首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Dairy cows are commonly fed compound feed concentrates, whose accurate formulation relies on the additivity of ruminal degradation characteristics of single feeds, and the absence of associative effects. The main aim of this study was to evaluate the additivity of single feeds in compound feeds made thereof. Twelve single feeds were used to produce eight compound feeds in mash and pelleted form. Samples of single and compound feeds were incubated in situ in three ruminally fistulated dairy cows, and effective ruminal degradation (ED) of CP and starch (ST) was computed. The ED values of examined compound feeds could be, in most cases, accurately calculated from ED values of single feeds. Observed EDCP values were significantly lower than that calculated, but differences were overall small and not exceeded 5% points. No significant differences were observed between calculated and observed EDST. The study also examined the effects of pelleting of compound feeds on in situ degradation. Pelleting significantly increased EDCP (up to 8% points), and EDST (up to 4% points) of most compound feeds. This could have been caused by the pelleting process increasing the proportion of fine feed particles with fast disappearance from the bags. It was concluded that small associative effects between the examined single feeds could be disregarded when formulating compound feeds for dairy cows, and that additivity of EDCP and EDST can be assumed in most cases.  相似文献   

2.
The objective of this study was to characterise variations in the composition and nutritive value of dried distillers’ grains with solubles (DDGS) for ruminants, and to estimate the undegradable crude protein (UDP) in DDGS. Thirteen samples originating from wheat, corn, barley and blends of different substrates were studied. The rumen degradation of crude protein (CP) was determined using the nylon bag technique. Samples were incubated for 0, 1, 2, 4, 8, 16, 32 and 72 h, and in situ degradation kinetics were determined. The UDP was estimated using a passage rate of 8%/h. In vitro gas production was measured to estimate the metabolisable energy (ME), net energy for lactation (NEL) and in vitro digestibility of organic matter (IVDOM). Chemical profiles varied among samples [in g/kg dry matter (DM) ± standard deviation]; the values were 310 ± 33 CP, 86 ± 37 ether extract, 89 ± 18 crude fibre, 408 ± 39 neutral detergent fibre, 151 ± 39 acid detergent fibre and 62 ± 31 acid detergent lignin, as well as in protein fractions according to the Cornell Net Carbohydrate and Protein System [in g/kg CP]; the values were for fractions A, 161 ± 82; B1, 24 ± 11; B2, 404 ± 105; B3, 242 ± 61; and C, 170 ± 87. The ME, NEL [MJ/kg DM] and IVDOM [%] also varied among samples: 12.1 ± 0.59, 7.3 ± 0.39 and 72.5 ± 4.30, respectively. The in situ rapidly degradable CP fraction (a) varied from 10.2% to 30.6%, and the potentially degradable fraction (b) averaged to 66.8%. The UDP varied from 8.6% to 62.6% of CP. The present study suggests significant variations in composition and nutritive value among different sources of DDGS. The UDP could be predicted on the basis of analysed CP fractions, but the accuracy of UDP prediction improved upon the inclusion of neutral-detergent insoluble nitrogen, explaining 94% of the variation in the UDP values. We conclude that chemical protein fractions may be used to predict the UDP values of DDGS and that the variability in the protein fractions of DDGS should be considered when formulating diets for dairy cows.  相似文献   

3.
The objectives of the trial were to study the effects of dietary crude protein (CP) and tannic acid (TA) on rumen fermentation, microbiota and nutrient digestion in beef cattle. Eight growing beef cattle (live weight 350 ± 25 kg) were allocated in a 2 × 2 crossover design using two levels of dietary CP [111 g/kg dry matter (DM) and 136 g/kg DM] and two levels of TA (0 and 16.9 g/kg DM) as experimental treatments. Each experimental period lasted 19 d, consisting of 14-d adaptation and 5-d sampling. The impacts of dietary CP and TA on ruminal microbiota were analysed using high-throughput sequencing of 16S rRNA gene. Results indicated that no interactions between dietary CP and TA were found on rumen fermentation and nutrient digestibility. Increasing dietary CP level from 111 to 136 g/kg DM increased the ruminal concentrations of ammonia nitrogen (NH3-N) (p < 0.01) and improved the CP digestibility (p < 0.001). Adding TA at 16.9 g/kg DM inhibited rumen fermentation and decreased the digestibility of dietary CP (p < 0.001), DM (p < 0.05) and organic matter (p < 0.01). Increasing the dietary CP level or adding TA did not affect the relative abundances of the major bacteria Firmicutes and Proteobacteria at the phylum level and Prevotella_1 and Christensenellaceae_R-7_group at the genus level, even though adding TA increased the Shannon index of the ruminal bacterial community. TA was partly hydrolysed to pyrogallol, gallic acid and resorcinol in rumen fluid and the inhibitory effects of TA on rumen fermentation and nutrient digestibility could have been resulted from the TA metabolites including pyrogallol, gallic acid and resorcinol as well as the protein-binding effect.  相似文献   

4.
The present experiment was undertaken to determine the effects of dietary addition of rumen-protected folic acid (RPFA) on ruminal fermentation, nutrient degradability, enzyme activity and the relative quantity of ruminal cellulolytic bacteria in growing beef steers. Eight rumen-cannulated Jinnan beef steers averaging 2.5 years of age and 419 ± 1.9 kg body weight were used in a replicated 4 × 4 Latin square design. The four treatments comprised supplementation levels of 0 (Control), 70, 140 and 210 mg RPFA/kg dietary dry matter (DM). On DM basis, the ration consisted of 50% corn silage, 47% concentrate and 3% soybean oil. The DM intake (averaged 8.5 kg/d) was restricted to 95% of ad libitum intake. The intake of DM, crude protein (CP) and net energy for growth was not affected by treatments. In contrast, increasing RPFA supplementation increased average daily gain and the concentration of total volatile fatty acid and reduced ruminal pH linearly. Furthermore, increasing RPFA supplementation enhanced the acetate to propionate ratio and reduced the ruminal ammonia N content linearly. The ruminal effective degradability of neutral detergent fibre from corn silage and CP from concentrate improved linearly and was highest for the highest supplementation levels. The activities of cellobiase, xylanase, pectinase and α-amylase linearly increased, but carboxymethyl-cellulase and protease were not affected by the addition of RPFA. The relative quantities of Butyrivibrio fibrisolvens, Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes increased linearly. With increasing RPFA supplementation levels, the excretion of urinary purine derivatives was also increased linearly. The present results indicated that the supplementation of RPFA improved ruminal fermentation, nutrient degradability, activities of microbial enzymes and the relative quantity of the ruminal cellulolytic bacteria in a dose-dependent manner. According to the conditions of this experiment, the optimum supplementation level of RPFA was 140 mg/kg DM.  相似文献   

5.
A 2 × 2 factorial feeding experiment was conducted to examine the effects of varying the maturity level of the grass used to prepare silage and the nature of concentrate starch source and their interactions on dry matter intake (DMI), diet digestibility, energy corrected milk (ECM) production and milk composition in dairy cows. Twenty-eight multiparous Swedish Red dairy cows, 133 ± 45 days in milk (DIM), with an average milk yield of 30 ± 4 kg/day and a live weight of 624 ± 69 kg were blocked by DIM and randomly assigned to seven replicated balanced 4 × 4 Latin squares with four 21-day experimental periods. The experimental diets consisted of four total mixed rations (TMR) consisting of early-cut grass silage (EGS) supplemented with either barley- or maize-based concentrate and late-cut grass silage (LGS) supplemented with either barley- or maize-based concentrate. All TMR contained identical proportions of forage (51%) and concentrate (49%). Total tract digestibility was estimated by determining indigestible NDF (iNDF) concentrations in feeds and faeces and using iNDF as an internal marker. The feeds’ ruminal degradation parameters were determined using both in situ (nylon bag) and in vitro (gas production (GP)) techniques. Cows offered diets containing EGS had greater (P < 0.001) daily dry matter (DM) intakes, ECM yields and total tract digestibilities for DM and organic matter (OM), but these were not affected by the nature of the concentrate starch source. No interaction between the maturity of the silage and the nature of the concentrate starch source was observed for DMI, diet digestibility or ECM yield. Both grass silages and concentrates had similar rates of ruminal degradation of NDF when measured in situ. The in situ DM (P < 0.001) and starch (P = 0.001) degradation rates of barley-based concentrate were greater than those for maize-based concentrate. In vitro OM GP rates and extents were similar for both concentrate feeds. The results showed that diets containing EGS offered better animal performance and diet digestibility than diets containing LGS. The concentrate starch source did not affect animal performance, but total NDF digestibility was better with diet containing barley- than maize-based concentrate.  相似文献   

6.
ABSTRACT

The effects of treating sunflower seed (SS) and meal (SM), as well as of a mixture of both feeds (SSM; 45:55) with a solution of malic acid (1 M; 400 ml/kg feed) and heating for protection against ruminal degradation were studied. Four rumen-fistulated sheep were fed two mixed diets composed of oat hay and concentrate (40:60) and differing only in the concentrate, that contained either a mixture of untreated SS and SM (control diet) or treated SS and SM (MAH diet). A crossover design with two 24-d experimental periods was used, and each period included 10 d of diet adaptation, 9 d for in situ incubations of SS, SM and SSM, and 5 d for measuring ruminal fermentation characteristics and rumen emptying. From day 6 onwards a solution of (15NH4)2SO4 was continuously infused into the rumen of each sheep to label ruminal bacteria. Feeding the MAH diet did not affect either ruminal pH or concentrations of total volatile fatty acids and NH3-N, but decreased (p ≤ 0.01) the molar proportions of acetate and propionate and increased those of butyrate (p< 0.001). Organic matter and lipid contents of ruminal bacteria were lower whereas both N content and 15N enrichment were greater (p ≤ 0.05) in MAH-fed sheep. The in situ effective degradability (ED) of different fractions of SS, SM and SSM were calculated from the ruminal rates of particle comminution and passage, and values were corrected for microbial contamination. The MAH treatment decreased the ED of most fractions for all feeds and increased the supply of by-pass crude protein (CP) by 19.1% and 120% for SS and SM, respectively, and that of fat by 34% for SS. The MAH treatment also increased the in vitro intestinal digestibility of the by-pass CP for both SS (from 60.1% to 75.4%) and SM (from 83.2% to 91.0%). The simultaneous heating of both feeds (SSM) reinforced the protective effect of the MAH treatment and increased the by-pass CP without altering its intestinal digestibility, increasing the intestinally digested CP content by 16.8% compared with the value estimated from the results obtained for MAH-treated SS and SM incubated independently. These results indicate that the MAH treatment was effective to protect sunflower protein against rumen degradation and increased its intestinal digestibility.  相似文献   

7.
The objective of this study was to characterise the variation of utilisable crude protein at the duodenum (uCP) of dried distillers’ grains with solubles (DDGS) for ruminants using a modified gas test and to predict the uCP in DDGS based on chemical composition. Thirteen samples originating from wheat, maize, barley or blends of different substrates were studied. The in vitro uCP was estimated using the modified Hohenheim gas test (moHGT). Samples were incubated in rumen fluid for 8 h, 24 h and 48 h followed by ammonia distillation. The obtained values were compared to reference values of uCP (based on the contents of crude protein (CP), in situ undegraded CP and metabolisable energy). The reference and in vitro values of uCP were calculated according to passage rates of 2, 5 and 8%/h (i.e., uCP2, uCP5 and uCP8, respectively). The in vitro uCP8 ranged from 214 to 320 g/kg DM and reference values from 158 to 302 g/kg DM. The in vitro uCP2 was on average lower (by 7 g/kg DM) and in vitro uCP8 was higher (by 56 g/kg DM) than their respective reference values. The in vitro uCP5 and uCP8 were correlated with reference values and the correlations were improved with increasing passage rates. When the differences of uCP content between in vitro and reference values were related to CP fractions, they increased with increasing content of CP fraction A and decreasing content of CP fraction B3 for uCP8. The prediction of uCP values from chemical composition was not reliable. It was concluded that uCP can be predicted on the basis of the moHGT method and CP fractions. The accuracy of prediction improved upon the inclusion of CP fractions and neutral-detergent insoluble nitrogen. The present study revealed a significant variation in the uCP content of DDGS, which should be considered when formulating rations for dairy cows.  相似文献   

8.
The ruminal degradation and intestinal digestibility (ID) of dry matter (DM) and crude protein (CP) of different feed samples were measured in two trials by using nylon bag and rumen outflow rate techniques in three wethers cannulated in the rumen and in the duodenum. In trial 1, three samples of grains of wheat, barley, and corn treated by cooking (TW, TB, and TC, respectively) were studied together with a sample of untreated corn grains (CG) of different origin. In trial 2, these studies were carried out on a sample of rapeseed (RS) and on a mix of this same sample and rapeseed meal (in proportions 70:30) treated by cooking (TR). In both trials, the animals were fed at the same intake level (40 g DM x kg(-1) LW0.75) with 2:1 (DM basis) forage to concentrate diets. Rumen degradation rates of DM were high in the treated cereals (between 11.0 and 14.2% x h(-1)) and low in the CG (6.35% x h(-1)), whereas for CP these rates were low in all cereals. For DM, in all cereals, ID decreased linearly as the ruminal incubation time increased. The values of intestinal effective digestibility (IED), calculated from these functions and from the rumen outflow, were respectively: 86.4, 62.1, 51.5, and 67.9%. For CP, ID was unaffected by the ruminal incubation time in corn samples, whereas in TW and TB a reduction of these values was only observed for the time of 48 h. The values of IED of CP for CG, TW, TB and TC were: 82.6, 88.9,82.5, and 91.6%, respectively. Rumen degradation rates of the RS and TR samples were 8.35 and 8.23% x h(-1) for DM and 12.0 and 9.59% x h(-1) for CP. In RS, the ID of DM and CP showed a downward trend with an increase of the ruminal incubation time, as modelled according to an exponential function. This same trend was observed for TR after a lag period estimated at 7.53 and 6.51 h for DM and CP, respectively. The values of IED of RS and TR were respectively 56.5 and 50.8% for DM and 71.9 and 80.1% for CP. These same results were also determined by a simplified method using a sample pooled to be representative of the rumen outflow of undegraded feed. The respective values for RS and TR were 54.8 and 51.6 for DM and 65.8 and 78.9% for CP. This method seems to be a promising technique to estimate IED, although more studies are needed to improve its accuracy.  相似文献   

9.
In recent years, advances in plant breeding were achieved, which potentially led to modified nutritional values of cereal grains. The present study was conducted in order to obtain a broad overview of ruminal digestion kinetics of rye, triticale and barley grains, and to highlight differences between the grain species. In total, 20 genotypes of each grain species were investigated using in situ and in vitro methods. Samples were ground (2 mm), weighed into polyester bags, and incubated in situ 1 to 48 h in three ruminally cannulated lactating dairy cows. The in vitro gas production of ground samples (1 mm) was measured according to the ‘Hohenheim Gas Test’, and cumulative gas production was recorded over different time spans for up to 72 h. There were significant differences (P<0.05) between the species for most parameters used to describe the in situ degradation of starch (ST) and dry matter (DM). The in situ degradation rate (c) and effective degradability (assuming a passage rate of 8%/h; ED8) of ST differed significantly between all grains and was highest for rye (rye: 116.5%/h and 96.2%; triticale: 85.1%/h and 95.0%; barley: 36.2%/h and 90.0% for c and ED8, respectively). With respect to DM degradation, the ranking of the species was similar, and predicted c values exhibited the highest variation within species. The in vitro gas production rate was significantly higher (P<0.05) for rye than for triticale and barley (rye: 12.5%/h; triticale: 11.5%/h; barley: 11.1%/h). A positive relationship between the potential gas production in vitro and the maximal degradable DM fraction in situ was found using all samples (r=0.84; P<0.001) as well as rye (P=0.002) and barley (P<0.001) alone, but not for triticale. Variation in ruminal in situ degradation parameters within the grain species resulted from the high c values, but was not reflected in the ED estimates. Therefore, the usage of mean values for the ED of DM and ST for each species appears reasonable. Estimated metabolisable energy concentrations (ME, MJ/kg DM) and the estimated digestibility of organic matter (dOM, %) were significantly lower (P<0.05) for barley than for rye and triticale. Rye and triticale dOM and ME values were not significantly different (P=0.386 and 0.485).  相似文献   

10.
The main objective of this study was to evaluate the variability in in situ CP degradation characteristics of 15 batches lupin grains from nine genotypes in a standardised approach. This study also investigated whether differences in CP degradation can be described by protein fractionation using the Cornell Net Carbohydrate and Protein System (CNCPS) and also whether thermal processing of lupins has an effect on CP degradation in the rumen and analysed protein fractions. The rising political and consumer demand for milk products from dairy production systems based on domestic protein sources and the wide range of lupin types and varieties that can be chosen as protein feed in dairy nutrition requires research to determine the variability in CP degradation characteristics in the rumen. For CP degradation measurements, ground grains were incubated in the rumen of three lactating Jersey cows fitted with a ruminal cannula for different times from 2 to 48 h, and the washing loss of non-incubated samples was also measured. Protein fractions were analysed according to CNCPS and used for the estimation of ruminally degraded protein. In situ CP degradation parameters varied widely between untreated samples. The mean value for the washout fraction was 29.3% (from 16.4% to 43.6%). The potentially degradable fraction averaged 70.5% (from 55.6% to 83.7%), hence maximal degradation of CP was close to completeness. Mean degradation rate was 16.6%/h (from 12.6 to 21.0%/h). Variation in estimated parameters led to variation in the effective degradation (ED) averaging 76.6% (from 67.3% to 83.0%) when calculated assuming a ruminal outflow of 8%/h. Thermal treatment of lupins induced changes in degradation characteristics, primarily by lowering degradation rates, and also led to a significant reduction in ED. The ED calculated from analysed protein fractions averaged 10 percentage points higher than ED calculated from in situ parameters for untreated grains. The ED based on protein fractionation was also reduced by heat treatment, but the correlation with in situ based ED was poor. It can be concluded that the variation in ED indicates a potential to increase the amount of rumen undegraded protein without additional chemical or physical treatment and the effect of genetic factors and agronomic practices on ED of lupin grains should be investigated in systematic studies in the future.  相似文献   

11.
The aim of the present experiment was to investigate an experimental brown midrib (Bm) maize hybrid in comparison with a control (Con) non-Bm maize hybrid on ruminal and total tract digestibility, ruminal fermentation, ruminal ingesta kinetics, nitrogen (N) utilisation and microbial efficiency. A total of six ruminally and duodenally cannulated German Holstein cows were used. Animals were fed diets of either 11.5 kg dry matter (DM) of a Con or a Bm maize silage plus 4.1 kg DM of concentrate. Ruminal and total tract digestibility of organic matter, neutral detergent fibre and acid detergent fibre did not differ between hybrids. Short-chain fatty acid concentrations and pH in the rumen were not affected, but ruminal mean retention time was lower for Diet Bm (Con: 45.4 ± 2.39 h; Bm: 40.6 ± 2.39 h; least squares means ± standard error). Cows fed Diet Bm had greater efficiency of N utilisation (Con: 30.1 ± 1.37%; Bm: 33.1 ± 1.37%) and increased flow of microbial crude protein at the duodenum (MCPF) (Con: 7.0 ± 0.37 g/MJ metabolisable energy (ME); Bm: 8.1 ± 0.37 g/MJ ME). Thus, MCPF and utilisable crude protein at the duodenum (uCP) were greater for Diet Bm (MCPF – Con: 1117 ± 52.1 g/d; Bm: 1306 ± 52.1 g/d; uCP – Con: 1594 ± 57.9 g/d; Bm: 1807 ± 57.9 g/d) and ruminal N balance was lower for Diet Bm (Con: 98.7 ± 8.92 g/d; Bm: 65.6 ± 8.92 g/d). The present results show that the Bm maize hybrid might be advantageous for dairy cow nutrition with regard to N utilisation and MCPF. However, further research is necessary to draw more precise conclusions on the potential of Bm maize hybrids in general.  相似文献   

12.
Four rumen and proximal duodenum fistulated non-lactating Holstein cows were used to determine the effect of extrusion at 120 degrees C of whole horse beans (Vicia faba cv Talo) on in vitro nitrogen (N) solubility and in situ degradation of dry matter (DM) and crude protein (CP) in the rumen and intestine. Cows were fed a ration of 30% whole horse beans (WHB) and 70% Italian rye-grass hay. The degradation of DM and CP was estimated using nylon bags suspended in the rumen for 2, 4, 7, 16, 24 and 48 h; the effective ruminal degradability of DM and CP was evaluated assuming a ruminal outflow rate of 0.06/h. Bags incubated in the rumen for 16 h were introduced into the small intestine through the duodenal cannula and subsequently recovered in the feces. Extrusion of WHB reduced N-solubility in buffer solution (21.1 vs 74.9%). Processing diminished the effective rumen degradability of DM (74.6 vs 80.4%) and CP (70.2 vs 89.2%). Meanwhile, the amounts of DM and CP digested in the intestine increased: 9.6 vs 1.4% and 25.2 vs 3.0% respectively. Therefore, feeds containing extruded WHB increase the availability of dietary proteins in the intestine compared with diets containing raw WHB.  相似文献   

13.
Because legumes are a very important feed source for ruminants, the aim of this study was to evaluate the ideal inclusion level of hay Arachis pintoi cv. Belmonte in sheep diets by measuring the dry matter intake (DMI), concentration of volatile fatty acids, ammonia–nitrogen concentration, ruminal pH and the in situ degradability of dry matter (DM) and crude protein (CP). In the experiment with four sheep, a 4 × 4 Latin Square design was used with four periods and four treatments (0%, 30%, 60% and 100% Arachis replacing grass hay). Significant interactions were observed between treatments and sampling times for ammonia–nitrogen and acetate, propionate and butyrate concentration and the acetate:propionate ratio. The ruminal pH and total volatile fatty acids concentration were not affected by interaction between treatments and sampling time. The degradation of DM and CP was similar, rising with the increasing content of Arachis, showing a linear effect. The treatment containing 60% of Arachis showed best results, with good levels of daily weight gain and higher ruminal concentrations of volatile fatty acids. The legume showed high levels of CP, high digestibility and appropriate levels of fibre, with excellent standards of degradation and ruminal characteristics. The use of the legume Arachis for ruminants is a promising option of nutrient supply to meet production demands of these animals.  相似文献   

14.
The relative contribution of ruminal short-chain fatty acid (SCFA) absorption and salivary buffering to pH regulation could potentially change under different dietary conditions. Therefore, the objective of this study was to investigate the effects of altering the ruminal supply of rapidly fermentable carbohydrate (CHO) on absorptive function and salivation in beef cattle. Eight heifers (mean BW±SD=410±14 kg) were randomly allocated to two treatments in a crossover design with 37-day periods. Dietary treatments were barley silage at 30% low forage (LF) or 70% high forage (HF) of dietary dry matter (DM), with the remainder of the diet consisting of barley grain (65% or 25% on a DM basis) and a constant level (5%) of supplement. The LF and HF diets contained 45.3% and 30.9% starch, and 4.1% and 14.0% physically effective fiber (DM basis), respectively. Ruminal pH was continuously measured from day 17 to day 23, whereas ruminal fluid was collected on day 23 to determine SCFA concentration. Ruminal liquid passage rate was determined on day 23 using Cr-ethylenediaminetetraacetic acid. Eating or resting salivation was measured by collecting masticate (days 28 and 29) or saliva samples (days 30 and 31) at the cardia, respectively. On days 30 and 31, the temporarily isolated and washed reticulo-rumen technique was used to measure total, and Cl-competitive (an indirect measure of protein-mediated transport) absorption of acetate, propionate and butyrate. As a result of the higher dietary starch content and DM intake, the ruminal supply of rapidly fermentable CHO, total ruminal SCFA concentration (118 v. 95 mM; P<0.001) and osmolality (330 v. 306 mOsm/kg; P=0.018) were greater in cattle fed LF compared with HF. In addition, feeding LF resulted in a longer duration (2.50 v. 0.09 h/day; P=0.02) and a larger area (0.44 v. 0.01 (pH×h)/day; P=0.050) that pH was below 5.5. There was no diet effect on total and Cl-competitive absorption (mmol/h and %/h) of acetate, propionate, butyrate and total SCFA (acetate+propionate+butyrate), but eating salivation was less (131 v. 152 ml/min; P=0.02), and resting salivation tended to be less (87 v. 104 ml/min; P=0.10) in cattle fed an LF diet. In summary, lower ruminal pH in cattle with greater rapidly fermentable CHO intake was attributed to an increase in SCFA production and decrease in salivation, which were not compensated for by an increase in epithelial permeability.  相似文献   

15.
In situ estimates of ruminal undegraded fraction (RU) and effective intestinal digestibility (EID, corrected for microbial colonisation) of dry matter (DM), crude protein (CP) and total analysed amino acids (TAA) of rye, wheat and corn grains, wheat bran, wheat and barley distillers’ dried grains with solubles (DDGS) and corn gluten feed were measured on three rumen and duodenum cannulated wethers using 15N labelling techniques and considering ruminal rates of particle comminution (kc) and outflow. Results indicate that not considering kc and microbial colonisation led to considerable overestimations of RU which increased with feed ruminal degradation. Microbial colonisation may be also associated with overestimations of EID, whose estimates for DM, CP and TAA were predicted from parameters related with the ruminal escape of intestinally indigestible materials. The RU estimates were higher for TAA than for CP in grains, but the opposite was observed in by-products, whereas EID estimates were higher for TAA in all feeds. To obtain accurate protein values in these feedstuffs, it is required to consider both kc and ruminal microbial colonisation. The CP-based results underestimate the intestinally digested protein in grains and the opposite is evidenced in cereal by-products. Microbial protein synthesised in the rumen is largely the major fraction of the feedstuff protein value with the exception of DDGS.  相似文献   

16.
The nutritive value of whole crop forage maize is influenced by the proportion of ears and stover in the whole crop and by the nutrient composition and digestibility characteristics of the plant parts. An experiment investigating the impact of variety, harvest date and year on the nutritive value of ensiled maize ears was carried out in three consecutive years (2007, 2008 and 2010). Nine different maize varieties were harvested at three different maturity stages (50, 55 and 60% dry matter (DM) content in the ears). After harvest, ears and stover were ensiled separately and afterwards nutrient composition and ruminal nutrient degradability (organic matter (OM), crude protein (CP) and non-fibre carbohydrates (NFC)) were analysed. Variety had a significant influence on content of CP and effective ruminal degradability (ED) of OM at low passage rates, whereas ED of CP and NFC was not affected by variety. In contrast, harvest date and year significantly influenced nutrient composition and ruminal degradability of ensiled maize ears. The content of NFC increased and the content of fibre components as well as ED of OM, CP and NFC declined with processing maturity of the maize plants. At a passage rate of 5% h?1, ED of OM declined from 75.9% to 68.4%, ED of CP from 82.5% to 73.8% and ED of NFC from 88.0% to 82.3% between the early and late harvest date. The results of this study indicate that the nutrient composition and ruminal degradability of ensiled maize ears are affected mainly by maturity stage at harvest and by year, whereas variety has only little influence.  相似文献   

17.
The aim of this study was to investigate the effects of high-quality hay with an elevated sugar content alone or with graded amounts of concentrate feed on chewing and ruminating activity, apparent total tract digestibility (ATTD) and ruminal pH at different time points after feeding in the free ruminal liquid (FRL) and the particle-associated ruminal liquid (PARL). Eight rumen cannulated non-lactating Holstein cows were arranged in a Latin square design in four experimental runs lasting 25 d each. The four diets tested were 60NQ (60% normal-quality hay + 40% concentrate), 60HQ (60% high-quality hay + 40% concentrate), 75HQ (75% high-quality hay + 25% concentrate) and 100HQ (100% high-quality hay). Normal and high-quality hays differed in sugar contents (11.3% vs. 18.7% in dry matter [DM]), neutral detergent fibre (NDF; 57.7% vs. 46.3% in DM), acid detergent fibre (ADF, 35.0% vs. 23.5% in DM) and crude protein (CP, 11.3% vs. 23.5% in DM). Data showed that ATTD of DM, CP, NDF and ADF was higher with the high-quality hay diets. Time spent eating was reduced with high-quality hay. However, time spent ruminating was longest in Group 100HQ. In all groups, ruminal pH of FRL and PARL decreased with time after the morning feeding. But 10 h later, pH of Group 100HQ was higher again compared with the other groups. Considering the average pH in FRL over all measured time points, cows in Groups 60NQ and 100HQ had higher pH values of 6.85 and 6.83, respectively. Regarding pH values in PARL, animals of Group 60NQ displayed the highest pH value (6.68), whereas the lowest value of 6.21 was found in Group 60HQ. Overall, results suggest that high-quality hay maintains the diet’s structural effectiveness by stimulating rumination and stabilising ruminal pH while greatly improving ATTD. However, the structural effectiveness of the high-quality hay gets impaired with increasing proportion of concentrate feed in the diet.  相似文献   

18.
This study evaluated the effects of folic acid (FA) supplementation on growth performance, ruminal fermentation, nutrient digestibility and urinary purine derivatives (PD) excretion in dairy calves. Forty-eight Chinese Holstein male dairy calves at 60 ± 3.2 d of age and 89 ± 5.9 kg body weight (mean ± standard error) were assigned to one of four groups in a randomised block design. Calves in control group were fed basal diet, calves in low FA, medium FA and high FA groups with 3.6, 7.2 and 10.8 mg FA per kg basal diet, respectively. The dietary corn silage to concentrate ratio was 50:50 (dry matter [DM] basis). DM intake and average daily gain (ADG) quadratically increased, and feed conversion ratio quadratically decreased with increasing FA supplementation. Ruminal pH linearly decreased, whereas total volatile fatty acids quadratically increased. The unchanged acetate-to-propionate ratio was due to the similar change in acetate and propionate concentration. Ammonia N content quadratically decreased. Digestibility of DM, organic matter, crude protein, ether extract, neutral detergent fibre and acid detergent fibre linearly increased. Activities of carboxymethyl cellulase, cellobiase, xylanase and pectinase linearly increased, but α-amylase and protease quadratically increased. Abundance of Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes linearly increased, but Butyrivibrio fibrisolvens and Prevotella ruminicola quadratically increased. Urinary total PD excretion quadratically increased. The results indicated that FA supplementation increased ADG, ruminal fermentation and nutrient digestibility with promoted ruminal microbial growth and enzyme activity, and the optimum dose was 7.2 mg FA per kg basal diet for calves.  相似文献   

19.
An improved understanding of the role of forage quality on the processes of particle dynamics and turnover is important for the development of healthier and cost-effective feeding strategies that aim at lowering the proportions of concentrates in the diets of cattle. The aim of this study was to evaluate the effects of feeding hays of different qualities on particle dynamics, digestion kinetics and turnover in the gastrointestinal tract (GIT). Three non-lactating, rumen fistulated Holstein cows were fed diets consisting exclusively of hay with either low quality [Group LH; 605 ± 12.4 g/kg neutral detergent fibre (NDF) and 63 ± 4.7 g/kg crude protein (CP)] or good quality (Group GH; 551 ± 20.1 g/kg NDF and 116 ± 3.6 g/kg CP). Data showed that in situ dry matter (DM) disappearance of the soluble fraction was greater for Group GH (p < 0.05). Feeding good quality hay also lowered the proportion of particles >1.18 mm particularly during the eating process (p < 0.05). Changes in the particle size occurring afterwards were greater for Group GH as well (p < 0.05); approximately 30% in the comminution in the particle size occurred postruminally. Feeding hay of good quality lowered DM content of solid rumen digesta (p < 0.05), accelerated (p < 0.05) the turnover rate of DM and NDF in the GIT and increased DM intake (p < 0.05). In conclusion, feeding forages of better quality significantly promoted degradation processes and kinetics in the GIT with positive effects on turnover rate of digesta and feed intake in Holstein cows.  相似文献   

20.
Since maize silage is an important forage in cattle nutrition, it is important to know its nutritive value. Much effort is put into breeding maize, and several new varieties are introduced on the market every year. This requires periodical analyses of the nutritive value of current maize varieties for the formulation of cattle rations. The aim of this study was to examine the nutritive value of whole crop maize silage (WCMS) from nine maize varieties in 3 consecutive years. For the analysis of nutrient composition and ruminal degradability of organic matter (OM), crude protein (CP), neutral detergent fibre (aNDFom) and non-fibre carbohydrates (NFC), varieties were harvested at three harvest dates (50%, 55% and 60% dry matter content in ear). Due to capacity limitations, the digestibility of WCMS was tested only for the middle harvest date. The CP and acid detergent fibre (ADFom) content was affected (p < 0.05) while aNDFom and NFC content was not influenced by variety. With advancing maturity, CP, aNDFom and ADFom content declined while NFC content increased. Variety influenced effective ruminal degradability (ED) of nutrients, except for CP. The ED of all examined nutrients decreased as maturity advanced from first to third harvest date. Digestibility of OM, ADFom and NFC was significantly and digestibility of aNDFom was tendentially (p = 0.064) influenced by variety. Additionally, an effect of year and a harvest date × year interaction was found for almost all examined parameters. In conclusion, variety, harvest date and year influence the nutritive value of WCMS. A comparison with earlier studies shows that current varieties have a higher fibre digestibility and a slower-ripening stover compared to older varieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号