首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to evaluate the effectiveness of supplementation of cellulase and xylanase to diets of growing goats to improve nutrient digestibility, utilisation of energy and mitigation of enteric methane emissions. The experiment was conducted in a 5 × 5 Latin square design using five goats with permanent rumen fistulae and five treatments consisted of two levels of cellulase crossed over with two levels of xylanase plus unsupplemented Control. The cellulase (243 U/g) derived from Neocallimastix patriciarum was added at 0.8 and 1.6 g/kg dry matter intake (DMI) and the xylanase (31,457 U/ml) derived from Aspergillus oryzae was fed at 1.4 and 2.2 ml/kg DMI. There were no differences in apparent digestibility of organic matter, neutral detergent fibre, acid detergent fibre and rumen fermentation parameters (i.e. ammonia-nitrogen [N], volatile fatty acids) among all treatments. Dietary cellulase and xylanase addition did not influence energy and N utilisation. But compared to xylanase addition at the higher dose, at the low xylanase dose the retained N, the availability of retained N and digested N were increased (< 0.01). Moreover, enzyme addition did not affect the enteric methane emission and community diversity of ruminal methanogens. The present results indicated that previous in vitro findings were not confirmed in ruminant trials.  相似文献   

2.
Twenty ruminally cannulated beef heifers were fed a high corn grain diet in a randomized block design to determine the effect of three direct fed microbial (DFM) strains of Propionibacterium on ruminal fermentation, nutrient digestibility and methane (CH4) emissions. The heifers were blocked in five groups on the basis of BW and used in five 28-day periods. Dietary treatments included (1) Control and three strains of Propionibacterium (2) P169, (3) P5, and (4) P54. Strains were administered directly into the rumen at 5×109 CFU with 10 g of a maltodextrin carrier in a gel capsule; Control heifers received carrier only. All heifers were fed the basal diet (10 : 90 forage to concentrate, dry matter basis). Rumen contents were collected on days 15 and 18, ruminal pH was measured continuously between days 15 and 22, enteric CH4 emissions were measured between days 19 and 22 and diet digestibility was measured from days 25 to 28. Mean ruminal pH was 5.91 and was not affected by treatments. Similarly, duration of time that pH<5.8 and 5.6 was not affected by treatment. Likewise, total and major volatile fatty acid profiles were similar among all treatments. No effects were observed on dry matter intake and total tract digestibility of nutrients. Total enteric CH4 production (g/day) was not affected by Propionibacterium strains and averaged 139 g/day. Similarly, mean CH4 yield (g CH4/kg of dry matter intake) was similar for all the treatments. The relative abundance of total Propionibacteria in the rumen increased with administration of DFM and were greater 3 h post-dosing relative to Control, but returned to baseline levels before feeding. Populations of Propionibacterium P169 were higher at 3 and 9 h as compared with the levels at 0 h. In conclusion, moderate persistency of the inoculated strains within the ruminal microbiome and pre-existing high propionate production due to elevated levels of starch fermentation might have reduced the efficacy of Propionibacterium strains to increase molar proportion of propionate and subsequently reduce CH4 emissions.  相似文献   

3.
Thirty-six 1.0-year-old Liao Ning Cashmere goat wethers (BW = 22.01 ± 0.59 kg) were used to determine the effects of dietary zinc (Zn) level on the performance, nutrient digestibility and plasma Zn status during the cashmere fiber growing period. The goats were randomly divided into four groups that were fed a basal diet containing 22.3 mg Zn/kg dry matter (DM) with 0, 15, 30 or 45 mg Zn/kg DM as reagent grade ZnSO4·7H2O. The experiment lasted 60 days including a 7-day metabolism trial. Both average daily gain (ADG) and feed efficiency were improved (P < 0.05) by Zn supplementation and were higher (P < 0.05) for the treatment groups supplemented with 30 and 45 mg Zn/kg DM compared with 15 mg Zn/kg DM. Zn supplementation had no influence on the length and diameter of cashmere fiber (P > 0.05). Digestibility of DM, crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF) did not differ among treatments (P > 0.05). Plasma Zn concentrations were increased (P < 0.01) by Zn supplementation and were higher (P < 0.05) for the treatment groups supplemented with 30 and 45 mg Zn/kg DM compared with 15 mg Zn/kg DM. Zn apparent absorption rate and apparent retention rate were decreased (P < 0.05) by Zn supplementation, but did not differ among Zn supplemented treatments (P > 0.05). In conclusion, a control diet containing 22.3 mg Zn/kg DM was inadequate for achieving optimal growth performance in Cashmere goats, and the recommended level of dietary Zn for such goats is 52.3 mg/kg DM during the cashmere fiber growing period.  相似文献   

4.
The objectives of the trial were to study the effects of dietary crude protein (CP) and tannic acid (TA) on rumen fermentation, microbiota and nutrient digestion in beef cattle. Eight growing beef cattle (live weight 350 ± 25 kg) were allocated in a 2 × 2 crossover design using two levels of dietary CP [111 g/kg dry matter (DM) and 136 g/kg DM] and two levels of TA (0 and 16.9 g/kg DM) as experimental treatments. Each experimental period lasted 19 d, consisting of 14-d adaptation and 5-d sampling. The impacts of dietary CP and TA on ruminal microbiota were analysed using high-throughput sequencing of 16S rRNA gene. Results indicated that no interactions between dietary CP and TA were found on rumen fermentation and nutrient digestibility. Increasing dietary CP level from 111 to 136 g/kg DM increased the ruminal concentrations of ammonia nitrogen (NH3-N) (p < 0.01) and improved the CP digestibility (p < 0.001). Adding TA at 16.9 g/kg DM inhibited rumen fermentation and decreased the digestibility of dietary CP (p < 0.001), DM (p < 0.05) and organic matter (p < 0.01). Increasing the dietary CP level or adding TA did not affect the relative abundances of the major bacteria Firmicutes and Proteobacteria at the phylum level and Prevotella_1 and Christensenellaceae_R-7_group at the genus level, even though adding TA increased the Shannon index of the ruminal bacterial community. TA was partly hydrolysed to pyrogallol, gallic acid and resorcinol in rumen fluid and the inhibitory effects of TA on rumen fermentation and nutrient digestibility could have been resulted from the TA metabolites including pyrogallol, gallic acid and resorcinol as well as the protein-binding effect.  相似文献   

5.
The aim of the study was to evaluate the effect of a temporary quantitative feed restriction on growth performance, nutrient digestibility and carcass criteria of rabbits. A total of 80 weaned male Californian rabbits (30 d of age) were randomly assigned to four treatments of 20 rabbits each. The Control group was fed ad libitum during the whole experimental period (days 30–72 of age). For the three restricted fed groups the feed intake was reduced by 15%, 30% and 45% compared to the Control group, respectively. The feed restriction was applied after weaning and lasted for 21 d. Thereafter, at 51 d of age, in all treatments the feed supply returned to ad libitum intake till 72 d of age (AL period). The feed restriction decreased the body weight gain of rabbits (during the restriction period and the whole experimental period, p < 0.001) and improved feed conversion ratio during all tested periods (p < 0.001). In the AL period, the daily body weight gain of all groups was similar. After the AL period, the digestibility of all measured nutrients was significantly higher for animals fed restrictively. Furthermore, feed restrictions significantly decreased the proportion of perirenal and scapular fat and increased relative weight and length of the gastrointestinal tract. Therefore, it can be concluded that the applied feed restriction improved feed conversion, nutrient digestibility and reduced fat at the slaughter age of Californian rabbits, but the reduced body weight gain could not be compensated by a subsequent ad libitum feeding for 3 weeks.  相似文献   

6.
Hydrogen is an important intermediate that is produced during carbohydrate fermentation to volatile fatty acid and utilized by methanogens to produce methane in the rumen. Ruminal volatile fatty acid and dissolved methane concentrations are more than 500 times greater than dissolved hydrogen concentration. Therefore, we hypothesized that dissolved hydrogen might have a higher sensitivity in response to dietary changes compared with volatile fatty acid and dissolved methane. Using goats, we investigated the effects of increasing dietary starch content (maize replaced with wheat bran) and supplementing with rhubarb rhizomes and roots on the relationships among dissolved hydrogen, dissolved methane and other fermentation end products. The study was conducted in a replicated 4×4 Latin square with a 2×2 factorial arrangement of four treatments: two starch levels (220 v. 320 g/kg dry matter (DM)), without and with rhubarb supplement (0% v. 2.8% of total mixed ration). Increased dietary starch and rhubarb supplementation did not alter volatile fatty acid concentrations or methane emissions in terms of g/day, g/g DM intake and g/g organic matter digested. However, goats fed the high-starch diet had greater dissolved hydrogen (P=0.005) and relative abundance of Selenomonas ruminantium (P<0.01), and lower (P=0.02) copy number of protozoa than those fed the low-starch diet. Rhubarb increased ruminal dissolved H2 (P=0.03) and total volatile fatty acid concentration (P<0.001), but decreased copies of bacteria (P=0.002). In conclusion, dissolved hydrogen appears to be more sensitive to dietary changes with starch content and rhubarb supplementation, when compared with volatile fatty acid concentrations and methane production.  相似文献   

7.
In this study, a brown macroalgae species, Saccharina latissima, processed to increase its protein concentration, and a red macroalgae species, Porphyra spp., were used to evaluate their in vivo digestibility, rumen fermentation and blood amino acid concentrations. Four castrated rams were used, whose diets were supplemented with a protein-rich fraction of S. latissima, a commercial Porphyra spp. and soybean meal (SBM). Our results show that the protein digestibility of a diet with S. latissima extract was lower (0.55) than those with Porphyra spp. (0.64) and SBM (0.66). In spite of the higher nitrogen (N) intake of diets containing Porphyra spp. and SBM (20.9 and 19.8 g N/day, respectively) than that with S. latissima (18.6 g N/day), the ratio of N excreted in faeces to total N intake was significantly higher in the diet with S. latissima than those with Porphyra spp. and SBM. This reflects that the utilization of protein in S. latissima was impaired, possibly due to reduced microbial activity. The latter statement is corroborated by lower volatile fatty acid composition (25.6, 54.8 and 100 mmol/l for S. latissima, Porphyra spp. and SBM, respectively) and a non-significant tendency for lower ammonia concentration observed in diets with S. latissima and Porphyra spp. compared to SBM. It is important to note that the S. latissima used in this trial was rinsed during processing to remove salt. This process potentially also removes other water-soluble compounds, such as free amino acids, and may have increased the relative fraction of protein resistant to rumen degradation and intestinal absorption. Furthermore, the phlorotannins present in macroalgae may have formed complexes with protein and fibre, further limiting their degradability in rumen and absorption in small intestines. We recommend that further studies explore the extent to which processing of macroalgae affects its nutritive properties and rumen degradability, in addition to studies to measure the intestinal absorption of these macroalgae species.  相似文献   

8.
ABSTRACT

Deoxynivalenol (DON), a mycotoxin synthesised by the Fusarium, is known to affect the growth of pigs. This effect can be attenuated with sodium meta-bisulphite (SBS). The aim of this study was to evaluate the effect of SBS with antioxidant blend on nutrient digestibility in pigs fed a diet contaminated naturally with DON. Six crossbred castrated pigs fitted surgically with single-T cannulas in the distal ileum received one of four barley-corn-soybean diets with or without SBS. After 8 d of feeding, faeces and ileal digesta were collected for 2 d. Apparent ileal digestibility (AID) of the dry matter (DM), energy, nutrients and DON, and apparent total tract digestibility (ATTD) of DM, acid detergent fibre (ADF), neutral detergent fibre (NDF), energy and DON were evaluated. The AID of phosphorus, calcium and some amino acids was increased (p < 0.05) in the DON diets whereas the ATTD of DM and energy tended to decrease (p = 0.064 and p = 0.071). SBS reduced the AID of DM, energy, ADF, ether extract, phosphorus and DON (p < 0.05) but had no effect on the ATTD of DM, energy, fibre or DON. These results show that DON improved the AID of some nutrients but tended to reduce the ATTD of energy, which could explain, although anorexia is the main effect of DON on live weight gain, the reported negative effect of DON on pig growth. Finally, SBS with antioxidant blend had reduced AID of some nutrients and intestinal absorption of DON.  相似文献   

9.
Thirty-six 2.5-year-old wether Inner Mongolian White Cashmere Goats (IMWG) (BW = 42.7 ± 3.44 kg) were used to determine the effects of dietary copper (Cu) concentration on growth performance, nutrient digestibility and fiber characteristics during the cashmere slow-growing period. Wethers were stratified by weight and randomly assigned to four dietary treatments, which included a control diet containing 5.60 mg Cu/kg DM, the control diet supplied, respectively, with 10, 20 and 30 mg Cu/kg DM (total dietary Cu level of 5.60, 15.6, 25.6 and 35.6 mg/kg DM). The experiment lasted 50 days including a 10-day preliminary trial and 10-day metabolism trial. Average daily feed intake (ADFI) did not differ among treatment groups (P > 0.05), except that the supplement providing 30 mg Cu/kg DM decreased average daily gain and gain efficiency (P < 0.05). Copper supplementation had no influence on digestibility of DM, CP and ADF (P > 0.05), however, NDF digestibility of the treatment group supplemented with 30 mg Cu/kg DM was lower compared with that of other groups (P < 0.05). Length and growth rate of cashmere fiber were higher in the treatment group supplemented with 20 mg Cu/kg DM compared with other groups (P < 0.05), but cashmere diameter was not affected by Cu supplementation (P > 0.05). In conclusion, supplementation of Cu at the levels of 10, 20 and 30 mg/kg DM to the basal diet containing 5.60 mg Cu/kg DM had no influence on ADFI or nutrient digestibility of DM, CP and ADF in cashmere goats, while 30 mg Cu/kg DM supplementation had a negative effect on growth performance and NDF digestibility. However, 20 mg Cu/kg DM supplementation of the basal diet enhanced cashmere growth. Hence, the appropriate supplemental level during the cashmere slow-growing period is deemed to be 20 mg Cu/kg DM (total dietary Cu level of 25.6 mg/kg DM).  相似文献   

10.
The objective of this study was to evaluate the effects of isobutyrate supplementations on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. Eight ruminally cannulated Simmental steers were used in a replicated 4 × 4 Latin square experiment. On DM basis, diet consisted of 60% corn stover and 40% concentrate. Dry matter intake (averaged 9 kg/d) was restricted to 90% of ad libitum intake. The four treatment groups received a daily dose of 0 (control), 8.4, 16.8 or 25.2 g isobutyrate per steer. With increasing isobutyrate supplementation total VFA concentration (range 64.2–74.0 mM) was significantly enhanced. The ratio of acetate to propionate (range 2.72–4.25) was also significantly increased due to the increase in actate production and decrease in propionate production. With increasing isobutyrate supplementation the ruminal degradation of NDF from corn stover was improved but the CP degradability of soybean meal was decreased. Furthermore, the isobutyrate supplementation caused a significantly increased urinary excretion of purine derivatives. Similarly, digestibilities of OM, NDF and CP in the total tract were significantly increased. The present results indicate that dietary supplementation with isobutyrate improved rumen fermentation and feed digestion in beef cattle in a dose-dependent manner. According to the conditions of this experiment, the optimum daily dose of isobutyrate was about 16.8 g/animal.  相似文献   

11.
Flax seed meal (FSM) is rich in various nutrients, especially CP and energy, and can be used as animal protein feed. In animal husbandry production, it is a long-term goal to replace soybean meal (SBM) in animal feed with other plant protein feed. However, studies on the effects of replacing SBM with FSM in fattening sheep are limited. The aim of this experiment was to study the effects of replacing a portion of SBM with FSM on nutrient digestibility, rumen microbial protein synthesis and growth performance in sheep. Thirty-six Dorper × Small Thin-Tailed crossbred rams (BW = 40.4 ± 1.73 kg, mean ± SD) were randomly assigned into four groups. The dietary treatments (forage/concentrate, 45 : 55) were isocaloric according to the nutrient requirements of rams. Soybean meal was replaced with FSM at different levels (DM basis): (1) 18% SBM (18SBM), (2) 12% SBM and 6% FSM (6FSM), (3) 6% SBM and 12% FSM (12FSM) and (4) 18% FSM (18FSM). The rams were fed in individual pens for 60 days, with the first 10 days for adaptation to diets, and then the digestibility of nutrients was determined. There was no significant difference in DM intake, but quadratic (P < 0.001) effects on the average daily gain and feed efficiency were detected, with the highest values in the 6FSM and 12FSM groups. For DM and NDF digestibility, quadratic effects were observed with the higher values in the 6FSM and 12FSM groups, but the digestibility of CP linearly decreased with the increase in FSM in the diet (P = 0.043). There was a quadratic (P < 0.001) effect of FSM inclusion rate on the estimated microbial CP yield. However, the values of intestinally absorbable dietary protein decreased linearly (P < 0.001). For the supply of metabolisable protein, both the linear (P = 0.001) and quadratic (P = 0.044) effects were observed with the lowest value in the 18FSM group. Overall, the results indicated that SBM can be effectively replaced by FSM in the diets of fattening sheep and the optimal proportion was 12.0% under the conditions of this experiment.  相似文献   

12.
This study focused on the effects of three additives given together with a hay/concentrate-based diet on nutrient digestibility, rumen fermentation, and methane emission from sheep. The basal diet consisted of 1.29 kg mixed hay and 0.43 kg concentrate mixture based on dry matter (DM). Treatments consisted of control (no additive), flavomycin40 (250 mg/d), ropadiar from an oregano extract (250 mg/d), and saponin in the form of a yucca schidigera extract (170 mg/d). Results indicated that intake and digestibility were unaffected by treatments (P>0.05). The NH3-N concentration of rumen liquor was lower (P<0.05) for additive treatments versus the control treatment. Higher concentrations of volatile fatty acid (VFA) were observed in the saponin (75.8 mmol/L) and ropadiar (73.1 mmol/L) treatments. The proportion of individual fatty acid of rumen liquor was unchanged, whereas lower ratio of acetate to propionate in the saponin treatment was observed (P<0.05). The average methane production expressed on digested organic matter (OM) and neutral detergent fiber (aNDFom) basis were decreased by approximately 3.3 and 12.0 g/kg, respectively in saponin, and 4.2 and 11.9 g/kg in ropadiar treatment compared to the control. Methane production was positively correlated with the concentrations of NH3-N, and negatively correlated with total VFA and the proportion of propionate of rumen liquor (P<0.05). The study found that saponin and ropadiar could have the potential to reduce rumen methanogenesis in sheep.  相似文献   

13.
The greenhouse gas methane (CH4) contributes substantially to global climate change. As a potential approach to decrease ruminal methanogenesis, the effects of different dosages of fumaric acid (FA) on ruminal microbial metabolism and on the microbial community (archaea, bacteria) were studied using a rumen simulation technique (RUSITEC). FA acts as alternative hydrogen acceptor diverting 2H from methanogenesis of archaea towards propionate formation of bacteria. Three identical trials were conducted with 12 fermentation vessels over a period of 14 days. In each trial, four fermentation vessels were assigned to one of the three treatment groups differing in FA dosage: low fumaric acid (LFA), high fumaric acid (HFA) and without FA (control). FA was continuously infused with the buffer. Grass silage and concentrate served as substrate. FA led to decreases in pH and to higher production rates of total short chain fatty acids (SCFA) mediated by increases in propionate for LFA of 1.69 mmol d?1 and in propionate and acetate production for HFA of 4.49 and 1.10 mmol d?1, respectively. Concentrations of NH3-N, microbial crude protein synthesis, their efficiency, degradation of crude nutrients and detergent fibre fraction were unchanged. Total gas and CH4 production were not affected by FA. Effects of FA on structure of microbial community by means of single strand conformation polymorphism (SSCP) analyses could not be detected. Given the observed increase in propionate production and the unaffected CH4 production it can be supposed that the availability of reduction equivalents like 2H was not limited by the addition of FA in this study. It has to be concluded from the present study that the application of FA is not an appropriate approach to decrease the ruminal CH4 production.  相似文献   

14.
The objective of this study was to evaluate the effects of malic acid (MA) supplementation on rumen fermentation, urinary excretion of purine derivatives (PDs) and whole gastro-intestinal tract feed digestibility in steers. Eight ruminally cannulated Simmental steers (465 ± 13 kg) were used in a replicated 4 × 4 Latin square design. The treatments were: control (without MA), LMA (MA-low), MMA (MA-medium) and HMA (MA-high) with 0.0, 7.8, 15.6 and 23.4 g MA per kg dry matter (DM), respectively. Diets consisted of corn stover and concentrate (60/40, DM basis). DM intake was approximately 9 kg per day, which was 90% of ad libitum intake including 5.4 kg corn stover and 3.6 kg concentrate. Ruminal pH (range of 6.91 to 6.56), ratio of acetate to propionate (range of 3.88 to 3.25), ammonia N (range of 9.03 to 6.42 mg/100 ml) and lactate (range of 91.25 to 76.31 mg/100 ml) decreased linearly as MA supplementation increased, whereas total volatile fatty acid (VFA) concentration (range of 55.68 to 61.49 mM) linearly (P < 0.05) increased with increase in MA supplementation. In situ ruminal neutral detergent fiber (aNDF) degradation of corn stover was improved but the crude protein (CP) degradability of concentrate mix was decreased with increasing the dose of MA. Urinary excretion of PDs was quadratically (P < 0.01) changed with altering MA supplementation (67.88, 72.74, 75.81 and 73.78 mmol/day for control, LMA, MMA and HMA, respectively). Similarly, digestibilities of DM, organic matter (OM), NDF and acid detergent fiber (ADF) in the total tract were also quadratically increased with increasing MA, and no differences in terms of CP and ether extract digestibility were observed. The results indicate that MA supplementation has the potential to improve rumen fermentation and feed digestion in beef cattle. The MA stimulates the digestive microorganisms or enzymes in a quadratic response. In the experimental conditions of this trial, the optimum MA dose was 15.6 g MA per kg DM.  相似文献   

15.
Reducing dietary CP content is an effective approach to reduce animal nitrogen excretion and save protein feed resources. However, it is not clear how reducing dietary CP content affects the nutrient digestion and absorption in the gut of ruminants, therefore it is difficult to accurately determine how much reduction in dietary CP content is appropriate. This study was conducted to investigate the effects of reduced dietary CP content on N balance, intestinal nutrient digestion and absorption, and rumen microbiota in growing goats. To determine N balance, 18 growing wether goats (25.0 ± 0.5 kg) were randomly assigned to one of three diets: 13.0% (control), 11.5% and 10.0% CP. Another 18 growing wether goats (25.0 ± 0.5 kg) were surgically fitted with ruminal, proximate duodenal, and terminal ileal fistulae and were randomly assigned to one of the three diets to investigate intestinal amino acid (AA) absorption and rumen microbiota. The results showed that fecal and urinary N excretion of goats fed diets containing 11.5% and 10.0% CP were lower than those of goats fed the control diet (P < 0.05). When compared with goats fed the control diet, N retention was decreased and apparent N digestibility in the entire gastrointestinal tract was increased in goats fed the 10% CP diet (P < 0.05). When compared with goats fed the control diet, the duodenal flow of lysine, tryptophan and phenylalanine was decreased in goats fed the 11.5% CP diet (P < 0.05) and that of lysine, methionine, tryptophan, phenylalanine, leucine, glutamic acid, tyrosine, essential AAs (EAAs) and total AAs (TAAs) was decreased in goats fed the 10.0% CP diet (P < 0.05). When compared with goats fed the control diet, the apparent absorption of TAAs in the small intestine was increased in goats fed the 11.5% CP diet (P < 0.05) and that of isoleucine, serine, cysteine, EAAs, non-essential AAs, and TAAs in the small intestine was increased in goats fed the 10.0% CP diet (P < 0.05). When compared with goats fed the control diet, the relative richness of Bacteroidetes and Fibrobacteres was increased and that of Proteobacteria and Synergistetes was decreased in the rumen of goats fed a diet with 10.0% CP. In conclusion, reducing dietary CP content reduced N excretion and increased nutrient utilization by improving rumen fermentation, enhancing nutrient digestion and absorption, and altering rumen microbiota in growing goats.  相似文献   

16.
Dietary anthocyanins (ATH) have probiotic and antioxidant functions in humans. They may also have beneficial impacts on rumen microorganisms and subsequently nutrient digestion in cattle. The experiment aimed to study the effects of dietary red cabbage extract (RCE) rich in ATH on rumen fermentation, rumen bacterial community, and nutrient digestibility in beef bulls. Eight Simmental beef bulls and two RCE levels (0 and 120 g/d) were allocated in a replicated 2 × 2 crossover design. Each experimental period included 15 days for adaptation and subsequent 5 days for sampling. The results showed that dietary addition of RCE increased the ruminal concentration of total volatile fatty acids and the molar proportion of propionate, decreased the acetate to propionate ratio, and tended to decrease the molar proportion of acetate, but it did not affect the ruminal pH and the concentrations of ammonia N, microbial CP, monophenols, polyphenols, and total phenolics. ATH was undetectable in the ruminal fluid of beef bulls in both groups. RCE did not affect the alpha diversity of rumen bacterial community, and the relative abundances of major rumen bacteria at the phylum level, but it increased the relative abundances of Ruminobacter and Anaerovibrio and tended to increase the relative abundances of Oribacterium and Monoglobus at the genus level. RCE tended to increase the plasma concentrations of globulin and total protein, but it did not affect the plasma albumin, urea, triglyceride, glucose, and antioxidant activities. Dietary addition of RCE did not affect the apparent nutrient digestibility. In conclusion, the ATH in RCE was highly hydrolysable in rumen fluid. Dietary addition of RCE increased the ruminal concentration of total volatile fatty acids, decreased the acetate to propionate ratio, and slightly modified the rumen bacterial community, but it did not affect the nutrient digestibility and the plasma antioxidants in beef bulls.  相似文献   

17.
Ninety-six crossbred growing pigs were used to evaluate the effects of fluoride levels on growth performance, nutrient digestibility, and the retention of minerals in tissues. Four dietary treatments were formulated by supplementing fluorine (as NaF) to a corn-soybean basal diet (39.75 mg/kg F) to provide the following added fluorine levels: 0, 50 100, and 150 mg/kg fluorine. The results showed pigs of the 100 and 150 mg/kg fluorine-added groups had decreased average daily gain (ADG) and increased feed gain ratio (F/G) compared to the control (p<0.05). Apparent digestibility of protein and calcium in 100 and 150 mg/kg fluorinetreated groups was significantly lower than that of the control (p<0.05). On the other hand, iron, copper, zinc, and manganese levels in most tissues of the 100 and 150 mg/kg fluorine groups were markedly changed compared to the control (p<0.05). However, growth performance, nutrient digestibility, and mineral concentrations in all tissues of pigs were not significantly affected by the addition of 50 mg/kg fluorine (p>0.05). Thus, this study suggested that excess fluoride levels could decrease growth performance and change the retention of iron, copper, zinc, and manganese in pigs.  相似文献   

18.
Guanidinoacetic acid (GAA) can improve the growth performance of bulls. This study investigated the influences of GAA addition on growth, nutrient digestion, ruminal fermentation and serum metabolites in bulls. Forty-eight Angus bulls were randomly allocated to experimental treatments, that is, control, low-GAA (LGAA), medium-GAA (MGAA) and high-GAA (HGAA), with GAA supplementation at 0, 0.3, 0.6 and 0.9 g/kg DM, respectively. Bulls were fed a basal diet containing 500 g/kg DM concentrate and 500 g/kg DM roughage. The experimental period was 104 days, with 14 days for adaptation and 90 days for data collection. Bulls in the MGAA and HGAA groups had higher DM intake and average daily gain than bulls in the LGAA and control groups. The feed conversion ratio was lowest in MGAA and highest in the control. Bulls receiving 0.9 g/kg DM GAA addition had higher digestibility of DM, organic matter, NDF and ADF than bulls in other groups. The digestibility of CP was higher for HGAA than for LGAA and control. The ruminal pH was lower for MGAA, and the total volatile fatty acid concentration was greater for MGAA and HGAA than for the control. The acetate proportion and acetate-to-propionate ratio were lower for MGAA than for LGAA and control. The propionate proportion was higher for MGAA than for control. Bulls receiving GAA addition showed decreased ruminal ammonia N. Bulls in MGAA and HGAA had higher cellobiase, pectinase and protease activities and Butyrivibrio fibrisolvens, Prevotella ruminicola and Ruminobacter amylophilus populations than bulls in LGAA and control. However, the total protozoan population was lower for MGAA and HGAA than for LGAA and control. The total bacterial and Ruminococcus flavefaciens populations increased with GAA addition. The blood level of creatine was higher for HGAA, and the activity of l-arginine glycine amidine transferase was lower for MGAA and HGAA, than for control. The blood activity of guanidine acetate N-methyltransferase and the level of folate decreased in the GAA addition groups. The results indicated that dietary addition of 0.6 or 0.9 g/kg DM GAA improved growth performance, nutrient digestion and ruminal fermentation in bulls.  相似文献   

19.
This study was conducted to investigate the effects of konjac flour (KF) inclusion in gestation diets of sows on nutrients digestibility, lactation feed intake, reproductive performance of sows and preweaning performance of piglets. Two isoenergetic and isonitrogenous gestation diets were formulated: a control diet and a 2.1% KF-supplemented diet (KF diet). Both diets had the same NDF and insoluble fiber (ISF) levels, but the KF diet had higher soluble fiber (SF) level. The day after breeding, 96 multiparous sows were assigned to the two dietary treatments. Restrict-fed during gestation, in contrast, all sows were offered the same lactation diet ad libitum. Response criteria included sow BW, backfat depth, lactation feed intake, weaning-to-estrus interval, litter size and piglet’s weight at parturition and day 21 of lactation. On day 60 of gestation, 20 sows were used to measure nutrient digestibility. Results showed that the digestibility of dry matter, gross energy, crude fiber and ADF were not affected by the dietary treatments. The inclusion of KF in gestation diets increased NDF digestibility (P<0.05) and tended to increase the digestibility of CP (P=0.05) compared with the control diet group. In addition, dietary treatment during gestation did not affect litter size, BW and backfat gain during gestation, lactation weight, backfat loss or weaning-to-estrus interval of sows. However, sows fed the KF diet consumed more (P<0.05) lactation diet per day than sows in the control group. Accordingly, sows fed the KF diet showed greater average piglet weights on day 21 of lactation (P=0.09), and the litter weight of sows fed the KF diet on day 21 of lactation increased by 3.95 kg compared with sows fed the control diet (not significant). In conclusion, the inclusion of KF in gestation diets increased lactation feed intake of sows and tended to improve litter performance.  相似文献   

20.
This study was conducted to investigate the impact of dietary inclusion of Moringa oleifera leaf meal (MLM) as a substitution for soybean meal on nutrient digestibility, rumen fermentation, rumen enzyme activity, blood metabolites, growth-related hormones, and growth performance of buffalo calves. Thirty buffalo calves eight to nine months of age with an average body weight of approximately 153.7 ± 0.97 kg were randomly distributed through three dietary treatments (ten calves/treatment). MLM inclusion rates were 15% (M15) and 20% (M20), replacing soybean meal by 50 and 75% in the concentrate mixture, respectively. The results indicated that, digestibility of dry matter, organic matter (OM), and crude fiber (CF) increased significantly (p < 0.05) with MLM inclusion, while the digestibility of crude protein (CP) and ether extract (EE) reduced significantly (p < 0.05) with MLM addition. Dietary supplementation with MLM significantly affected (p < 0.001) rumen fermentation by reducing ruminal enzymes, ruminal ammonia-N, total protozoa, and acetate/propionate ratio and increasing acetic, propionic, and butyric acids and total volatile fatty acid concentrations (p < 0.001). Furthermore, dietary inclusion of 15% MLM significantly improved (p < 0.001) final body weight, dry matter intake of feed, daily weight gain, feed conversion efficiency, blood metabolites, and plasma insulin growth factor-I (IGF-I). It can be concluded that MLM is a multi-purpose protein supplement that provides some nutritional and therapeutic advantages when replacing 50% of soybean meal. Dietary supplementation of 15% MLM improved rumen fermentation, growth performance, blood metabolites, plasma IGF-I and mitigated ammonia and methane without any adverse effects in growing buffalo calves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号