首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Renal hypouricemia (MIM 220150) is an inherited disorder characterized by low serum uric acid levels and has severe complications such as exercise-induced acute renal failure and urolithiasis. We have previously reported that URAT1/SLC22A12 encodes a renal urate-anion exchanger and that its mutations cause renal hypouricemia type 1 (RHUC1). With the large health-examination database of the Japan Maritime Self-Defense Force, we found two missense mutations (R198C and R380W) of GLUT9/SLC2A9 in hypouricemia patients. R198C and R380W occur in highly conserved amino acid motifs in the “sugar transport proteins signatures” that are observed in GLUT family transporters. The corresponding mutations in GLUT1 (R153C and R333W) are known to cause GLUT1 deficiency syndrome because arginine residues in this motif are reportedly important as the determinants of the membrane topology of human GLUT1. Therefore, on the basis of membrane topology, the same may be true of GLUT9. GLUT9 mutants showed markedly reduced urate transport in oocyte expression studies, which would be the result of the loss of positive charges in those conserved amino acid motifs. Together with previous reports on GLUT9 localization, our findings suggest that these GLUT9 mutations cause renal hypouricemia type 2 (RHUC2) by their decreased urate reabsorption on both sides of the renal proximal tubule cells. However, a previously reported GLUT9 mutation, P412R, was unlikely to be pathogenic. These findings also enable us to propose a physiological model of the renal urate reabsorption via GLUT9 and URAT1 and can lead to a promising therapeutic target for gout and related cardiovascular diseases.  相似文献   

2.
Primary renal hypouricemia is a genetic disorder characterized by defective renal uric acid (UA) reabsorption with complications such as nephrolithiasis and exercise-induced acute renal failure. The known causes are: defects in the SLC22A12 gene, encoding the human urate transporter 1 (hURAT1), and also impairment of voltage urate transporter (URATv1), encoded by SLC2A9 (GLUT9) gene. Diagnosis is based on hypouricemia (<119 μmol/L) and increased fractional excretion of UA (>10%). To date, the cases with mutations in hURAT1 gene have been reported in East Asia only. More than 100 Japanese patients have been described. Hypouricemia is sometimes overlooked; therefore, we have set up the flowchart for this disorder. The patients were selected for molecular analysis from 620 Czech hypouricemic patients. Secondary causes of hyperuricosuric hypouricemia were excluded. The estimations of (1) serum UA, (2) excretion fraction of UA, and (3) analysis of hURAT1 and URATv1 genes follow. Three transitions and one deletion (four times) in SLC22A12 gene and one nucleotide insertion in SLC2A9 gene in seven Czech patients were found. Three patients had acute renal failure and urate nephrolithiasis. In addition, five nonsynonymous sequence variants and three nonsynonymous sequence variants in SLC2A9 gene were found in two UK patients suffering from acute renal failure. Our finding of the defects in SLC22A12 and SLC2A9 genes gives further evidence of the causative genes of primary renal hypouricemia and supports their important role in regulation of serum urate levels in humans.  相似文献   

3.
    
The inhibition of urate oxidase (UOX) by azide was investigated by X‐ray diffraction techniques and compared with cyanide inhibition. Two well characterized sites for reagents are present in the enzyme: the dioxygen site and the substrate‐binding site. To examine the selectivity of these sites towards azide inhibition, several crystallization conditions were developed. UOX was co‐crystallized with azide (N3) in the presence or absence of either uric acid (UA, the natural substrate) or 8‐azaxanthine (8AZA, a competitive inhibitor). In a second set of experiments, previously grown orthorhombic crystals of the UOX–UA or UOX–8AZA complexes were soaked in sodium azide solutions. In a third set of experiments, orthorhombic crystals of UOX with the exchangeable ligand 8‐nitroxanthine (8NXN) were soaked in a solution containing uric acid and azide simultaneously (competitive soaking). In all assays, the soaking periods were either short (a few hours) or long (one or two months). These different experimental conditions showed that one or other of the sites, or the two sites together, could be inhibited. This also demonstrated that azide not only competes with dioxygen as cyanide does but also competes with the substrate for its enzymatic site. A model in agreement with experimental data would be an azide in equilibrium between two sites, kinetically in favour of the dioxygen site and thermodynamically in favour of the substrate‐binding site.  相似文献   

4.
The ATP-binding cassette, subfamily G, member 2 (ABCG2/BCRP) gene encodes a well-known transporter, which exports various substrates including nucleotide analogs such as 3′-azido-3′-deoxythymidine (AZT). ABCG2 is also located in a gout-susceptibility locus (MIM 138900) on chromosome 4q, and has recently been identified by genome-wide association studies to relate to serum uric acid (SUA) and gout. Becuase urate is structurally similar to nucleotide analogs, we hypothesized that ABCG2 might be a urate exporter. To demonstrate our hypothesis, transport assays were performed with membrane vesicles prepared from ABCG2-overexpressing cells. Transport of estrone-3-sulfate (ES), a typical substrate of ABCG2, is inhibited by urate as well as AZT and ES. ATP-dependent transport of urate was then detected in ABCG2-expressing vesicles but not in control vesicles. Kinetic analysis revealed that ABCG2 is a high-capacity urate transporter that maintained its function even under high-urate concentration. The calculated parameters of ABCG2-mediated transport of urate were a Km of 8.24 ± 1.44 mM and a Vmax of 6.96 ± 0.89 nmol/min per mg of protein. Moreover, the quantitative trait locus (QTL) analysis performed in 739 Japanese individuals revealed that a dysfunctional variant of ABCG2 increased SUA as the number of minor alleles of the variant increased (p = 6.60 × 10?5). Because ABCG2 is expressed on the apical membrane in several tissues, including kidney, intestine, and liver, these findings indicate that ABCG2, a high-capacity urate exporter, has a physiological role of urate homeostasis in the human body through both renal and extrarenal urate excretion.  相似文献   

5.
The acceptability of dietary allopurinol to German cockroaches, Blattella germanica (L.), was assessed. In diet choice tests between rat chow with or without 0.1% w/w allopurinol there were no significant differences in nymphal development, feeding duration, visits or consumption. The LT50 of cockroaches fed a choice of diets was 3 weeks greater (7.88) than those fed non-choice a 0.1% allopurinol diet. Female cockroaches provided a choice of diets aborted a significantly greater percentage of their oothecae (98.6%) than those fed the untreated diet (1.7%). Choice arena tests of 2% allopurinol in rat chow significantly reduced cockroach populations compared with untreated controls. After 6 weeks, populations were reduced by approximately 50%, and 97% after 14 weeks. These results indicate that allopurinol is acceptable to B. germanica as a dietary supplement which could be used in baits for cockroach control.  相似文献   

6.
Uric acid (urate) is the end product of purine metabolism in humans. Human kidneys reabsorb a large proportion of filtered urate. This extensive renal reabsorption, together with the fact that humans do not possess uricase that catalyzes the biotransformation of urate into allantoin, results in a higher plasma urate concentration in humans compared to other mammals. A major determinant of plasma urate concentration is renal excretion as a function of the balance between reabsorption and secretion. We previously identified that renal urate absorption in proximal tubular epithelial cells occurs mainly via apical urate/anion exchanger, URAT1/SLC22A12, and by facilitated diffusion along the trans-membrane potential gradient by the basolateral voltage-driven urate efflux transporter, URATv1/SLC2A9/GLUT9. In contrast, the molecular mechanism by which renal urate secretion occurs remains elusive. Recently, we reported a newly characterized human voltage-driven drug efflux transporter, hNPT4/SLC17A3, which functions as a urate exit pathway located at the apical side of renal proximal tubules. This transporter protein has been hypothesized to play an important role with regard to net urate efflux. An in vivo role of hNPT4 is supported by the fact that missense mutations in SLC17A3 present in hyperuricemia patients with urate underexcretion abolished urate efflux capacity in vitro. Herein, we report data demonstrating that loop diuretics and thiazide diuretics substantially interact with hNPT4. These data provide molecular evidence for loop and thiazide-diuretics-induced hyperuricemia. Thus, we propose that hNPT4 is an important transepithelial proximal tubular transporter that transports diuretic drugs and operates functionally with basolateral organic anion transporters 1/3 (OAT1/OAT3).  相似文献   

7.
Urate is the end product of purine metabolism and a major antioxidant circulating in humans. Recent data link higher levels of urate with a reduced risk of developing Parkinson's disease and with a slower rate of its progression. In this study, we investigated the role of astrocytes in urate-induced protection of dopaminergic cells in a cellular model of Parkinson's disease. In mixed cultures of dopaminergic cells and astrocytes oxidative stress-induced cell death and protein damage were reduced by urate. By contrast, urate was not protective in pure dopaminergic cell cultures. Physical contact between dopaminergic cells and astrocytes was not required for astrocyte-dependent rescue as shown by conditioned medium experiments. Urate accumulation in dopaminergic cells and astrocytes was blocked by pharmacological inhibitors of urate transporters expressed differentially in these cells. The ability of a urate transport blocker to prevent urate accumulation into astroglial (but not dopaminergic) cells predicted its ability to prevent dopaminergic cell death. Transgenic expression of uricase reduced urate accumulation in astrocytes and attenuated the protective influence of urate on dopaminergic cells. These data indicate that urate might act within astrocytes to trigger release of molecule(s) that are protective for dopaminergic cells.  相似文献   

8.
The expression of both OAT1 and OAT3 along the isolated rabbit renal proximal tubule (RPT) was determined using RT-PCR. They were found to be very strong in S2 segment and weak in S1 and S3 segments. We further examined the relative transport activity of these transporters in isolated perfused rabbit RPT using [3H]para-aminohippurate ([3H]PAH), and estrone sulfate ([3H]ES) as specific substrates for rbOAT1 and rbOAT3, respectively. The transport activity of OAT1 was in the order S2 > S1 = S3 segments and that of OAT3 was in the order S1 = S2>>S3 segments. The addition of α-ketoglutarate (100 μM) in the bathing medium increased both OAT1 and OAT3 transport activities in all segments of proximal tubule. The kinetics of [3H]succinic acid transport, used to measure the activity of sodium dicarboxylate transporter 3 (NaDC3), were examined. The Jmax for succinic acid was in the order S2 > S3 and unmeasurable in the S1 segment. Our data indicate that both OAT1 and OAT3 play quantitatively significant roles in the renal transport of organic anions along the proximal tubule but predominately in S2 segment. The relative contribution of both transporters depends on their relative expression levels and may possibly be affected by the activity of NaDC3 in RPT.  相似文献   

9.
Purine nucleoside phosphorylase (PNPase) deficiency is an autosomal recessive disorder affecting purine degradation and salvage pathways. Clinically, patients typically present with severe immunodeficiency, neurological dysfunction, and autoimmunity. Biochemically, PNPase deficiency may be suspected in the presence of hypouricemia. We report biochemical and genetic data on a cohort of seven patients from six families identified as PNPase deficient. In all patients, inosine, deoxyinosine, guanosine, and deoxyguanosine were elevated in urine, and mutation analysis revealed seven different mutations of which three were novel. The mutation c.770A>G resulted in the substitution p.His257Arg. A second novel mutation c.257A>G (p.His86Arg) was identified in two siblings and a third novel mutation, c.199C>T (p.Arg67X), was found in a 2-year-old female with delayed motor milestones and recurrent respiratory infections. A review of the literature identified 67 cases of PNPase deficiency from 49 families, including the cases from our own laboratory. PNPase deficiency was confirmed in 30 patients by genotyping and 24 disease causing mutations, including the three novel mutations described in this paper, have been reported to date. In five of the seven patients, plasma uric acid was found to be within the pediatric normal range, suggesting that PNPase deficiency should not be ruled out in the absence of hypouricemia.  相似文献   

10.
目的比较单侧输尿管结扎(UUO)与单侧输尿管结扎再通(RUUO)建立的SD大鼠肾纤维化模型的优劣,从而得到更符合临床慢性肾衰进展特点的动物模型,以供临床药物筛选、疗效评介、科研、教学使用。方法健康SPF级雄性SD大鼠54只,随机分成假手术组、UUO组及UUO再通组各18只,造模成功后检测血肌酐(Scr)、尿素氮(BUN)及尿N-乙酰-β-D-氨基葡萄糖苷酶(NAG),病理检查肾小管间质纤维化指数和免疫组化检查α-肌动蛋白(α-SMA)。结果无论从肾功能方面,还是病理检查方面,UUO再通的大鼠肾纤维化动物模型均优于UUO大鼠模型。结论再通UUO肾纤维化大鼠模型在功能及病理方面及其相关的免疫组化方面优于UUO组,其病理特点更符合慢性肾小管间质纤维化进程的动物模型。  相似文献   

11.
    
Iron deficiency is the most common nutritional deficiency in the world. Special molecules have evolved for iron acquisition, transport and storage in soluble, nontoxic forms. Studies about the effects of iron on health are focused on iron metabolism or nutrition to prevent or treat iron deficiency and anemia. These studies are focused in two main aspects: (1) basic studies to elucidate iron metabolism and (2) nutritional studies to evaluate the efficacy of iron supplementation to prevent or treat iron deficiency and anemia. This paper reviews the advantages and disadvantages of the experimental models commonly used as well as the methods that are more used in studies related to iron. In vitro studies have used different parts of the gut. In vivo studies are done in humans and animals such as mice, rats, pigs and monkeys. Iron metabolism is a complex process that includes interactions at the systemic level. In vitro studies, despite physiological differences to humans, are useful to increase knowledge related to this essential micronutrient. Isotopic techniques are the most recommended in studies related to iron, but their high cost and required logistic, making them difficult to use. The depletion–-repletion of hemoglobin is a method commonly used in animal studies. Three depletion–-repletion techniques are mostly used: hemoglobin regeneration efficiency, relative biological values (RBV) and metabolic balance, which are official methods of the association of official analytical chemists. These techniques are well-validated to be used as studies related to iron and their results can be extrapolated to humans. Knowledge about the main advantages and disadvantages of the in vitro and animal models, and methods used in these studies, could increase confidence of researchers in the experimental results with less costs.  相似文献   

12.
丙型肝炎病毒(HCV)感染是导致人类慢性病毒性肝炎、肝硬化和肝癌的最主要病因之一。由于缺乏合适的HCV感染实验动物模型,使得针对HCV感染更为有效的疗法及疫苗的研发滞后。黑猩猩是HCV感染研究的最佳实验动物,但由于其来源有限、价格昂贵及临床症状等诸多问题,其应用受限,因此发展新的实验动物模型用于HCV感染相关的基础和应用研究迫在眉睫。近年来,以啮齿类等动物为替代模型取得了不少进展,应用转基因等实验技术使替代动物感染了HCV,并成功应用于多个学科领域的研究。本文分析了HCV自然感染的实验动物、自然感染和非自然感染的替代实验动物在致病机制研究、药物评价和疫苗研发应用中的优缺点及未来研究趋势。  相似文献   

13.
    
Hereditary xanthinuria (type I) is caused by an inherited deficiency of the xanthine oxidorectase (XDH/XO), and is characterized by very low concentration of uric acid in blood and urine and high concentration of urinary xanthine, leading to urolithiasis. Type II results from a combined deficiency of XDH/XO and aldehyde oxidase. Patients present with hematuria, renal colic, urolithiasis or even acute renal failure. Clinical symptoms are the same for both types. In a third type, clinically distinct, sulfite oxidase activity is missing as well as XDH/XO and aldehyde oxidase. The prevalence is not known, but about 150 cases have been described so far. Hypouricemia is sometimes overlooked, that´s why we have set up the diagnostic flowchart. This consists of a) evaluation of uric acid concentrations in serum and urine with exclusion of primary renal hypouricemia, b) estimation of urinary xanthine, c) allopurinol loading test, which enables to distinguish type I and II; and finally assay of xanthine oxidoreductase activity in plasma with molecular genetic analysis. Following this diagnostic procedure we were able to find first patients with hereditary xanthinuria in our Czech population. We have detected nine cases, which is one of the largest group worldwide. Four patients were asymptomatic. All had profound hypouricemia, which was the first sign and led to referral to our department. Urinary concentrations of xanthine were in the range of 170–598 mmol/mol creatinine (normal < 30 mmol/mol creatinine). Hereditary xanthinuria is still unrecognized disorder and subjects with unexplained hypouricemia need detailed purine metabolic investigation.  相似文献   

14.
The end product of purine metabolism varies from species to species. The degradation of purines to urate is common to all animal species, but the degradation of urate is much less complete in higher animals. The comparison of subcellular distribution, intraperoxisomal localization forms, molecular structures, and some other properties of urate-degrading enzymes (urate oxidase, allantoinase, and allantoicase) among animals is described. Liver urate oxidase (uricase) is located in the peroxisomes in all animals with urate oxidase. On the basis of the comparison of intraperoxisomal localization forms, mol wt, and solubility of liver urate oxidase among animals, it is suggested that amphibian urate oxidase is a transition form in the evolution of aquatic animals to land animals. Allantoinase and allantoicase are different proteins in fish liver, but the two enzymes form a complex in amphibian liver. The subcellular localization of allantoinase and allantoicase varies among fishes. Hepatic allantoinase is located both in the peroxisomes and in the cytosol in saltwater fishes, and only in the cytosol in freshwater fishes. Hepatic allantoicase is located on the outer surface of the, peroxisomal membrane in the mackerel group and in the peroxisomal matrix in the sardine group. Amphibian hepatic allantoinase-allantoicase complex is probably located in the mitochondria. On the basis of previous data, changes of allantoinase and allantoicase in molecular structure and intracellular localization during animal evolution may be as follows: Fish liver allantoinase is a single peptide with a mol wt of 54,000, and is located both in the peroxisomes and in the cytosol, or only in the cytosol. Fish liver allantoicase consists of two identical subunits with a mol wt of 48,000, and is located in the peroxisomal matrix or on the outer surface of the peroxisomal membrane. The evolution of fishes to amphibia resulted in the dissociation of allantoicase into subunits, and in the association of allantoinase with the subunit of allantoicase. This amphibian enzyme was lost by further evolution.  相似文献   

15.
Abstract

A method of oligonucleotide synthesis was developped on a new type of support by the phosphotriester approach. Using this method the heptanucleotide dT(pT)6 was synthetized in 68 % yield.  相似文献   

16.
We investigated SIV infection and expression of adhesion molecules in the small intestine of rhesus macaques infected with pathogenic SIV (SIVmac) or nonpathogenic clone (SIV1A11). There was a wider dissemination and marked difference in tissue localization of SIVmac relative to SIV1A11. Our results also indicate that viral pathogenicity is associated with increased migration of inflammatory cells expressing VLA-α4, LFA-1α, Mac-1α, ICAM-1, and β2 integrin into the intestinal mucosa.  相似文献   

17.
18.
肝纤维化动物模型探讨   总被引:3,自引:0,他引:3  
目的 寻找肝纤维化最佳模型.方法 将Wistar大鼠随机分成血清组、四氯化碳皮下注射组、四氯化碳腹腔注射组,每组30只,各组分别给予猪血清腹腔注射、40%四氯化碳皮下和腹腔注射造模(每周2次),观察造模过程中大鼠死亡情况以及4周及6周各组大鼠肝纤维化的程度.结果 3种方法都能成功制备肝纤维化模型.从动物死亡情况来看,四氯化碳腹腔注射组死亡率明显高于前两组;血清组死亡率最低,但与四氯化碳皮下注射组比较无显著差异;从模型形成时间来看,血清组造模时间较长,明显高于其他两组,四氯化碳皮下注射组与四氯化碳腹腔注射组在模型形成时间上无明显差异.结论 四氯化碳皮下注射组制备肝纤维化模型动物死亡率较低,肝纤维化形成时间较短,是一种制作肝纤维化模型较好的方法.  相似文献   

19.
幽门螺杆菌动物模型用于HP相关疾病和HP疫苗作用的研究。常规实验动物包括悉生猪、悉生狗、非人类灵长动物、猫、雪貂、小鼠、大鼠、沙鼠等。猫螺杆菌和雪貂螺杆菌感染也被用于模型研究。最近,转基因小鼠和基因敲除小鼠也被用作幽门螺杆菌动物模型研究。  相似文献   

20.
The histochemistry and histology of the eccrine sweat gland in the rhesus monkey (Macaca mulatta) are described. The histochemical distribution and localization of enzymes and substrates are very similar to those found in the human; innervation is cholinergic. Active eccrine glands on the general body surface average 136 glands/cm2. Above the thermal neutral zone (TNZ), sweating is the major avenue for heat loss and the role of panting in dissipating heat is relatively insignificant. The intrahypothalamic administration of prostaglandin E1 (PGE1) suppresses sweating and leads to an increase in core temperature. A linear relation is found between local sweat rates on the general body surface and clamped hypothalamic temperature. Studies also provide direct support for the concept that brain temperature and skin temperature interact additively in the control of sweating in higher primates. The functional characteristics of eccrine sweating in the patas monkey (Erythocebus) are qualitatively similar to those in the rhesus monkey. The patas monkey maintains a relatively constant rectal temperature (37.6–38.4°C) when equilibrated to a wide range of ambient temperaures of 15–40°C. Eccrine sweating is the main effector system for heat dissipation above the TNZ. We emphasize here that evaporative heat loss that is due to sweating is related to both mean skin and mean body temperature and at 40°C is 40% higher than that recorded from the rhesus monkey. These results indicate that the patas monkey, because of its high sweating capacity and other similarities with the human eccrine system, is a most appropriate animal model for comparative studies of eccrine sweat gland function in primates in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号