells. This process, called decidualization, is well-orchestrated and progresses both antimesometrially and mesometrially, creating two regions with distinctive cellular morphologies. In addition, subsequent placental development is dependent on the invasion of the trophoblast, the process intimately linked to the endometrial tissue remodelling and depending largely on the environment created by the decidua; this phenomenon is crucial for the establishment and maintenance of pregnancy. The key mechanisms underlying the maternal tissue remodelling and trophoblast invasion remain poorly understood. The rat, just like human beings, exhibits a highly invasive type of placental development, the haemochorial placentation. For obvious ethical reasons, the studies of endometrial tissue remodelling throughout pregnancy in humans are greatly limited. Although the rat differs somewhat from humans with regards to the implantation process, it is an appropriate model for studying the mechanisms of decidualization as well as subsequent remodelling of the uterine tissues and fetoplacental development. As decidual remodelling is very closely linked to placentation and the maternal-fetal interactions in the rat show several important similarities to human placentation, the morphological alterations occurring during the post-implantation period in the rat have been addressed in the present review.  相似文献   

18.
19.
Normal placentation entails highly regulated interactions of maternal leukocytes with vascular and trophoblast cells to favor vascular transformation. Neutrophil activation and neutrophil extracellular trap (NET) formation associate with poor placentation and severe pregnancy complications. To deepen into the mechanisms of trophoblast–neutrophil interaction, we explored the effects of NETs on trophoblast cell function and, conversely, whether trophoblast cell-derived factors condition neutrophils to favor angiogenesis and anti-inflammatory signals required for fetal growth. NETs isolated from activated neutrophils hindered trophoblast cell migration. Trophoblast conditioned media prevented the effect as well as the vasoactive intestinal peptide (VIP) known to regulate trophoblast and neutrophil function. On the other hand, factors released by trophoblast cells and VIP shaped neutrophils to a proangiogenic profile with increased vascular endothelial growth factor synthesis and increased capacity to promote vascular transformation. Results presented here provide novel clues to reconstruct the interaction of trophoblast cells and neutrophils in vivo during placentation in humans.  相似文献   

20.
Successful implantation and placentation requires that extravillous cytotrophoblast acquires an endovascular phenotype and remodels uterine spiral arteries. Defects in this mechanism correlate with severe obstetric complications as implantation failure and preeclampsia. Lysophosphatidic acid (LPA) participates in embryo implantation and contributes to vascular physiology in different biological systems. However, the role of LPA on trophoblast endovascular transformation has not been studied. Due to difficulties in studying human pregnancy in vivo, we adopted a pharmacological approach in vitro to investigate LPA action in various aspects of trophoblast endovascular response, such as the formation of endothelial capillary‐like structures, migration, and proliferation. The HTR‐8/SVneo cell line established from human first trimester cytotrophoblast was used to model the acquisition of the endovascular phenotype by the invading trophoblast. LPA increased HTR‐8/SVneo tube formation, migration (wound healing assay and phalloidin staining) and proliferation (MTT assay). LPA G protein‐coupled receptors, LPA1 and LPA3, were expressed in HTR‐8/SVneo. By using selective antagonists, we showed that enhanced tubulogenesis was mediated by LPA3. In addition, cyclooxygenase‐2 and inducible nitric oxide synthase pathways participated in LPA‐stimulated tubulogenesis. Inducible nitric oxide synthase was activated downstream cyclooxygenase‐2. Furthermore, prostaglandin E2 and a nitric oxide donor (SNAP) increased trophoblast tube formation in a concentration‐dependent manner. Finally, we observed that cyclooxygenase‐2 and inducible nitric oxide synthase were localized in the nucleus, and LPA did not modify their cellular distribution. Our results show that LPA‐triggered regulatory pathways promote trophoblast endovascular response in vitro, suggesting a new role for LPA during spiral artery remodeling at the maternal‐fetal interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号