首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The telomeric nucleoprotein complex protects linear chromosome ends from degradation. In contrast to most eukaryotes in which telomerase is responsible for telomere elongation by adding short DNA repeats synthesized using an RNA template, the telomere elongation in Drosophila involves transposition of specialized telomeric retroelements onto chromosome ends. Proteins that bind telomeric and subtelomeric sequences form specific telomeric chromatin, and its components are highly conserved among organisms employing different mechanisms of telomere elongation. This review is focused on the analysis of components of the Drosophila telomeric complex and its comparison with telomeric proteins in telomerase-encoded organisms. Structural and functional analysis of Drosophila telomeres suggests that there are three distinct chromatin regions: protective structure at the very end of chromosome (cap), subtelomeric region which is characterized by condensed chromatin structure, and the terminal retrotransposon array whose expression is under the control of an RNAi (RNA interference)-based mechanism. The link between RNAi and telomeric chromatin formation in germinal tissues is discussed.  相似文献   

2.
3.
4.
5.
6.
Telomeres, the G-rich sequences found at the ends of eukaryotic chromosomes, ensure chromosome stability and prevent sequence loss from chromosome ends during DNA replication. During macronuclear development in Tetrahymena, the chromosomes fragment into pieces ranging from 20 kb to 1,500 kb. Tetrahymena telomerase, a ribonucleoprotein, adds telomeric (TTGGGG)n repeats onto telomeres and onto the newly generated macronuclear DNA ends. We have investigated whether telomerase RNA levels increase during macronuclear development, since such an increase might be expected during chromosomal fragmentation. The steady-state level of the telomerase RNA component was used to estimate the abundance of telomerase present in mating and nonmating Tetrahymena. Northern blot analysis revealed that in vegetatively growing Tetrahymena, there were 18,000-40,000 copies of telomerase RNA per cell. In mating cultures, the levels of RNA increased 2- to 5-fold at 9-15 h, and 1.5- to 3.5-fold in starved nonmating cultures. This increase in telomerase RNA paralleled telomerase activity, which also increased slightly in mating and starved nonmating cells.  相似文献   

7.
8.
9.
Telomeres are repetitive DNA sequences located at the ends of chromosomes. Telomeres are shortened by repeated cell divisions and by oxidative DNA damage, and cells with critically shortened telomeres cannot divide. We hypothesized that chronic gastroesophageal reflux disease (GERD)-induced injury of the esophageal squamous epithelium results in progressive telomeric shortening that eventually might interfere with mucosal healing. To address our hypothesis, we compared telomere length and telomerase activity in biopsy specimens of esophageal squamous epithelium from GERD patients and control patients. Endoscopic biopsies were taken from the esophageal squamous epithelium of 38 patients with GERD [10 long-segment Barrett's esophagus (LSBE), 15 short-segment (SSBE), 13 GERD without Barrett's esophagus] and 16 control patients without GERD. Telomere length was assessed using the terminal restriction fragment assay, and telomerase activity was studied by the PCR-based telomeric repeat amplification protocol assay. Patients with GERD had significantly shorter telomeres in the distal esophagus than controls [8.3 +/- 0.5 vs. 10.9 +/- 1.5 (SE) Kbp, P = 0.043]. Among the patients with GERD, telomere length in the distal esophagus did not differ significantly in those with and without Barrett's esophagus (LSBE 7.9 +/- 0.8, SSBE 8.6 +/- 0.9, GERD without BE 8.7 +/- 1.0 Kbp). No significant differences in telomerase activity in the distal esophagus were noted between patients with GERD and controls (4.0 +/- 0.39 vs. 5.2 +/- 0.53 RIUs). Telomeres in the squamous epithelium of the distal esophagus of patients who have GERD, with and without Barrett's esophagus, are significantly shorter than those of patients without GERD despite similar levels of telomerase activity.  相似文献   

10.
11.
Telomeres, the G-rich sequences found at the ends of eukaryotic chromosomes, ensure chromosome stability and prevent sequence loss from chromosome ends during DNA replication. During macronuclear development in Tetrahymena, the chromosomes fragment into pieces ranging from 20 kb to 1,500 kb. Tetrahymena telomerase, a ribonucleoprotein, adds telomeric (TTGGGG)n repeats onto telomeres and onto the newly generated macronuclear DNA ends. We have investigated whether telomerase RNA levels increase during macronuclear development, since such an increase might be expected during chromosomal fragmentation. The steady-state level of the telomerase RNA component was used to estimate the abundance of telomerase present in mating and nonmating Tetrahymena. Northern blot analysis revealed that in vegetatively growing Tetrahymena, there were 18,000–40,000 copies of telomerase RNA per cell. In mating cultures, the levels of RNA increased 2-to 5-fold at 9–15 h, and 1.5- to 3.5-fold in starved nonmating cultures. This increase in telomerase RNA paralleled telomerase activity, which also increased slightly in mating and starved nonmating cells. © 1992 Wiley-Liss, Inc.  相似文献   

12.
13.
14.
Telomeres are essential repetitive sequences at the ends of chromosomes that prevent chromosome fusion and degradation. We have successfully recapitulated these two protective functions in vivo and in vitro by incubating blunt-end DNA constructs having vertebrate telomeric ends in Xenopus eggs and egg extracts. Constructs with telomeric ends are stable as linear molecules; constructs with non-telomeric ends undergo intramolecular fusion. In extracts, 99.8% of the telomeric constructs from 78 to 700 bp in length are assembled into 'model telomeres' in <5 min and have an extra-polated half-life of >3.5 years. Non-telomeric constructs circularize with first order kinetics and a half-life of 4 h. In living eggs the telomeric constructs are protected from fusion and degradation. The stability of the telomeric constructs is not due to covalent processing. Extract can protect approximately 100 pM telomeric ends (equivalent to 1.7 x 10(7) ends/egg) even in the presence of a 20-fold excess of double-stranded telomeric DNA, suggesting that protection requires end-specific factors. Constructs with (TTGGGG) n repeats are unstable, suggesting that short tracts of this and other telomere-like sequences found within human telomeres could lead to genome instability if exposed by partial telomere erosion during aging.  相似文献   

15.
The termini of Saccharomyces cerevisiae chromosomes consist of tracts of C1-3A (one to three cytosine and one adenine residue) sequences of approximately 450 base pairs in length. To gain insights into trans-acting factors at telomeres, high-copy-number linear and circular plasmids containing tracts of C1-3A sequences were introduced into S. cerevisiae. We devised a novel system to distinguish by color colonies that maintained the vector at 1 to 5, 20 to 50, and 100 to 400 copies per cell and used it to change the amount of telomeric DNA sequences per cell. An increase in the number of C1-3A sequences caused an increase in the length of telomeric C1-3A repeats that was proportional to plasmid copy number. Our data suggest that telomere growth is inhibited by a limiting factor(s) that specifically recognizes C1-3A sequences and that this factor can be effectively competed for by long tracts of C1-3A sequences at telomeres or on circular plasmids. Telomeres without this factor are exposed to processes that serve to lengthen chromosome ends.  相似文献   

16.
Noncoding repetitive sequences make up a large portion of eukaryotic genomes, but their function is not well understood. Large blocks of repetitive DNA-forming heterochromatin around the centromeres are required for this region to function properly, but are difficult to analyze. The smaller regions of heterochromatin at the telomeres provide an opportunity to study their DNA and protein composition. Drosophila telomere length is maintained through the targeted transposition of specific non-long terminal repeat retrotransposons to chromosome ends, where they form long tandem arrays. A subterminal telomere-associated sequence (TAS) lies immediately proximal to the terminal-retrotransposon array. Here, we review the experimental support for the heterochromatic features of Drosophila telomeres, and provide evidence that telomeric regions contain 2 distinct chromatin subdomains: TAS, which exhibits features that resemble beta heterochromatin; and the terminal array of retrotransposons, which appears euchromatic. This organization is significantly different from the telomeric organization of other eukaryotes, where the terminal telomerase-generated repeats are often folded in a t-loop structure and become part of the heterochromatin protein complex.  相似文献   

17.
Telomeres are specialized nucleoproteic complexes localized at the physical ends of linear eukaryotic chromosomes that maintain their stability and integrity. The DNA component of telomeres is characterized by being a G-rich double stranded DNA composed by short fragments tandemly repeated with different sequences depending on the species considered. At the chromosome level, telomeres or, more properly, telomeric repeats--the DNA component of telomeres--can be detected either by using the fluorescence in situ hybridization (FISH) technique with a DNA or a peptide nucleic acid (PNA) (pan)telomeric probe, i.e., which identifies simultaneously all of the telomeres in a metaphase cell, or by the primed in situ labeling (PRINS) reaction using an oligonucleotide primer complementary to the telomeric DNA repeated sequence. Using these techniques, incomplete chromosome elements, acentric fragments, amplification and translocation of telomeric repeat sequences, telomeric associations and telomeric fusions can be identified. In addition, chromosome orientation (CO)-FISH allows to discriminate between the different types of telomeric fusions, namely telomere-telomere and telomere-DNA double strand break fusions and to detect recombination events at the telomere, i.e., telomeric sister-chromatid exchanges (T-SCE). In this review, we summarize our current knowledge of chromosomal aberrations involving telomeres and interstitial telomeric repeat sequences and their induction by physical and chemical mutagens. Since all of the studies on the induction of these types of aberrations were conducted in mammalian cells, the review will be focused on the chromosomal aberrations involving the TTAGGG sequence, i.e., the telomeric repeat sequence that "caps" the chromosomes of all vertebrate species.  相似文献   

18.
Telomeres are structures at the ends of chromosomes and are composed of long tracks of short tandem repeat DNA sequences bound by a unique set of proteins (shelterin). Telomeric DNA is believed to form G-quadruplex and D-loop structures, which presents a challenge to the DNA replication and repair machinery. Although the RecQ helicases WRN and BLM are implicated in the resolution of telomeric secondary structures, very little is known about RECQL4, the RecQ helicase mutated in Rothmund-Thomson syndrome (RTS). Here, we report that RTS patient cells have elevated levels of fragile telomeric ends and that RECQL4-depleted human cells accumulate fragile sites, sister chromosome exchanges, and double strand breaks at telomeric sites. Further, RECQL4 localizes to telomeres and associates with shelterin proteins TRF1 and TRF2. Using recombinant proteins we showed that RECQL4 resolves telomeric D-loop structures with the help of shelterin proteins TRF1, TRF2, and POT1. We also found a novel functional synergistic interaction of this protein with WRN during D-loop unwinding. These data implicate RECQL4 in telomere maintenance.  相似文献   

19.
Importance of TRF1 for functional telomere structure   总被引:10,自引:0,他引:10  
Telomeres are comprised of telomeric DNA sequences and associated binding molecules. Their structure functions to protect the ends of linear chromosomes and ensure chromosomal stability. One of the mammalian telomere-binding factors, TRF1, localizes telomeres by binding to double-stranded telomeric DNA arrays. Because the overexpression of wild-type and dominant-negative TRF1 induces progressive telomere shortening and elongation in human cells, respectively, a proposed major role of TRF1 is that of a negative regulator of telomere length. Here we report another crucial function of TRF1 in telomeres. In conditional mouse TRF1 null mutant embryonic stem cells, TRF1 deletion induced growth defect and chromosomal instability. Although no clear telomere shortening or elongation was observed in short term cultured TRF1-deficient cells, abnormal telomere signals were observed, and TRF1-interacting telomere-binding factor, TIN2, lost telomeric association. Furthermore, another double-stranded telomeric DNA-binding factor, TRF2, also showed decreased telomeric association. Importantly, end-to-end fusions with detectable telomere signals at fusion points accumulated in TRF1-deficient cells. These results strongly suggest that TRF1 interacts with other telomere-binding molecules and integrates into the functional telomere structure.  相似文献   

20.
Summary Using a series of genetic parameters, attempts have been made for more than two decades to establish the close kinship of human (Homo sapiens) with chimpanzee (Pan troglodytes). Molecular and cytogenetic data presently suggest that the two species are closely related. The recent isolation of a human telomeric probe (P5097-B.5) has prompted us to cross hybridize it to chimpanzee chromosomes in order to explore convergence and/or divergence of the telomeric repeat sequences (TTAGGG)n. On hybridization, the human probe bound to both ends (telomeres) of chimpanzee chromosomes, suggesting a concerted evolution of tandemly repeated short simple sequences (TTAGGG)n. Even the terminal heterochromatin of chimpanzee chromosomes was found to be endowed with telomeric repeats, suggesting that evolution of heterochromatin and capping with tandemly repeated short sequences are highly complex phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号