首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Blue jack mackerel Trachurus picturatus collected at six sampling locations of the north-east Atlantic Ocean (Azores, Madeira, Canaries, and Matosinhos, Peniche and Portimão, mainland Portugal) and one location in the Mediterranean (Sicily), were used to examine the genetic structure of this species. Three mitochondrial gene regions (cytochrome c oxidase subunit I, cytochrome b and control region) were used to study the genetic structure of the species in Macaronesia, as well as to compare the genetic diversity of this region with published results from its eastern distribution. All markers indicated the absence of genetic structure among populations, with high indices of genetic diversity. These results suggest that the species went through a bottleneck event, followed by a recent population expansion. Moreover, the comparison with previously published results from the T. picturatus Mediterranean distribution suggests the existence of a single panmictic population throughout the species' full range. This was, however, an unexpected result since other methodologies have shown the presence of, at least, three different population-units in the NE Atlantic Ocean.  相似文献   

2.
The increase in gene diversity from high to low latitudes is a widely recognized biogeographical pattern, often shaped by differential effects of Late Quaternary climatic changes. Here, we evaluate the effects of Pleistocene climatic changes from northern Europe to North Africa and their implications on the population differentiation of the widespread, short‐lived herb Plantago coronopus. We used amplified fragment length polymorphism to investigate the population structure and phylogeography of P. coronopus in 273 individuals from 29 populations covering its complete latitudinal range. Although Bayesian clustering, principal coordinates analysis and a consensus UPGMA tree were not fully congruent, two well‐supported clades, associated with distinct latitudinal zones (northern Europe and the Mediterranean region), were revealed as a general pattern. Moreover, populations from the western Atlantic edge and, to a lesser extent, the central Mediterranean region exhibited signs of admixture, suggesting secondary contacts. The admixed populations in the western Atlantic and central Mediterranean are geographically intermediate between the northern and southern lineages. The northernmost lineage exhibited low genetic diversity, a clear sign of a recent colonization. In contrast, populations from the southernmost part of the range showed the highest level of genetic diversity, indicating possible refugia for the species during the Quaternary ice ages. Overall, our study allows spatial structure of the genetic variation of a widespread herb across its latitudinal range to be disentangled and provides insights into how past climatic history influences present genetic patterns. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 618–634.  相似文献   

3.
Aim To analyse patterns of nuclear and mitochondrial genetic variation in the European chub, Squalius cephalus (Linnaeus, 1758), in order to understand the evolutionary history of this species and to test biogeographical hypotheses for the existence of co‐distributed European freshwater fish species. Location Rivers in Europe (Finland, Poland, Czech Republic, France, Bulgaria, Spain, Italy). Methods We genotyped 12 polymorphic microsatellite markers derived from 310 individuals collected from across the distribution of S. cephalus in Europe (including a total of 15 populations) and sequenced mitochondrial DNA (mtDNA) from a subset of 75 individuals. Sequences of mtDNA cytochrome b were analysed using both phylogenetic (median‐joining networks) and population genetic methods (tests for demographic history, mismatch distributions, Bayesian coalescent analysis). Geographical structure in microsatellite loci was examined using a distance method (FST), factorial correspondence analysis (FCA) and a Bayesian clustering method (structure ). Results The mtDNA network showed a clear split into four different haplogroup lineages: Western (separated into Atlantic and Danubian sublineages), Eastern, Aegean (occurring in two distinct sublineages in the Balkans and in Spain) and Adriatic. Our results indicate recent population expansion in the Eastern and Western Atlantic lineages and the admixture of two previously separate sublineages (Atlantic and Danubian) in the Western lineage. Bayesian structure analysis as well as FCA results roughly corresponded to the mtDNA‐based structure, separating the sampled individuals into almost non‐overlapping groups. Main conclusions Our results support hypotheses suggesting origins of extant lineages of freshwater fishes in multiple refugia and the subsequent post‐glacial colonization of Europe via different routes. We confirmed the previously proposed two‐step expansion scenario from the Danube refuge, the existence of a secondary (Atlantic) refuge during the last glaciation (probably in the Rhone River) and population expansion of this lineage. Conspicuous divergences among Mediterranean populations reflect their different origin, as well as their low contribution to the recent genetic pool of chub in central Europe.  相似文献   

4.
The peracarid isopod, Stenosoma nadejda (Rezig 1989), until recently considered to be endemic of the Mediterranean region, was first reported in the Atlantic coast of southern Spain in 2001, and in 2006 abundant populations were discovered throughout the southwestern Portuguese coast. This fast expansion was intriguing because, as a direct brooder, this species has limited mechanisms for dispersal, such as rafting on seaweeds. Did S. nadejda recently extend its range into the Atlantic or was it overlooked in the past? We examined the patterns of genetic diversity and population differentiation accordingly by sequencing the cytochrome c oxidase subunit I mitochondrial gene from 75 individuals collected in five locations in Atlantic Iberia and one in the Mediterranean. Our results indicate that the newly discovered Atlantic populations of S. nadejda appear to be old and have long persisted on Atlantic shores rather than being a recent introduction. High levels of genetic diversity and geographic structure were uncovered in what was initially suspected to be an ‘invasive’ species. Recent changes in population dynamics may have made S. nadejda more conspicuous in the Atlantic shores, or a more comprehensive survey led to the recognition of this species where it was not expected.  相似文献   

5.
Understanding the factors that contribute to population genetic divergence across a species' range is a long‐standing goal in evolutionary biology and ecological genetics. We examined the relative importance of historical and ecological features in shaping the present‐day spatial patterns of genetic structure in two related plant species, Beta vulgaris subsp. maritima and Beta macrocarpa. Using nuclear and mitochondrial markers, we surveyed 93 populations from Brittany (France) to Morocco – the southern limit of their species' range distribution. Whereas B. macrocarpa showed a genotypic structure and a high level of genetic differentiation indicative of selfing, the population genetic structure of B. vulgaris subsp. maritima was consistent with an outcrossing mating system. We further showed (1) a strong geographic clustering in coastal B. vulgaris subsp. maritima populations that highlighted the influence of marine currents in shaping different lineages and (2) a peculiar genetic structure of inland B. vulgaris subsp. maritima populations that could indicate the admixture of distinct evolutionary lineages and recent expansions associated with anthropogenic disturbances. Spatial patterns of nuclear diversity and differentiation also supported a stepwise recolonization of Europe from Atlantic‐Mediterranean refugia after the last glacial period, with leading‐edge expansions. However, cytoplasmic diversity was not impacted by postglacial recolonization: stochastic long‐distance seed dispersal mediated by major oceanic currents may mitigate the common patterns of reduced cytoplasmic diversity observed for edge populations. Overall, the patterns we documented here challenge the general view of reduced genetic diversity at the edge of a species' range distribution and provide clues for understanding how life‐history and major geographic features interact to shape the distribution of genetic diversity.  相似文献   

6.
Intraspecific genetic diversity and divergence have a large influence on the adaption and evolutionary potential of species. The widely distributed starfish, Coscinasterias tenuispina, combines sexual reproduction with asexual reproduction via fission. Here we analyse the phylogeography of this starfish to reveal historical and contemporary processes driving its intraspecific genetic divergence. We further consider whether asexual reproduction is the most important method of propagation throughout the distribution range of this species. Our study included 326 individuals from 16 populations, covering most of the species’ distribution range. A total of 12 nuclear microsatellite loci and sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene were analysed. COI and microsatellites were clustered in two isolated lineages: one found along the southwestern Atlantic and the other along the northeastern Atlantic and Mediterranean Sea. This suggests the existence of two different evolutionary units. Marine barriers along the European coast would be responsible for population clustering: the Almeria–Oran Front that limits the entrance of migrants from the Atlantic to the Mediterranean, and the Siculo‐Tunisian strait that divides the two Mediterranean basins. The presence of identical genotypes was detected in all populations, although two monoclonal populations were found in two sites where annual mean temperatures and minimum values were the lowest. Our results based on microsatellite loci showed that intrapopulation genetic diversity was significantly affected by clonality whereas it had lower effect for the global phylogeography of the species, although still some impact on populations’ genetic divergence could be observed between some populations.  相似文献   

7.

Biological invasions can pose a severe threat to coastal ecosystems, but are difficult to track due to inaccurate species identifications and cryptic diversity. Here, we clarified the cryptic diversity and introduction history of the marine amphipod Ampithoe valida by sequencing a mtDNA locus from 683 individuals and genotyping 10,295 single-nucleotide polymorphisms (SNPs) for 349 individuals from Japan, North America and Argentina. The species complex consists of three cryptic lineages: two native Pacific and one native Atlantic mitochondrial lineage. It is likely that the complex originated in the North Pacific and dispersed to the north Atlantic via a trans-arctic exchange approximately 3 MYA. Non-native A. valida in Argentina have both Atlantic mitochondrial and nuclear genotypes, strongly indicating an introduction from eastern North America. In two eastern Pacific estuaries, San Francisco Bay and Humboldt Bay, California, genetic data indicate human-mediated hybridization of Atlantic and Pacific sources, and possible adaptive introgression of mitochondrial loci, nuclear loci, or both. The San Francisco Bay hybrid population periodically undergoes population outbreaks and profoundly damages eelgrass Zostera marina thalli via direct consumption, and these ecological impacts have not been documented elsewhere. We speculate that novel combinations of Atlantic and Pacific lineages could play a role in A. valida’s unique ecology in San Francisco Bay. Our results reinforce the notion that we can over-estimate the number of non-native invasions when there is cryptic native structure. Moreover, inference of demographic and evolutionary history from mitochondrial loci may be misleading without simultaneous survey of the nuclear genome.

  相似文献   

8.
Pérez‐Portela, R., Almada, V. & Turon, X. (2012). Cryptic speciation and genetic structure of widely distributed brittle stars (Ophiuroidea) in Europe. —Zoologica Scripta, 00, 000–000. The development of molecular techniques has led to the detection of numerous cases of cryptic speciation within widely distributed marine invertebrate species and important taxonomic revisions in all the major marine taxa. In this study, we analysed a controversial marine species complex in the genus Ophiothrix, a widespread taxon in European waters traditionally assigned to two nominal species, Ophiothrix fragilis and O. quinquemaculata. These species are important components of the rocky shores and deep marine benthos along the North Atlantic and Mediterranean littoral. Their status (including variants of both species) has remained contentious due to overlapping variability in morphological characters. In this study, we analysed the genetic and morphological differences of Ophiothrix lineages along the Atlantic and Mediterranean coasts. We also assessed population genetic structure in the Atlantic and Mediterranean basins by sequencing two mitochondrial genes, the 16S rRNA gene and COI gene, of 221 specimens from 13 locations. Phylogenetic analyses demonstrated the existence of two genetically distinct lineages, attributable to two different species although unrelated to previous taxonomic distinctions. Morphological differences could also be detected between these lineages. Samples from the Northeast Atlantic and one from the deep Mediterranean grouped within Lineage I, whereas Lineage II pooled together the southern Atlantic and rocky shallow Mediterranean samples. In the northern region of the Iberian Peninsula and at a deep locality in the Mediterranean, both lineages overlap. Speciation processes likely happened during the Mio–Pliocene transition (about 4.8–7.5 million years ago), when marine‐level oscillations led to the blockage of major marine corridors in Europe and promoted genetic isolation by vicariance. Secondary contact between lineages following sea‐level increases and recolonization during the refilling of the Mediterranean after the Miocene salinity crisis could explain the present‐day distribution of genetic variability. No barriers to gene flow along the Atlanto‐Mediterranean area were detected for Lineage II, and the lack of genetic structure could be caused by a mixture of several factors, such as wide dispersal potential, recent demographic expansion and large population size.  相似文献   

9.
Examining population genetic structure can reveal patterns of reproductive isolation or population mixing and inform conservation management. Some avian species are predicted to exhibit minimal genetic differentiation among populations as a result of the species high mobility, with habitat specialists tending to show greater fine‐scale genetic structure. To explore the relationship between habitat specialization and gene flow, we investigated the genetic structure of a saltmarsh specialist with high potential mobility across a wide geographical range of fragmented habitat. Little variation among mitochondrial sequences (620 bp from ND2) was observed among 149 individual Clapper Rails Rallus crepitans sampled along the Atlantic coast of the USA, with the majority of individuals at all sampling sites sharing a single haplotype. Genotyping of nine microsatellite loci across 136 individuals revealed moderate genetic diversity, no evidence of bottlenecks and a weak pattern of genetic differentiation that increased with geographical distance. Multivariate analyses, Bayesian clustering and an AMOVA all suggested a lack of genetic structuring across the Atlantic coast of the USA, with all individuals grouped into a single interbreeding population. Spatial autocorrelation analyses showed evidence of weak female philopatry and a lack of male philopatry. We conclude that high gene flow connecting populations of this habitat specialist may result from the interaction of ecological and behavioural factors that promote dispersal and limit natal philopatry and breeding‐site fidelity. As climate change threatens saltmarshes, the genetic diversity and population connectivity of Clapper Rails may promote resilience of their populations. This finding helps inform about potential fates of other similarly behaving saltmarsh specialists on the Atlantic coast.  相似文献   

10.
The darkling beetle Pimelia rugulosa rugulosa Germar, 1824 was selected to investigate the process of colonization in a volcanic archipelago and the role of volcanism in determining spatial patterns of genetic variability. Analyses were conducted in the Aeolian Islands, located in the central Mediterranean directly off the Sicilian coast. Genetic variability and geographic structure were studied in individuals from each island of the archipelago based on sequences of the cytochrome c oxidase subunit 2 mitochondrial gene; a network approach was employed to identify haplotype lineages. A strong genetic structure, with no haplotype sharing among islands, was observed. Six separate lineages were identified that independently colonized different islands of the archipelago from the mainland and differentiated locally to form small haplogroups. Variability of observed haplogroups is correlated with island age and a positive correlation between tenebrionid diversity and mitotype diversity is reported. Some, yet undescribed, catastrophic event is hypothesized to explain the depletion of a substantial part of the genetic, as well as biological diversity in the island of Filicudi. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 29–37.  相似文献   

11.
Over the last few decades, advances in molecular techniques have led to the detection of strong geographic population structure and cryptic speciation in many benthic marine taxa, even those with long‐lived pelagic larval stages. Polychaete annelids, in particular, generally show a high degree of population divergence, especially in mitochondrial genes. Rarely have molecular studies confirmed the presence of ‘cosmopolitan’ species. The amphinomid polychaete Hermodice carunculata was long considered the sole species within its genus, with a reported distribution throughout the Atlantic and adjacent basins. However, recent studies have indicated morphological differences, primarily in the number of branchial filaments, between the East and West Atlantic populations; these differences were invoked to re‐instate Hermodice nigrolineata, formerly considered a junior synonym of H. carunculata. We utilized sequence data from two mitochondrial (cytochrome c oxidase subunit I, 16S rDNA) markers and one nuclear (internal transcribed spacer) marker to examine the genetic diversity of Hermodice throughout its distribution range in the Atlantic Ocean, including the Mediterranean Sea, the Caribbean Sea, the Gulf of Mexico and the Gulf of Guinea. Our analyses revealed generally low genetic divergences among collecting localities and between the East and West Atlantic, although phylogenetic trees based on mitochondrial data indicate the presence of a private lineage in the Mediterranean Sea. A re‐evaluation of the number of branchial filaments confirmed differences between East and West Atlantic populations; however, the differences were not diagnostic and did not reflect the observed genetic population structure. Rather, we suspect that the number of branchial filaments is a function of oxygen saturation in the environment. Our results do not support the distinction between Hcarunculata in the West Atlantic and H. nigrolineata in the East Atlantic. Instead, they re‐affirm the older notion that H. carunculata is a cohesive species with a broad distribution across the Atlantic Ocean.  相似文献   

12.
13.
Lithophyllum byssoides is a common coralline alga in the intertidal zone of Mediterranean coasts, where it produces biogenic concretions housing a high algal and invertebrate biodiversity. This species is an ecosystem engineer and is considered a target for conservation efforts, but designing effective conservation strategies currently is impossible due to lack of information about its population structure. The morphological and molecular variation of L. byssoides was investigated using morphoanatomy and DNA sequences (psbA and cox2,3) obtained from populations at 15 localities on the Italian and Croatian coasts. Lithophyllum byssoides exhibited a high number of haplotypes (31 psbA haplotypes and 24 cox2,3 haplotypes) in the central Mediterranean. The psbA and cox2,3 phylogenies were congruent and showed seven lineages. For most of these clades, the distribution was limited to one or a few localities, but one of them (clade 7) was widespread across the central Mediterranean, spanning the main biogeographic boundaries recognized in this area. The central Mediterranean populations formed a lineage separate from Atlantic samples; psbA pair‐wise divergences suggested that recognition of Atlantic and Mediterranean L. byssoides as different species may be appropriate. The central Mediterranean haplotype patterns of L. byssoides were interpreted as resulting from past climatic events in the hydrogeological history of the Mediterranean Sea. The high haplotype diversity and the restricted spatial distribution of the seven lineages suggest that individual populations should be managed as independent units.  相似文献   

14.
Aim Based on extensive range‐wide sampling, we address the phylogeographical history of one of the most widespread and taxonomically complex sedges in Europe, Carex nigra s. lat. We compare the genetic structure of the recently colonized northern areas (front edge) and the long‐standing southern areas (rear edge), and assess the potential genetic basis of suggested taxonomic divisions at the rank of species and below. Location Amphi‐Atlantic, central and northern Europe, circum‐Mediterranean mountain ranges, central Siberia, Himalayas. Methods A total of 469 individuals sampled from 83 populations, covering most of the species’ range, were analysed with amplified fragment length polymorphism (AFLP) and chloroplast DNA (cpDNA) markers. Bayesian clustering, principal coordinates analysis, and estimates of diversity and differentiation were used for the analysis of AFLP data. CpDNA data were analysed with statistical parsimony networks and maximum parsimony and Bayesian inference of phylogenetic trees. Results Overall genetic diversity was high, but differentiation among populations was limited. Major glacial refugia were inferred in the Mediterranean Basin and in western Russia; in addition, there may have been minor refugia in the North Atlantic region. In the southern part of the range, we found high levels, but geographically quite poorly structured genetic diversity, whereas the levels of genetic diversity varied among different areas in the north. North American populations were genetically very similar to the European populations. Main conclusions The data are consistent with extensive gene flow, which has obscured the recent history of the taxon. The limited differentiation in the south probably results from the mixing of lineages expanding from several local refugia. Northward post‐glacial colonization resulted in a leading‐edge pattern of low diversity in the Netherlands, Belgium, Scotland and Iceland, whereas the observed high diversity levels in Fennoscandia suggest broad‐fronted colonization from the south as well as from the east. The patterns found in the American populations are consistent with post‐glacial colonization, possibly even with anthropogenic introduction from Europe. Our data also suggest that the tussock‐forming populations of C. nigra, often referred to as a distinct species (Carex juncella), represent an ecotype that has originated repeatedly from different populations with creeping rhizomes.  相似文献   

15.
We assessed the genetic structure of populations of the widely distributed sea cucumber Holothuria (Holothuria) mammata Grube, 1840, and investigated the effects of marine barriers to gene flow and historical processes. Several potential genetic breaks were considered, which would separate the Atlantic and Mediterranean basins, the isolated Macaronesian Islands from the other locations analysed, and the Western Mediterranean and Aegean Sea (Eastern Mediterranean). We analysed mitochondrial 16S and COI gene sequences from 177 individuals from four Atlantic locations and four Mediterranean locations. Haplotype diversity was high (H=0.9307 for 16S and 0.9203 for COI), and the haplotypes were closely related (π=0.0058 for 16S and 0.0071 for COI). The lowest genetic diversities were found in the Aegean Sea population. Our results showed that the COI gene was more variable and more useful for the detection of population structure than the 16S gene. The distribution of mtDNA haplotypes, the pairwise F(ST) values and the results of exact tests and amova revealed: (i) a significant genetic break between the population in the Aegean Sea and those in the other locations, as supported by both mitochondrial genes, and (ii) weak differentiation of the Canary and Azores Islands from the other populations; however, the populations from the Macaronesian Islands, Algarve and West Mediterranean could be considered to be a panmictic metapopulation. Isolation by distance was not identified in H. (H.) mammata. Historical events behind the observed findings, together with the current oceanographic patterns, were proposed and discussed as the main factors that determine the population structure and genetic signature of H. (H.) mammata.  相似文献   

16.
Mediterranean mountain ranges harbour highly endemic biota in islandlike habitats. Their topographic diversity offered the opportunity for mountain species to persist in refugial areas during episodes of major climatic change. We investigate the role of Quaternary climatic oscillations in shaping the demographic history and distribution ranges in the spider Harpactocrates ravastellus, endemic to the Pyrenees. Gene trees and multispecies coalescent analyses on mitochondrial and nuclear DNA sequences unveiled two distinct lineages with a hybrid zone around the northwestern area of the Catalan Pyrenees. The lineages were further supported by morphological differences. Climatic niche‐based species distribution models (SDMs) identified two lowland refugia at the western and eastern extremes of the mountain range, which would suggest secondary contact following postglacial expansion of populations from both refugia. Neutrality test and approximate Bayesian computation (ABC) analyses indicated that several local populations underwent severe bottlenecks followed by population expansions, which in combination with the deep population differentiation provided evidence for population survival during glacial periods in microrefugia across the mountain range, in addition to the main Atlantic and Mediterranean (western and eastern) refugia. This study sheds light on the complexities of Quaternary climatic oscillations in building up genetic diversity and local endemicity in the southern Europe mountain ranges.  相似文献   

17.
Patterns of genetic variation within a species may be used to infer past events in the evolutionary history of marine species. In the present study we aimed to compare the genetic diversity of the red gorgonian Paramuricea clavata in the Atlantic Ocean and the Mediterranean Sea. For genetic markers we used microsatellites and a mitochondrial gene fragment. Our results revealed a distinct genetic composition and diversity between the Mediterranean and the Atlantic. The Mediterranean samples had higher microsatellite heterozygosity, allelic richness and private allelic richness. The hypotheses that can explain these patterns are the isolation of Atlantic populations and/or a founder effect. Additionally, a clear difference was obtained from the mitochondrial locus, since sequences from Atlantic and Mediterranean samples diverged by 1%, which is high for soft corals.  相似文献   

18.
The European sea bass Dicentrarchus labrax represents a historically and commercially valuable species in the north‐east Atlantic, although the demographic history and the patterns of geographical structure of the species in the north‐east Atlantic remain poorly understood. The present study investigates the population genetic structure of sea bass in north‐western European waters, employing different genetic markers [a portion of the mitochondrial (mt)DNA control region and 13 nuclear microsatellites] aiming to unravel demographic history and population connectivity. The results obtained show a previously unrecognized pattern of population divergence at mtDNA, with three strikingly different lineages identified. Extant sea bass populations, including the Mediterranean lineage, derive from an Atlantic ancestor. A much increased number of nuclear microsatellite loci (comparatively to previous studies) still fail to detect biologically meaningful patterns of spatial genetic structuring in the North Atlantic. Past Pleistocene glacial and interglacial events and some degree of female philopatry might be at the basis of the current geographical separation of the Atlantic lineages that has been identified. Signatures of sudden demographic expansions are more evident in the most recent mitochondrial lineages, and their slight, yet significant, geographical segregation leads to the hypothesis that present‐day spawning grounds for European sea bass may still to some extent be linked to their most recent glacial refugia. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 364–377.  相似文献   

19.
The present study investigates the genetic diversity of Scarus ghobban, a recently introduced parrotfish in the Mediterranean Sea via the Suez Canal. Two mitochondrial and one nuclear DNA regions were sequenced and phylogenetic relationships investigated, from samples collected from Lebanon and across its natural range. Scarus ghobban clustered in two major clades, Pacific Ocean and Indian Ocean, indicating strong population structure, or cryptic speciation. Expectedly, Mediterranean samples clustered with Indian Ocean-Red Sea individuals. However, unlike other recent Lessepsian invaders, S. ghobban displayed high genetic diversity. These results underscore that genetic diversity is a poor predictor of success of an invasive species.  相似文献   

20.
The Atlantic bluefin tuna (ABFT), Thunnus thynnus (Linnaeus, 1758), is an important commercial species managed as two different stocks, western and eastern Atlantic, with their spawning grounds in the Gulf of Mexico and in the Mediterranean Sea, respectively. The eastern Atlantic stock has been overexploited in the last decades, leading to the application of specific management measures introduced by the International Commission for the Atlantic Tuna (ICCAT). A clear understanding of the genetic structure of ABFT Mediterranean population should be pursued in order to support management decisions. To date the genetic studies on the Mediterranean ABFT, carried out with different molecular markers and sampling procedures, have produced unclear results. Here, we analysed ABFT samples from central and western Mediterranean Sea with mitochondrial sequences and 11 microsatellite loci to investigate, among the others, the area of the Strait of Messina, where environmental conditions seem to support a resident population of ABFT. Furthermore, genetic analyses of mitochondrial sequences were carried out including nucleotide sequences of Adriatic ABFT wild larvae retrieved from GenBank. Among the investigated areas a genetic differentiation was detected between the Strait of Messina and the Tyrrhenian Sea with microsatellite loci according to the exact G test, but not to the Bayesian analyses carried out with STRUCTURE. The analyses with mitochondrial sequences do not reveal any differentiation among sampled areas, however, a highly significant genetic divergence was observed between the Adriatic mitochondrial sequences retrieved from GenBank and the central‐western Mediterranean sequences obtained in the present work. Our results provide some evidence of population structure of Mediterranean ABFT adding pieces to a still unclear picture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号