首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes) were analyzed to determine their effectiveness in aquaculture wastewater treatment in Malaysia. Wastewater from fish farm in Semanggol Perak, Malaysia was sampled and the parameters determined included, the pH, turbidity, dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD), nitrite phosphate (PO4(3-)), nitrate (NO(3-)), nitrite (NO(-2)), ammonia (NH3), and total kjedahl nitrogen (TKN). Also, hydroponics system was set up and was added with fresh plants weights of 150 +/- 20 grams Eichhornia crassipes and 50 +/- 10 grams Pistia stratiotes during the 30 days experiment. The phytoremediation treatment with Eichhornia crassipes had pH ranging from 5.52 to 5.59 and from 4.45 to 5.5 while Pistia stratiotes had its pH value from 5.76 to 6.49 and from 6.24 to 7.07. Considerable percentage reduction was observed in all the parameters treated with the phytoremediators. Percentage reduction of turbidity for Eichhornia crassipes were 85.26% and 87.05% while Pistia stratiotes were 92.70% and 93.69% respectively. Similar reductions were observed in COD, TKN, NO(3-), NH3, and PO4(3-). The capability of these plants in removing nutrients was established from the study. Removal of aquatic macrophytes from water bodies is recommended for efficient water purification.  相似文献   

2.
Fermentation modes and microorganisms related to two typical free-floating aquatic plants, water hyacinth and water lettuce, were investigated for their use in ethanol production. Except for arabinose, sugar contents in water lettuce resembled those in water hyacinth leaves. Water lettuce had slightly higher starch contents and lower contents of cellulose and hemicellulose. A traditional strain, Saccharomyces cerevisiae NBRC 2346, produced 14.4 and 14.9 g l(-1) ethanol, respectively, from water hyacinth and water lettuce. Moreover, a recombinant strain, Escherichia coli KO11, produced 16.9 and 16.2 g l(-1) ethanol in the simultaneous saccharification and fermentation mode (SSF), which was more effective than the separated hydrolysis and fermentation mode (SHF). The ethanol yield per unit biomass was comparable to those reported for other agricultural biomasses: 0.14-0.17 g g-dry(-1) for water hyacinth and 0.15-0.16 g g-dry(-1) for water lettuce.  相似文献   

3.
Xia H  Ma X 《Bioresource technology》2006,97(8):1050-1054
The potential of water hyacinth (Eichhornia crassipes) to remove a phosphorus pesticide ethion were investigated. The disappearance rate constants of ethion in culture solutions were 0.01059, 0.00930, 0.00294, and 0.00201 h-1 for the non-sterile planted, sterile planted, non-sterile unplanted, and sterile unplanted treatment, respectively, which were significantly different and implied that plant uptake and phytodegradation contributed 69% and that of microbial degradation took up 12% to the removal of the applied ethion. The accumulated ethion in live water hyacinth plant decreased by 55-91% in shoots and 74-81% in roots after the plant growing 1 week in ethion free culture solutions, suggesting that plant uptake and phytodegradation might be the dominant process for ethion removal by the plant. This plant might be utilized as an efficient, economical and ecological alternative to accelerate the removal and degradation of agro-industrial wastewater polluted with ethion.  相似文献   

4.
Abstract

Phytoremediation by aquatic macrophytes is a promising technology with higher efficiency and no energy consumption. For this purpose, two macrophytes (Pistia stratiotes, Eichhornia crassipes), and an alga (Oedogonium sp.) were used to treat textile effluents rich in COD, BOD, dyes, and heavy metals (Pb, Fe, Cd, Cu). The aim of the study was to focus on comparative phytoremediation potential of these species by their metal removal capability. During 7?days experiment (day 0–day 6), the results showed that Oedogonium sp. was the best for COD removal and decolorization. Eichhornia crassipes was the best for BOD and heavy metal removal and proves more efficient than Pistia stratiotes and Oedogonium sp. However, Pistia stratiotes was found to accumulate more concentrations of Pb and Fe than Eichhornia stratiotes.  相似文献   

5.
Phytoremediation has the potential for implementation at mercury- (Hg) and methylHg (MeHg)-contaminated sites. Water hyacinths (Eichhornia crassipes) were investigated for their ability to assimilate Hg and MeHg into plant biomass, in both aquatic and sediment-associated forms, over a 68-day hydroponic study. The suitability of E. crassipes to assimilate both Hg and MeHg was evaluated under differing phosphate (PO4) concentrations, light intensities, and sediment:aqueous phase contamination ratios. Because aquatic rhizospheres have the ability to enhance MeHg formation, the level of MeHg in water, sediment, and water hyacinth was also measured. Hg and MeHg were found to concentrate preferentially in the roots of E. crassipes with little translocation to the shoots or leaves of the plant, a result consistent with studies from similar macrophytes. Sediments were found to be the major sink for Hg as they were able to sequester Hg, making it non-bioavailable for water hyacinth uptake. An optimum PO4 concentration was observed for Hg and MeHg uptake. Increasing light intensity served to enhance the translocation of both Hg and MeHg from roots to shoots. Assimilation of Hg and MeHg into the biomass of water hyacinths represents a potential means for sustainable remediation of contaminated waters and sediments under the appropriate conditions.  相似文献   

6.
Abstract

In the present study, the effectiveness of water hyacinth and water lettuce was tested for the phytoremediation of landfill leachate for the period of 15?days. Fifteen plastic containers were used in experimental setup where aquatic plants were fitted as a floating bed with the help of thermo-pole sheet. It was observed that both plants significantly (p?<?0.05/p?<?0.01/p?<?0.001) reduce the physicochemical parameters pH, TDS, BOD, COD and heavy metals like Zn, Pb, Fe, Cu and Ni from landfill leachate. Maximum reduction in these parameters was obtained at 50% and 75% landfill leachate treatment and their removal rate gradually increased from day 3 to day 15 of the experiment. The maximum removal rate for heavy metals such as for Zn (80–90%), Fe (83–87%) and Pb (76–84%) was attained by Eichhornia crassipes and Pistia stratiotes. Value of bioconcentration and translocation factor was less than 1 which indicates the low transport of heavy metals from roots to the above-ground parts of the plants. Both these plants accumulate heavy metals inside their body without showing much reduction in growth and showing tolerance to all the present metals. Therefore, results obtained from the study suggest that these aquatic plants are suitable candidate for the removal of pollution load from landfill leachate.  相似文献   

7.
The present study was focused on field research to examine the phytoremediation potential of naturally grown Eichhornia crassipes in fly ash (FA) pond. Field results indicate the efficiency of E. crassipes for remediation of heavy metals from FA pond. The bioconcentration factor trend was Cr (3.75) > Cu (2.62) > Cd (1.05), and Cu (1.35) in root and stem, respectively. The survival and abundance growth of E. crassipes in the circumstance of heavy metal enriched FA pond is another highlight of the present research that reveals its toxitolerant characteristics. Thus, this lesson on phytoremediation proved that E. crassipes is a potential accumulator of Cu, Cr, and Cd from FA ponds and is a promising species for FA pond's remediation globally.  相似文献   

8.
Studies were carried out on extraction and retrieval of potassium from water hyacinth (Eichhornia crassipes). The stem and leaf were subjected to 13 treatments. The highest rate of K removal following HCl treatment was 69.7% K. Most effective removal of suspended organic substances, Ca2+ and Mg2+ were achieved at pH approximately 13, when 88.0% of K remained in filtrate. Maximum K in precipitate following this step was achieved with tartaric acid additions at n(C4H6O6)/n(K+) of 1.72 when precipitating at 4 degrees C for 3h, which resulted in 72.3% of K removal from the solution. Over the entire process, 44.3% of K in the dried stem-leaf sample of water hyacinth was retrieved in the form of KC4H5O6. This process demonstrated the potential for use of water hyacinth as a resource of potassium to produce potassium salts and provide a valuable end use for the plant, which could be highly invasive in aquatic ecosystems.  相似文献   

9.
Yonghong Xie  Hongyan Qin  Dan Yu 《Hydrobiologia》2004,529(1-3):105-112
The responses of decomposition to N and P supply were investigated in three leaf types of water hyacinth (Eichhornia crassipes (Mart.) Solms): dead green leaves collected from Donghu Lake; green, and brown leaves collected from outdoor tanks. The ratios of C:N, C:P, lignin:N and lignin:P were lowest in the green leaves collected from Donghu Lake, and highest in the brown leaves collected from outdoor tanks. Decomposition constant (k) of water hyacinth varied greatly, ranged from 0.006 to 0.099 d–1. Leaf litters decayed most quickly within the initial two weeks during the experimental period, but decomposition rate decreased significantly in the following days. Decomposition and nutrient (N and P) release were fastest in the green leaves collected from Donghu Lake, intermediate in the green leaves collected from outdoor tanks, slowest in the brown leaves collected from outdoor tanks. Statistical analyses revealed that the effects of P-availability on decomposition rate and N, P release rate of the three litter types were significant, whereas the impacts of N-availability was insignificant (p > 0.05) except for the brown leaves collected from outdoor tanks. These results suggest that decomposition rate and nutrient content dynamics of water hyacinth differ with their growth habitats, and could partly be regulated by nutrient availability, especially by P-availability, in the environments.  相似文献   

10.
In an attempt to develop a system with which the aquatic weed water hyacinth (Eichhornia crassipes, Mart. Solms) can be economically processed to generate vermicompost in large quantities, the weed was first composted by a 'high-rate' method and then subjected to vermicomposting in reactors operating at much larger densities of earthworm than recommended hitherto: 50, 62.5, 75, 87.5, 100, 112.5, 125, 137.5, and 150 adults of Eudrilus eugeniae Kinberg per litre of digester volume. The composting step was accomplished in 20 days and the composted weed was found to be vermicomposted three times as rapidly as uncomposted water hyacinth [Bioresource Technology 76 (2001) 177]. The studies substantiated the feasibility of high-rate composting-vermicomposting systems, as all reactors yielded consistent vermicast output during seven months of operation. There was no earthworm mortality during the first four months in spite of the high animal densities in the reactors. In the subsequent three months a total of 79 worms died out of 1650, representing less than 1.6% mortality per month. The results also indicated that an increase in the surface-to-volume ratio of the reactors might further improve their efficiency.  相似文献   

11.
Abstract

This work aimed to evaluate the potential of phytoremediation using Pistia stratiotes as a plant for post-treatment of wastewater from domestic sewage. The experiment was conducted at Toledo-PR, Brazil, for 42 days, in a pilot scale model. In order to evaluate the efficiency of Pistia as a post-treatment of domestic sewage, parameters such temperature, pH, turbidity, total solids, COD, Ntotal and Ptotal contents were determined in the effluent, as well as the total contents of K, Ca, Mg, Cu, Zn, Fe, Mn, Cd, and Pb. The bioaccumulation of K, Ca, Mg, Cu, Zn, Fe, Mn, Cd, and Pb in the living tissues of P. stratiotes have also been detected. The results demonstrate efficiency removal of turbidity, Ntotal, Ptotal and COD of 98.5, 100, 100, and 79.18%, respectively. The effluent contents of nutrients and toxic metals fluctuated during the study. This can have occurred due to photosynthetic activities of microorganisms and the plant senescence. The evaluation of some parameters in the effluent, such as temperature, DO, and organic matter, influenced these facts. Low levels of DO were observed, in function to the physical barrier of macrophytes in water surface, preventing the entry of air and light. The use of P. stratiotes proved to be a good complement for post-treatment of wastewater from domestic sewage.  相似文献   

12.
Effects of different physical pretreatments on water hyacinth for dilute acid hydrolysis process (121 ± 3 °C, 5% H2SO4, 60 min) were comparatively investigated. Untreated sample had produced 24.69 mg sugar/g dry matter. Steaming (121 ± 3 °C) and boiling (100 ± 3 °C) for 30 min had provided 35.9% and 52.4% higher sugar yield than untreated sample, respectively. The highest sugar yield (132.96 mg sugar/g dry matter) in ultrasonication was obtained at 20 min irradiation using 100% power. The highest sugar production (155.13 mg sugar/g dry matter) was obtained from pulverized samples. Hydrolysis time was reduced when using samples pretreated by drying, mechanical comminution and ultrasonication. In most methods, prolonging the pretreatment period was ineffective and led to sugar degradations. Morphology inspection and thermal analysis had provided evidences of structure disruption that led to higher sugar recovery in hydrolysis process.  相似文献   

13.
In this study, water hyacinth (Eichhornia crassipes) was used to treat domestic wastewater. Ten organic and inorganic parameters were monitored in three weeks for water purification. The six chemical, biological and physical parameters included Dissolved Oxygen (DO), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Ammoniacal Nitrogen (NH3-N), Total Suspended Solids (TSS), and pH were compared with the Interim National Water Quality Standards, Malaysia River classification (INWQS) and Water Quality Index (WQI). Between 38% to 96% of reduction was observed and water quality has been improved from class III and IV to class II. Analyses for Electricity Conductivity (EC), Salinity, Total Dissolved Solids (TDS) and Ammonium (NH4) were also investigated. In all parameters, removal efficiency was in range of 13–17th day (optimum 14th day) which was higher than 3 weeks except DO. It reveals the optimum growth rate of water hyacinth has great effect on waste water purification efficiency in continuous system and nutrient removal was successfully achieved.  相似文献   

14.
Summary Water hyacinth (Eichhornia crassipes) harbours Azotobacter chroococcum in large numbers on and in its leaves. This may account for its prolific growth of the plants in water containing only traces of combined nitrogen. re]19721201  相似文献   

15.
Field and laboratory observations show that the growth of Pistia alters markedly the physico-chemical condition of its substrate. The nature of this effect in the field is suggested to depend on the cover of the vegetation. A large and dense mat insulates the water below it against solar radiation and causes stratification and poor oxygenation. The effects of a thin vegetation are the opposite of these.  相似文献   

16.
Abstract

The present study aimed to evaluate the aquatic macrophyte Savinia auriculata in post-treatment of wastewater from a dairy industry. The experiment was carried out in a greenhouse between February and March 2015. A batch system was used, each reactor was composed of polyethylene and had capacity of 250 liters of post-treated effluent. Every seven days, pH, turbidity, temperature, dissolved oxygen, chemical oxygen demand and series of solids (total, fixed and volatile) were determined in the wastewater. Besides that, the concentration of macro and micronutrients (P, N, K, Ca, Mg, Cu, Zn, Mn, and Fe) were determined in the wastewater and in plant tissue before and after the experiment. The results showed efficiency in the decrease of N, P, turbidity, pH, solids (ST, SF) and inefficiency in the reduction of volatile solids in the wastewater. The concentration of COD, Ca, Mn, Mg, and Fe increased at the end of the experiment. Due to the absorption of some nutrients such as N and P it is possible to conclude that Salvinia auriculata is a good option for the post-treatment of the wastewater from dairy industry. However, plant senescence promotes the elevation of some elements in the effluent because in this process, nutrients that were previously retained in the plant tissue are inserted into the wastewater again. Because of this it is necessary to remove plants of the reactor in the beginning of the process of senescence.  相似文献   

17.
A two-stage rumen-derived anaerobic digestion process was tested for the conversion of water hyacinth shoots and a mixture of the shoots with cowdung (7:3) into biogas. Under conditions similar to those of the rumen and loading rates (LR) in the range of 11.6–19.3g volatile solids (VS) l–1d–1 in the rumen reactor, the degradation efficiencies were 38% for the shoots and 43% for the mixture. The major fermentation products were volatile fatty acids (VFA) with a maximum yield of 7.92mmolg–1 VS digested, and biogas with a yield of 0.2lg–1 VS digested. The effect of varying LR, solid retention time (SRT) and dilution rates on the extent of degradation of the water hyacinth–cowdung mixture was examined. Overall conversion of the substrate was highest at the loading rate of 15.4gVS.l–1d–1. Varying the retention times between 60 and 120h had no effect on the degradation efficiency, but a decrease was observed at retention times below 60h. The overall performance of the reactor was depressed by changing the dilution rate from 0.5 to 0.34h–1. By applying a LR of 15.4VS. l–1d–1, a SRT of 90h and a dilution rate of 0.5h–1 in the rumen reactor, and connecting it to a methanogenic reactor of the upflow anaerobic sludge blanket type, 100% conversion efficiency of the VFA into biogas with a methane content of 80% was achieved. The average methane gas yield was 0.44lg–1 VS digested.  相似文献   

18.
《Biomass》1990,21(1):27-42
The effects of harvesting frequency on productivity, nutrient storage and uptake, and detritus accumulation by water hyacinth (Eichhornia crassipes /Mart/ Solms) cultured outdoors in nutrient-enriched waters were evaluated for a period of 13 months. Significant differences in hyacinth standing crop and productivity were measured with harvesting regimes of 1, 3 (harvest at maximum density) and 21 harvests over a 13-month period. The average plant standing crop decreased from 65 to 20 kg (fresh wt) m−2 for systems with 1 and 21 harvests, respectively. Total harvested plant biomass was 67 kg (fresh wt) m−2, 110 kg (fresh wt) m−2 and 162 kg (fresh wt) m−2 for 1, 3 and 21 harvests, respectively. The mean net productivity increased from 7·7 to 16·5 and 24·5 g (dry wt) m−2 day−1 for 1, 3 and 21 harvests, respectively. Nutrient storage in water hyacinth biomass (live, dead and detrital) at the end of the study decreased from 93 to 46 and 30 g N m−2, and from 20 to 12 and 5 g P m−2, for 1, 3 and 21 harvests, respectively. For the system with one harvest, 46% of the stored N and 25% of the stored P were recovered in dedrital tissue at the bottom of the tank. For the systtem with 21 harvests, only 11% of the stored N and 15% of the stored P were recovered in detrital tissue at the bottom of the tank. Ammonium-N and soluble reactive P concentrations in the water column were significantly higher for the treatment with one harvest compared to the treatments with 3 and 21 harvests.  相似文献   

19.
World Journal of Microbiology and Biotechnology - A two-stage rumen-derived anaerobic digestion process was tested for the conversion of water hyacinth shoots and a mixture of the shoots with...  相似文献   

20.
1. Water hyacinth (Eichhornia crassipes) is one of the world’s most invasive aquatic plants and is known to cause significant ecological and socio‐economic effects. 2. Water hyacinth can alter water clarity and decrease phytoplankton production, dissolved oxygen, nitrogen, phosphorous, heavy metals and concentrations of other contaminants. 3. The effects of water hyacinth on ecological communities appear to be largely nonlinear. Abundance and diversity of aquatic invertebrates generally increase in response to increased habitat heterogeneity and structural complexity provided by water hyacinth but decrease due to decreased phytoplankton (food) availability. 4. Effects of water hyacinth on fish are largely dependent on original community composition and food‐web structure. A more diverse and abundant epiphytic invertebrate community may increase fish abundance and diversity, but a decrease in phytoplankton may decrease dissolved oxygen concentrations and planktivorous fish abundance, subsequently affecting higher trophic levels. 5. Little is known about the effects of water hyacinth on waterbird communities; however, increases in macroinvertebrate and fish abundance and diversity suggest a potentially positive interaction with waterbirds when water hyacinth is at moderate density. 6. The socio‐economic effects of water hyacinth are dependent on the extent of the invasion, the uses of the impacted waterbody, control methods and the response to control efforts. Ecosystem‐level research programmes that simultaneously monitor the effects of water hyacinth on multiple trophic‐levels are needed to further our understanding of invasive species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号