共查询到20条相似文献,搜索用时 0 毫秒
1.
Andrew M. Simons 《Proceedings. Biological sciences / The Royal Society》2009,276(1664):1987-1992
Natural environments are characterized by unpredictability over all time scales. This stochasticity is expected on theoretical grounds to result in the evolution of ‘bet-hedging’ traits that maximize the long term, or geometric mean fitness even though such traits do not maximize fitness over shorter time scales. The geometric mean principle is thus central to our interpretation of optimality and adaptation; however, quantitative empirical support for bet hedging is lacking. Here, I report a quantitative test using the timing of seed germination—a model diversification bet-hedging trait—in Lobelia inflata under field conditions. In a phenotypic manipulation study, I find the magnitude of fluctuating selection acting on seed germination timing—across 70 intervals throughout five seasons—to be extreme: fitness functions for survival are complex and multimodal within seasons and significantly dissimilar among seasons. I confirm that the observed magnitude of fluctuating selection is sufficient to account for the degree of diversification behaviour characteristic of individuals of this species. The geometric mean principle has been known to economic theory for over two centuries; this study now provides a quantitative test of optimality of a bet-hedging trait in nature. 相似文献
2.
Jeffrey K. Graham Myron L. Smith Andrew M. Simons 《Proceedings. Biological sciences / The Royal Society》2014,281(1787)
All organisms are faced with environmental uncertainty. Bet-hedging theory expects unpredictable selection to result in the evolution of traits that maximize the geometric-mean fitness even though such traits appear to be detrimental over the shorter term. Despite the centrality of fitness measures to evolutionary analysis, no direct test of the geometric-mean fitness principle exists. Here, we directly distinguish between predictions of competing fitness maximization principles by testing Cohen''s 1966 classic bet-hedging model using the fungus Neurospora crassa. The simple prediction is that propagule dormancy will evolve in proportion to the frequency of ‘bad’ years, whereas the prediction of the alternative arithmetic-mean principle is the evolution of zero dormancy as long as the expectation of a bad year is less than 0.5. Ascospore dormancy fraction in N. crassa was allowed to evolve under five experimental selection regimes that differed in the frequency of unpredictable ‘bad years’. Results were consistent with bet-hedging theory: final dormancy fraction in 12 genetic lineages across 88 independently evolving samples was proportional to the frequency of bad years, and evolved both upwards and downwards as predicted from a range of starting dormancy fractions. These findings suggest that selection results in adaptation to variable rather than to expected environments. 相似文献
3.
Oana Carja Robert E. Furrow Marcus W. Feldman 《Proceedings. Biological sciences / The Royal Society》2014,281(1794)
Stochastic switching is an example of phenotypic bet hedging, where an individual can switch between different phenotypic states in a fluctuating environment. Although the evolution of stochastic switching has been studied when the environment varies temporally, there has been little theoretical work on the evolution of phenotypic switching under both spatially and temporally fluctuating selection pressures. Here, we explore the interaction of temporal and spatial change in determining the evolutionary dynamics of phenotypic switching. We find that spatial variation in selection is important; when selection pressures are similar across space, migration can decrease the rate of switching, but when selection pressures differ spatially, increasing migration between demes can facilitate the evolution of higher rates of switching. These results may help explain the diverse array of non-genetic contributions to phenotypic variability and phenotypic inheritance observed in both wild and experimental populations. 相似文献
4.
Whereas in constant environments parental survival has no effect on optimal clutch size in the absence of trade-offs between
juvenile and parental survival, the situation is drastically different in fluctuating environments. We consider a model in
which, with respect to reproduction, parents and offspring are equivalent at the start of the next breeding season. When generations
are non-overlapping, the clutch size maximizing geometric mean surviving number of offspring is optimal among all pure clutch
size strategies. We prove that, as parental survival increases relative to that of the offspring, the optimal clutch size
converges to the arithmetic mean maximizing clutch size (the so-called ‘Lack clutch size’). We also give a numerical procedure
for calculating optimal mixed strategies and we show that, as environmental variance increases and/or parental survival decreases,
mixed rather than pure strategies become optimal. Furthermore, we explain how to estimate fitness from empirical data under
the assumptions of our model.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
5.
John M. McNamara 《Evolutionary ecology》1995,9(2):185-203
Summary I consider a general model of a fluctuating environment in which the environmental state each year is drawn at random from some given distribution. Each year organisms must choose what action to perform before the environmental state for that year is known. There is no interaction with kin. In this scenario, natural selection will tend to produce organisms which maximize their geometric mean fitness. In this paper I introduce the idea of the profile of a strategy. This function quantifies how the strategy peforms for each environmental state. I show that there is a unique profile such that a strategy is optimal if and only if it has this profile. I then give a characterization of the optimal profile which generalizes previous work by others in this area. The characterization of the optimal profile has a game theoretical interpretation. Motivated by this I introduce a game in which individuals play the field in a constant environment. This game may be interpreted as a cooperative game between kin. The key result of this paper shows that a strategy maximizes geometric mean fitness in the original fluctuating environment problem if and only if it is an evolutionarily stable strategy of the deterministic environment game. It is well known that an optimal strategy in a fluctuating environment may be mixed, involving adaptive coin-flipping. Others have previously noted that this may result in some individuals sacrificing individual reproductive success for the good of the genotype. My analysis shows that one may regain the concept of individual optimization if the quantity maximized is suitably defined. Under an optimal strategy every action taken maximizes the expected number of offspring produced, where this expectation is not calculated using the true distribution of environmental states, but a distribution modified to take account of the actions of kin. 相似文献
6.
7.
Cutter AD 《Evolution; international journal of organic evolution》2004,58(3):651-655
The Bateman principle, which holds that oocytes are the limiting gamete in reproduction, is violated in a variety of species. Self-fertilizing hermaphrodites of the nematode Caenorhabditis elegans provide an example of a system in which sperm number limits lifetime reproductive output, in this species due to the protandrous nature of sperm production that in turn delays the onset of fertilization. This reproductive delay forms the basis of a trade-off between generation time and total fecundity, in which sperm number plays a pivotal role. I use an age-structured population model to describe the number of sperm that maximize fitness, given larval development time and rates of gamete production. The model predicts the evolution of sperm numbers that are consistent with empirical data for C. elegans provided that precocious larval sperm production is taken into account. Several testable hypotheses follow from the model regarding how natural selection and environmental variation may influence patterns of sperm production among populations or species with a similar mode of reproduction. 相似文献
8.
In biology, noise implies error and disorder and is therefore something which organisms may seek to minimize and mitigate against. We argue that such noise can be adaptive. Recent studies have shown that gene expression can be noisy, noise can be genetically controlled, genes and gene networks vary in how noisy they are and noise generates phenotypic differences among genetically identical cells. Such phenotypic differences can have fitness benefits, suggesting that evolution can shape noise and that noise may be adaptive. For example, gene networks can generate bistable states resulting in phenotypic diversity and switching among individual cells of a genotype, which may be a bet hedging strategy. Here, we review the sources of noise in gene expression, the extent to which noise in biological systems may be adaptive and suggest that applying evolutionary rigour to the study of noise is necessary to fully understand organismal phenotypes. 相似文献
9.
Abstract Deleterious mutation accumulation has been implicated in many biological phenomena and as a potentially significant threat to human health and the persistence of small populations. The vast majority of mutations with effects on fitness are known to be deleterious in a given environment, and their accumulation results in mean population fitness decline. However, whether populations are capable of recovering from negative effects of prolonged genetic bottlenecks via beneficial or compensatory mutation accumulation has not previously been tested. To address this question, long-term mutation-accumulation lines of the nematode Caenorhabditis elegans , previously propagated as single individuals each generation, were maintained in large population sizes under competitive conditions. Fitness assays of these lines and comparison to parallel mutation-accumulation lines and the ancestral control show that, while the process of fitness restoration was incomplete for some lines, full recovery of mean fitness was achieved in fewer than 80 generations. Several lines of evidence indicate that this fitness restoration was at least partially driven by compensatory mutation accumulation rather than a result of a generic form of laboratory adaptation. This surprising result has broad implications for the influence of the mutational process on many issues in evolutionary and conservation biology. 相似文献
10.
In unpredictably varying environments, strategies that have a reduced variance in fitness can invade a population consisting of individuals that on average do better. Such strategies 'hedge their evolutionary bets' against the variability of the environment. The idea of bet-hedging arises from the fact that appropriate measure of long-term fitness is sensitive to variance, leading to the potential for strategies with a reduced mean fitness to invade and increase in frequency. Our aim is to review the conceptual foundation of bet-hedging as a mechanism that influences short- and long-term evolutionary processes. We do so by presenting a general model showing how evolutionary changes are affected by variance in fitness and how genotypic variance in fitness can be separated into variance in fitness at the level of the individuals and correlations in fitness among them. By breaking down genotypic fitness variance in this way the traditional divisions between conservative and diversified strategies are more easily intuited, and it is also shown that this division can be considered a false dichotomy, and is better viewed as two extreme points on a continuum. The model also sheds light on the ideas of within- and between-generation bet-hedging, which can also be generalized to be seen as two ends of a different continuum. We use a simple example to illustrate the virtues of our general model, as well as discuss the implications for systems where bet-hedging has been invoked as an explanation. 相似文献
11.
Vassilieva LL Hook AM Lynch M 《Evolution; international journal of organic evolution》2000,54(4):1234-1246
Abstract. Spontaneous mutation to mildly deleterious alleles has emerged as a potentially unifying component of a variety of observations in evolutionary genetics and molecular evolution. However, the biological significance of hypotheses based on mildly deleterious mutation depends critically on the rate at which new mutations arise and on their average effects. A long-term mutation-accumulation experiment with replicate lines of the nematode Caenorhabditis elegans maintained by single-progeny descent indicates that recurrent spontaneous mutation causes approximately 0.1% decline in fitness per generation, which is about an order of magnitude less than that suggested by previous studies with Drosophila . Two rather different approaches, Bateman-Mukai and maximum likelihood, suggest that this observation, along with the observed rate of increase in the variance of fitness among lines, is consistent with a genomic deleterious mutation rate for fitness of approximately 0.03 per generation and with an average homozygous effect of approximately 12%. The distribution of mutational effects for fitness appears to have a relatively low coefficient of variation, being no more extreme than expected for a negative exponential, and for one composite fitness measure (total progeny production) approaches constancy of effects. These results are derived from assays in a benign environment. At stressful temperatures, estimates of the genomic deleterious mutation rate (for genes expressed at such temperatures) is sixfold lower, whereas those for the average homozygous effect is approximately eightfold higher. Our results are reasonably compatible with existing estimates for flies, when one considers the differences between these species in the number of germ-line cell divisions per generation and the magnitude of transposable element activity. 相似文献
12.
Andrew M. Simons 《Journal of evolutionary biology》2002,15(5):688-701
A persistent debate in evolutionary biology is one over the continuity of microevolution and macroevolution – whether macroevolutionary trends are governed by the principles of microevolution. The opposition of evolutionary trends over different time scales is taken as evidence that selection is uncoupled over these scales. I argue that the paradox inferred by trend opposition is eliminated by a hierarchical application of the ‘geometric‐mean fitness’ principle, a principle that has been invoked only within the limited context of microevolution in response to environmental variance. This principle implies the elimination of well adapted genotypes – even those with the highest arithmetic mean fitness over a shorter time scale. Contingent on premises concerning the temporal structure of environmental variance, selectivity of extinction, and clade‐level heritability, the evolutionary outcome of major environmental change may be viewed as identical in principle to the outcome of minor environmental fluctuations over the short‐term. Trend reversals are thus recognized as a fundamental property of selection operating at any phylogenetic level that occur in response to event severities of any magnitude over all time scales. This ‘bet‐hedging’ perspective differs from others in that a specified, single hierarchical selective process is proposed to explain observed hierarchical patterns of extinction. 相似文献
13.
Smith MP Laws TR Atkins TP Oyston PC de Pomerai DI Titball RW 《FEMS microbiology letters》2002,210(2):181-185
Caenorhabditis elegans has previously been used as an alternative to mammalian models of infection with bacterial pathogens. We have developed a liquid-based assay to measure the effect of bacteria on the feeding ability of C. elegans. Using this assay we have shown that Pseudomonas aeruginosa strain PA14, Burkholderia pseudomallei and Yersinia pestis were able to inhibit feeding of C. elegans strain N2. An increase in sensitivity of the assay was achieved by using C. elegans mutant phm-2, in place of the wild-type strain. Using this assay,P. aeruginosa PA01 inhibited the feeding of C. elegans mutant phm-2. Such liquid-based feeding assays are ideally suited to the high-throughput screening of mutants of bacterial pathogens. 相似文献
14.
Phenotypic plasticity in fluctuating environments: consequences of the lack of individual optimization 总被引:2,自引:0,他引:2
I consider the problem of characterizing the optimal plasticresponse when there are large-scale fluctuations in the environmentaffecting all population members. Individuals differ in theirstate, and each makes a reproductive decision before the environmentalconditions are known. An individual's state, its decision, andenvironmental conditions together determine the number of descendantsleft at the next decision epoch. I restrict attention to thesimple problem in which the state of the descendants left atthis epoch does not depend on these three factors. Because theenvironment is fluctuating, there is no individual optimization;instead the best action in one state implicitly depends on thebest action in other states. I characterize an optimal state-dependentstrategy, give a method of computation, and show how behaviorof each individual following the optimal strategy may be reinterpretedas a form of "individual optimization." Concepts are illustratedwith an example of optimal dutch size as a function of territoryquality. 相似文献
15.
Inter-generational temporal variability of the environment is important in the evolution and adaptation of phenotypic traits. We discuss a population-dynamic approach which plays a central role in the analysis of evolutionary processes. The basic principle is that the phenotypes with the greatest long-term average growth rate will dominate the entire population. The calculation of longterm average growth rates for populations under temporal stochasticity can be highly cumbersome. However, for a discrete non-overlapping population, it is identical to the geometric mean of the growth rates (geometric mean fitness), which is usually different from the simple arithmetic mean of growth rates. Evolutionary outcomes based on geometric mean fitness are often very different from the predictions based on the usual arithmetic mean fitness. In this paper we illustrate the concept of geometric mean fitness in a few simple models. We discuss its implications for the adaptive evolution of phenotypes, e.g. foraging under predation risks and clutch size. Next, we present an application: the risk-spreading egg-laying behaviour of the cabbage white butterfly, and develop a two-patch population dynamic model to show how the optimal solution diverges from the ssual arithmetic mean approach. The dynamics of these stochastic models cannot be predicted from the dynamics of simple deterministic models. Thus the inclusion of stochastic factors in the analyses of populations is essential to the understanding of not only population dynamics, but also their evolutionary dynamics. 相似文献
16.
A. M. Simons 《Journal of evolutionary biology》2014,27(6):1047-1056
Adaptive phenotypic plasticity evolves when cues reliably predict fitness consequences of life‐history decisions, whereas bet hedging evolves when environments are unpredictable. These modes of response should be jointly expressed, because environmental variance is composed of both predictable and unpredictable components. However, little attention has been paid to the joint expression of plasticity and bet hedging. Here, I examine the simultaneous expression of plasticity in germination rate and two potential bet‐hedging traits – germination fraction and within‐season diversification in timing of germination – in seeds from multiple seed families of five geographically distant populations of Lobelia inflata (L.) subjected to a thermal gradient. Populations differ in germination plasticity to temperature, in total germination fraction and in the expression of potential diversification in the timing of germination. The observation of a negative partial correlation between the expression of plasticity and germination variance (potential diversification), and a positive correlation between plasticity and germination fraction is suggestive of a trade‐off between modes of response to environmental variance. If the observed correlations are indicative of those between adaptive plasticity and bet hedging, we expect an optimal balance to exist and differ among populations. I discuss the challenges involved in testing whether the balance between plasticity and bet hedging depends on the relative predictability of environmental variance. 相似文献
17.
Many animal species exhibit sex differences in aging. In the nematode Caenorhabditis elegans, under conditions that minimize mortality, males are the longer-lived sex. In a survey of 12 independent C. elegans isolates, we find that this is a species-typical character. To test the hypothesis that the C. elegans male longevity bias evolved as a consequence of androdioecy (having males and hermaphrodites), we compared sex-specific survival in four androdioecious and four dioecious (males and females) nematode species. Contrary to expectation, in all but C. briggsae (androdioecious), males were the longer-lived sex, and this difference was greatest among dioecious species. Moreover, male lifespan was reduced in androdioecious species relative to dioecious species. The evolutionary theory of aging predicts the evolution of a shorter lifespan in the sex with the greater rate of extrinsic mortality. We demonstrate that in each of eight species early adult mortality is elevated in females/hermaphrodites in the absence of food as the consequence of internal hatching of larvae (matricide). This age-independent mortality risk can favour the evolution of rapid aging in females and hermaphrodites relative to males. 相似文献
18.
Deterministic seasonality can explain the evolution of alternative life history phenotypes (i.e., life history polyphenism) expressed in different generations emerging within the same year. However, the influence of stochastic variation on the expression of such life history polyphenisms in seasonal environments is insufficiently understood. Here, we use insects as a model and explore (1) the effects of stochastic variation in seasonality and (2) the life cycle on the degree of life history differentiation among the alternative developmental pathways of direct development and diapause (overwintering), and (3) the evolution of phenology. With numerical simulation, we determine the values of development (growth) time, growth rate, body size, reproductive effort, adult life span, and fecundity in both the overwintering and directly developing generations that maximize geometric mean fitness. The results suggest that natural selection favors the expression of alternative life histories in the alternative developmental pathways even when there is stochastic variation in seasonality, but that trait differentiation is affected by the developmental stage that overwinters. Increasing environmental unpredictability induced a switch to a bet‐hedging type of life history strategy, which is consistent with general life history theory. Bet‐hedging appeared in our study system as reduced expression of the direct development phenotype, with associated changes in life history phenotypes, because the fitness value of direct development is highly variable in uncertain environments. Our main result is that seasonality itself is a key factor promoting the evolution of seasonally polyphenic life histories but that environmental stochasticity may modulate the expression of life history phenotypes. 相似文献
19.
de Jong IG Haccou P Kuipers OP 《BioEssays : news and reviews in molecular, cellular and developmental biology》2011,33(3):215-223
Bacteria have developed an impressive ability to survive and propagate in highly diverse and changing environments by evolving phenotypic heterogeneity. Phenotypic heterogeneity ensures that a subpopulation is well prepared for environmental changes. The expression bet hedging is commonly (but often incorrectly) used by molecular biologists to describe any observed phenotypic heterogeneity. In evolutionary biology, however, bet hedging denotes a risk-spreading strategy displayed by isogenic populations that evolved in unpredictably changing environments. Opposed to other survival strategies, bet hedging evolves because the selection environment changes and favours different phenotypes at different times. Consequently, in bet hedging populations all phenotypes perform differently well at any time, depending on the selection pressures present. Moreover, bet hedging is the only strategy in which temporal variance of offspring numbers per individual is minimized. Our paper aims to provide a guide for the correct use of the term bet hedging in molecular biology. 相似文献
20.
A variety of models propose that the accumulation of deleterious mutations plays an important role in the evolution of breeding systems. These models make predictions regarding the relative rates of protein evolution and deleterious mutation in taxa with contrasting modes of reproduction. Here we compare available coding sequences from one obligately outcrossing and two primarily selfing species of Caenorhabditis to explore the potential for mutational models to explain the evolution of breeding system in this clade. If deleterious mutations interact synergistically, the mutational deterministic hypothesis predicts that a high genomic deleterious mutation rate (U) will offset the reproductive disadvantage of outcrossing relative to asexual or selfing reproduction. Therefore, C. elegans and C. briggsae (both largely selfing) should both exhibit lower rates of deleterious mutation than the obligately outcrossing relative C. remanei. Using a comparative approach, we estimate U to be equivalent (and < 1) among all three related species. Stochastic mutational models, Muller's ratchet and Hill-Robertson interference, are expected to cause reductions in the effective population size in species that rarely outcross, thereby allowing deleterious mutations to accumulate at an elevated rate. We find only limited support for more rapid molecular evolution in selfing lineages. Overall, our analyses indicate that the evolution of breeding system in this group is unlikely to be explained solely by available mutational models. 相似文献