首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examine the evolutionary stability of strategies for dispersal in heterogeneous patchy environments or for switching between discrete states (e.g. defended and undefended) in the context of models for population dynamics or species interactions in either continuous or discrete time. There have been a number of theoretical studies that support the view that in spatially heterogeneous but temporally constant environments there will be selection against unconditional, i.e. random, dispersal, but there may be selection for certain types of dispersal that are conditional in the sense that dispersal rates depend on environmental factors. A particular type of dispersal strategy that has been shown to be evolutionarily stable in some settings is balanced dispersal, in which the equilibrium densities of organisms on each patch are the same whether there is dispersal or not. Balanced dispersal leads to a population distribution that is ideal free in the sense that at equilibrium all individuals have the same fitness and there is no net movement of individuals between patches or states. We find that under rather general assumptions about the underlying population dynamics or species interactions, only such ideal free strategies can be evolutionarily stable. Under somewhat more restrictive assumptions (but still in considerable generality), we show that ideal free strategies are indeed evolutionarily stable. Our main mathematical approach is invasibility analysis using methods from the theory of ordinary differential equations and nonnegative matrices. Our analysis unifies and extends previous results on the evolutionary stability of dispersal or state-switching strategies.  相似文献   

2.
The outcome of sexual conflict can depend on the social environment, as males respond to changes in the inclusive fitness payoffs of harmfulness and harm females less when they compete with familiar relatives. Theoretical models also predict that if limited male dispersal predictably enhances local relatedness while maintaining global competition, kin selection can produce evolutionary divergences in male harmfulness among populations. Experimental tests of these predictions, however, are rare. We assessed rates of dispersal in female and male seed beetles Callosobruchus maculatus, a model species for studies of sexual conflict, in an experimental setting. Females dispersed significantly more often than males, but dispersing males travelled just as far as dispersing females. Next, we used experimental evolution to test whether limiting dispersal allowed the action of kin selection to affect divergence in male harmfulness and female resistance. Populations of C. maculatus were evolved for 20 and 25 generations under one of three dispersal regimens: completely free dispersal, limited dispersal and no dispersal. There was no divergence among treatments in female reproductive tract scarring, ejaculate size, mating behaviour, fitness of experimental females mated to stock males or fitness of stock females mated to experimental males. We suggest that this is likely due to insufficient strength of kin selection rather than a lack of genetic variation or time for selection. Limited dispersal alone is therefore not sufficient for kin selection to reduce male harmfulness in this species, consistent with general predictions that limited dispersal will only allow kin selection if local relatedness is independent of the intensity of competition among kin.  相似文献   

3.
Dispersal distributions are often characterized by many individuals that stay close to their origin and large variation in the distances moved by those that leave. This variation in dispersal distance can strongly influence demographic, ecological, and evolutionary processes. However, a lack of data on the fitness and phenotype of individual dispersers has impeded research on the role of natural selection in maintaining variation in dispersal distance. Six years of spatially explicit capture-mark-recapture data showed that survival increased with dispersal distance in the stream salamander Gyrinophilus porphyriticus. To understand the evolutionary implications of this fitness response, we tested whether variation in dispersal distance has a phenotypic basis. We used photographs of marked individuals to measure head, trunk, and leg morphology. We then tested whether dispersal distances over the six-year study period were predicted by these traits. Dispersal distance was significantly related to leg morphology: individuals with relatively long forelimbs and short hindlimbs dispersed the farthest. These results support the hypothesis that positive fitness consequences maintain phenotypes enabling long-distance dispersal. More broadly, they suggest that natural selection can promote variation in dispersal distance and associated phenotypes, offering an alternative to the view that dispersal distance is driven by stochastic or landscape-specific mechanisms.  相似文献   

4.
Dispersal ability is an important fitness component in most plant species. Therefore, some phenotypic traits can be selected due to their effect on dispersal. In this study I determine the potential for dispersal-mediated selection on plant height in an autochorous plant, Erysimum mediohispanicum (Brassicaceae). Selection was quantified by selection gradients, structural equation modeling and generalized additive models. I detected significant dispersal-mediated linear selection gradient on plant height, taller plants dispersing seeds farther. Nevertheless, the generalized additive models suggest that the selection on stalk height was non linear. Indeed, it detected a threshold in the effect of stalk height on dispersal ability; plants shorter than that threshold had an extremely short dispersal, whereas plants taller than that threshold dispersed the seeds very far. Furthermore, the structural equation modeling showed that stalk height indirectly affected dispersal distance through its significant effect on one reproduction-related fitness component, taller plants having greater fecundity. Selection on E. mediohispanicum stalk height occurs through two simultaneous paths, one via producing many seeds and the other through increasing probability of dispersing them far away.  相似文献   

5.
In this article, a structured metapopulation model in discrete time with catastrophes and density-dependent local growth is introduced. The fitness of a rare mutant in an environment set by the resident is defined, and an efficient method to calculate fitness is presented. With this fitness measure evolutionary analysis of this model becomes feasible. This article concentrates on the evolution of dispersal. The effect of catastrophes, dispersal cost, and local dynamics on the evolution of dispersal is investigated. It is proved that without catastrophes, if all population–dynamical attractors are fixed points, there will be selection for no dispersal. A new mechanism for evolutionary branching is also found: Even though local population sizes approach fixed points, catastrophes can cause enough temporal variability, so that evolutionary branching becomes possible.  相似文献   

6.
Dispersal is one of the most important precopulatory inbreeding avoidance mechanisms and subject to landscape related selection pressures. In small populations, inbreeding within and between populations may strongly affect population dynamics if it reduces fitness and gene‐flow. While inbreeding avoidance is generally considered to be a key evolutionary driver of dispersal, potential effects of inbreeding on the dispersal process, are poorly known. Here, I document how inbreeding within a population, so by mating among relatives, affects the survivorship and the dispersal behaviour of three congeneric spider Erigone species (Araneae: Linyphiidae) that differ in habitat preference and regional rarity. The three species were chosen as a model because they allow the assessment of both long and short distance dispersal motivation (respectively ballooning and rappelling) under laboratory conditions. Inbreeding reduced both long and short distance dispersal modes in the three congeneric species. Because survival was depressed after inbreeding, with a tendency of reduced survival loss in the rare and highly stenotopic species, energetic constraints are likely to be the underlying mechanism. Inbreeding consequently depresses silk‐related dispersal in three related spiders. This may induce an inbreeding depression vortex with important consequences for range expansion and metapopulation dynamics of aerially dispersing species from highly fragmented landscapes.  相似文献   

7.
Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context‐dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits.  相似文献   

8.
Maternal influences on progeny characters affect phenotypic correlations between characters expressed in maternal and progeny generations and consequently influence evolutionary responses to selection. Net selection on maternally influenced characters depends on selection both on the progeny character and on the maternal characters that influence it. I used seed dispersal in Cakile edentula as a system in which to identify the mechanisms of environmentally mediated maternal effects and to determine how selection on maternal characters alters the adaptive value of dispersal. In C. edentula, maternal morphology responds to conspecific density experienced by the mother. Maternal morphology in turn affects offspring (seed) dispersal and density and thereby offspring morphology and fitness. I estimated the magnitude of density-mediated maternal effects on dispersal and identified their mechanism by characterizing the plasticity of maternal morphology to density. I also measured density-dependent selection on maternal characters that influence dispersal. Maternal plasticity to density was caused by both allometric and nonallometric variation in morphology, and this plasticity resulted in a negative correlation between maternal and progeny density. Such negative maternal effects are expected to retard responses to selection. Maternal morphology influenced maternal fitness, in part through the relationship of fitness to maternal plant size and in part through size-independent fitness effects. Maternal phenotypes that promote dispersal, and thereby increase progeny fitness, were associated with decreased maternal fitness. Selection on dispersal at the level of progeny favors increased dispersal; maternal influences on dispersal, however, not only cause a greatly reduced adaptive value of dispersal but lead to the prediction of a slower response to selection.  相似文献   

9.
Phylogenetic studies of geographic range evolution are increasingly using statistical model selection methods to choose among variants of the dispersal‐extinction‐cladogenesis (DEC) model, especially between DEC and DEC+J, a variant that emphasizes “jump dispersal,” or founder‐event speciation, as a type of cladogenetic range inheritance scenario. Unfortunately, DEC+J is a poor model of founder‐event speciation, and statistical comparisons of its likelihood with DEC are inappropriate. DEC and DEC+J share a conceptual flaw: cladogenetic events of range inheritance at ancestral nodes, unlike anagenetic events of dispersal and local extinction along branches, are not modelled as being probabilistic with respect to time. Ignoring this probability factor artificially inflates the contribution of cladogenetic events to the likelihood, and leads to underestimates of anagenetic, time‐dependent range evolution. The flaw is exacerbated in DEC+J because not only is jump dispersal allowed, expanding the set of cladogenetic events, its probability relative to non‐jump events is assigned a free parameter, j, that when maximized precludes the possibility of non‐jump events at ancestral nodes. DEC+J thus parameterizes the mode of speciation, but like DEC, it does not parameterize the rate of speciation. This inconsistency has undesirable consequences, such as a greater tendency towards degenerate inferences in which the data are explained entirely by cladogenetic events (at which point branch lengths become irrelevant, with estimated anagenetic rates of 0). Inferences with DEC+J can in some cases depart dramatically from intuition, e.g. when highly unparsimonious numbers of jump dispersal events are required solely because j is maximized. Statistical comparison with DEC is inappropriate because a higher DEC+J likelihood does not reflect a more close approximation of the “true” model of range evolution, which surely must include time‐dependent processes; instead, it is simply due to more weight being allocated (via j) to jump dispersal events whose time‐dependent probabilities are ignored. In testing hypotheses about the geographic mode of speciation, jump dispersal can and should instead be modelled using existing frameworks for state‐dependent lineage diversification in continuous time, taking appropriate cautions against Type I errors associated with such methods. For simple inference of ancestral ranges on a fixed phylogeny, a DEC‐based model may be defensible if statistical model selection is not used to justify the choice, and it is understood that inferences about cladogenetic range inheritance lack any relation to time, normally a fundamental axis of evolutionary models.  相似文献   

10.
Conventional wisdom predicts that sequential founder events will cause genetic diversity to erode in species with expanding geographic ranges, limiting evolutionary potential at the range margin. Here, we show that invasive European starlings (Sturnus vulgaris) in South Africa preserve genetic diversity during range expansion, possibly as a result of frequent long‐distance dispersal events. We further show that unfavourable environmental conditions trigger enhanced dispersal, as indicated by signatures of selection detected across the expanding range. This brings genetic variation to the expansion front, counterbalancing the cumulative effects of sequential founding events and optimizing standing genetic diversity and thus evolutionary potential at range margins during spread. Therefore, dispersal strategies should be highlighted as key determinants of the ecological and evolutionary performances of species in novel environments and in response to global environmental change.  相似文献   

11.
Niche and dispersal ability are key traits for explaining the geographical structuring of species into discrete populations, and its evolutionary significance. Beyond their individual effects, the interplay between species niche and its geographic limits, together with the evolutionary lability of dispersal ability, can underpin trait diversification and speciation when exposed to gradients of selection. In this issue of Molecular Ecology, two complementary papers demonstrate how evolutionary lability for dispersal ability linked to niche shift can drive such a model in a context that includes selection. Both papers investigate the evolution of dispersal limitation in arthropods across altitudinal gradients, but using taxa with contrasting ecologies. McCulloch et al. (2019) investigate the evolution of wing loss at higher altitudes in stoneflies, a taxon inhabiting freshwater systems. Suzuki et al. (2019) report a similar phenomenon, but involving wing reduction at higher altitudes in scorpionflies, a taxon associated with moist terrestrial habitats. Here, we compare and contrast the results of both studies to explore their broader implications for understanding diversification and speciation within arthropods.  相似文献   

12.
The dispersal routes of taxa with transoceanic disjunctions remain poorly understood, with the potential roles of Antarctica not yet demonstrated. Mosses are suitable organisms to test direct intra‐Antarctic dispersal, as major component of the extant Antarctic flora, with the cosmopolitan moss Bryum argenteum as ideal target species. We analyzed the genetic structure of B. argenteum to provide an evolutionary time frame for its radiation and shed light into its historical biogeography in the Antarctic region. We tested two alternative scenarios: (a) intra‐Antarctic panmixia and (b) intra‐Antarctic genetic differentiation. Furthermore, we tested for evidence of the existence of specific intra‐Antarctic dispersal routes. Sixty‐seven new samples (40 collected in Antarctica) were sequenced for ITS nrDNA and rps4 cpDNA regions, and phylogenetic trees of B. argenteum were constructed, with a focus on its Southern Hemisphere. Combining our new nrDNA dataset with previously published datasets, we estimated time‐calibrated phylogenies based on two different substitution rates (derived from angiosperms and bryophytes) along with ancestral area estimations. Minimum spanning network and pairwise genetic distances were also calculated. B. argenteum was potentially distributed across Africa and Antarctica soon after its origin. Its earliest intra‐Antarctic dispersal and diversification occurred during a warming period in the Pliocene. On the same timescale, a radiation took place involving a dispersal event from Antarctica to the sub‐Antarctic islands. A more recent event of dispersal and diversification within Antarctica occurred during a warm period in the Pleistocene, creating favorable conditions also for its colonization outside the Antarctic continent worldwide. We provide evidence supporting the hypothesis that contemporary populations of B. argenteum in Antarctica integrate a history of both multiple long‐range dispersal events and local persistence combined with in situ diversification. Our data support the hypothesis that B. argenteum has been characterized by strong connectivity within Antarctica, suggesting the existence of intra‐Antarctic dispersal routes.  相似文献   

13.
The evolutionary potential of populations is mainly determined by population size and available genetic variance. However, the adaptability of spatially structured populations may also be affected by dispersal: positively by spreading beneficial mutations across sub-populations, but negatively by moving locally adapted alleles between demes. We develop an individual-based, two-patch, allelic model to investigate the balance between these opposing effects on a population''s evolutionary response to rapid climate change. Individual fitness is controlled by two polygenic traits coding for local adaptation either to the environment or to climate. Under conditions of selection that favour the evolution of a generalist phenotype (i.e. weak divergent selection between patches) dispersal has an overall positive effect on the persistence of the population. However, when selection favours locally adapted specialists, the beneficial effects of dispersal outweigh the associated increase in maladaptation for a narrow range of parameter space only (intermediate selection strength and low linkage among loci), where the spread of beneficial climate alleles is not strongly hampered by selection against non-specialists. Given that local selection across heterogeneous and fragmented landscapes is common, the complex effect of dispersal that we describe will play an important role in determining the evolutionary dynamics of many species under rapidly changing climate.  相似文献   

14.
Reduced dispersability of species living on islands relative to mainland has been documented in both plants and animals. One evolutionary scenario explains this trend by strong selection against dispersal, once the species has reached the island, to reduce dispersal out to sea. In this study, we compare the dispersal ability of three wind dispersed plant species (Cirsium arvense, Epilobium angustifolium, and E. hirsutum) from populations on mainland and three islands. Dispersal ability was estimated directly as drop time of diaspores, and indirectly using a morphological measure relating the weight of the diaspore to the size of the pappus (Cirsium) or seed hairs (Epilobium). Positive correlation between the morphological measure of dispersal ability and drop time of diaspores were found for all study species. Dispersal ability varied significantly among mainland and islands, and among species. C. arvense showed a significant reduction in dispersal ability on islands compared to mainland, whereas the reverse was found for the two Epilobium species. Overall Epilobium diaspores had a 2–4 times higher dispersability than C. arvense, indicating that degree of isolation of islands vary among study species. Significant differences in dispersability among plants within populations were detected in all species suggesting that this trait may have a genetic component.  相似文献   

15.
Conflicts of selection on diaspore traits throughout the dispersal cycle can limit the evolutionary consequences of seed dispersal. However, these conflicts have never been investigated in directed dispersal systems. We explored conflicts of selection through life stages of dispersal in the myrmecochorous herb Helleborus foetidus. Seeds are subject to two contrasting partial selective scenarios. Undispersed seeds are subject to positive directional selection on seed size characters, whereas seeds dispersed are subject to stabilizing selection for size. In both scenarios, seedling establishment determined the magnitude and direction of selection. This does not reflect ant preferences for seed size. However, total selection still depends largely on ant activity, as ants control the relative importance of each selective scenario. We advocate the use of analytical approaches combining multiplicative fitness and microenvironment‐specific selection to more realistically estimate the realized selection on traits functional during several life stages. This approach may be extended to any organism dispersing offspring to different environments.  相似文献   

16.
Dispersal is a central process to almost all species on earth, as it connects spatially structured populations and thereby increases population persistence. Dispersal is subject to (rapid) evolution and local patch extinctions are an important selective force in this context. In contrast to the randomly distributed local extinctions considered in most theoretical studies, habitat fragmentation or other anthropogenic interventions will lead to spatially correlated extinction patterns. Under such conditions natural selection is thought to lead to more long‐distance dispersal, but this theoretical prediction has not yet been verified empirically. We test this prediction in experimental spatially structured populations of the spider mite Tetranychus urticae and supplement these empirical results with insights from an individual‐based evolutionary model. We demonstrate that the spatial correlation of local extinctions changes the entire distribution of dispersal distances (dispersal kernel) and selects for overall less emigration but more long‐distance dispersal.  相似文献   

17.
Little has been known about the impacts of past vicariance events on the phylogeography and population structure of freshwater fishes in East Asia. The aims of this study are to assess the genetic variability with extensive sampling throughout the range of Chinese spiny loach, Cobitis sinensis, and to infer the genetic structure and evolutionary history of populations. Cobitis sinensis in China may have initiated from two ancestral populations, namely Yangtze and Pearl Rivers, which diverged about 7.24 MYA likely due to drainage systems alteration. In the phylogroup I, a southward dispersal event occurred from East China (Yangtze River) to south ZheMin and Hainan subregions, followed by eastward dispersal from ZheMin to south Taiwan. In the phylogroup II, eastward colonization took place from Pearl River to north Taiwan in the late Pliocene, coupled with loss of genetic diversity in the island populations. This study showed that Cenozoic tectonic movements and climatic and sea‐level fluctuations may have shaped the genetic structure of C. sinensis in concert. Highly diverged mtDNA sequences suggest existence of cryptic species in morphospecies C. sinensis.  相似文献   

18.
Evolutionary theory predicts that levels of dispersal vary in response to the extent of local competition for resources and the relatedness between potential competitors. Here, we test these predictions by making use of a female dispersal dimorphism in the parasitoid wasp Melittobia australica. We show that there are two distinct female morphs, which differ in morphology, pattern of egg production, and dispersal behaviour. As predicted by theory, we found that greater competition for resources resulted in increased production of dispersing females. In contrast, we did not find support for the prediction that high relatedness between competitors increases the production of dispersing females in Melittobia. Finally, we exploit the close links between the evolutionary processes leading to selection for dispersal and for biased sex ratios to examine whether the pattern of dispersal can help distinguish between competing hypotheses for the lack of sex ratio adjustment in Melittobia.  相似文献   

19.
Selective pressures on seed size could vary among the different stages of plant life cycles, so no simple relation could explain a priori its evolution. Here, we determined the relationships between seed size and two fitness components—seed dispersal and survival from predation—in a bird-dispersed tree, Crataegus monogyna. We interpret these relationships in relation to the patterns of mass allocation to fruit and seed components. Selection patterns were assessed at two levels (1) selection pressures on the parent tree; comparing seed dispersal efficiency among individual plants and (2) selection pressures at the individual seed level; comparing seed size variation (i) before and after dispersal, and (ii) before and after postdispersal seed predation. Dispersal efficiency (percentage of seed crop dispersed) was positively correlated with fruit mass and fruit width. Differences in crop size did not offset this effect, and larger seeds were overrepresented in the seed rain relative to the seed pool before dispersal. However, the advantage of larger seeds during the dispersal stage was cancelled later by an opposite selection pressure exerted by seed predators. As a result, smaller seeds had a higher probability of surviving postdispersal seed predation, establishing an evolutionary conflict imposed by the need for dispersal and the danger of being predated. Birds and rodents preferentially selected highly profitable fruits and seeds in terms of the relative proportion of their components. Larger fruits had a higher pulp to seed proportion than smaller ones, and all seeds had the same proportion of coat relative to the embryo-plus-endosperm fraction. Hence, although predator pressures were stronger than disperser ones, larger seeds invested proportionally less in structural defense than in dispersal.  相似文献   

20.
Global climate is changing rapidly and is accompanied by large‐scale fragmentation and destruction of habitats. Since dispersal is the first line of defense for mobile organisms to cope with such adversities in their environment, it is important to understand the causes and consequences of evolution of dispersal. Although dispersal is a complex phenomenon involving multiple dispersal‐components like propensity (tendency to leave the natal patch) and ability (to travel long distances), the relationship between these traits is not always straight‐forward, it is not clear whether these traits can evolve simultaneously or not, and how their interactions affect the overall dispersal profile. To investigate these issues, we subjected four large (n ~ 2400) outbred populations of Drosophila melanogaster to artificial selection for increased dispersal, in a setup that mimicked increasing habitat fragmentation over 33 generations. The propensity and ability of the selected populations were significantly greater than the non‐selected controls and the difference persisted even in the absence of proximate drivers for dispersal. The dispersal kernel evolved to have significantly greater standard deviation and reduced values of skew and kurtosis, which ultimately translated into the evolution of a greater frequency of long‐distance dispersers (LDDs). We also found that although sex‐biased dispersal exists in D. melanogaster, its expression can vary depending on which dispersal component is being measured and the environmental condition under which dispersal takes place. Interestingly though, there was no difference between the two sexes in terms of dispersal evolution. We discuss possible reasons for why some of our results do not agree with previous laboratory and field studies. The rapid evolution of multiple components of dispersal and the kernel, expressed even in the absence of stress, indicates that dispersal evolution cannot be ignored while investigating eco‐evolutionary phenomena like speed of range expansion, disease spread, evolution of invasive species and destabilization of metapopulation dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号