首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the evolution of transmembrane (TM) topology by detecting partial sequence repeats in TM protein sequences and analyzing them in detail. A total of 377 sequences that seem to have evolved by internal gene duplication events were found among 38,124 predicted TM protein sequences (except for single-spannings) from 87 prokaryotic genomes. Various types of internal duplication patterns were identified in these sequences. The majority of them are diploid-type (including quasi-diploid-type) duplication in which a primordial protein sequence was duplicated internally to become an extant TM protein with twice as many TM segments as the primordial one, and the remaining ones are partial duplications including triploid-type. The diploid-type repeats are recognized in many 8-tms, 10-tms and 12-tms TM protein sequences, suggesting the diploid-type duplication was a principle mechanism in the evolutionary development of these types of TM proteins. The "positive-inside" rule is satisfied in whole sequences of both 10-tms and 8-tms TM proteins and in both halves of 10-tms proteins while not necessarily in the second half of 8-tms proteins, providing fit examples of "internal divergent topology evolution" likely occurred after a diploid-type internal duplication event. From analyzing the partial duplication patterns, several evolutionary pathways were recognized for 6-tms TM proteins, i.e. from primordial 2-tms, 3-tms and 4-tms TM proteins to extant 6-tms proteins. Similarly, the duplication pattern analysis revealed plausible evolution scenarios that 7-tms TM proteins have arisen from 3-tms, 4-tms and 5-tms TM protein precursors via partial internal gene duplications.  相似文献   

2.
Summary Using computer programs that analyze the evolutionary history and probability of relationship of protein sequences, we have investigated the gene duplication events that led to the present configuration of immunoglobulin C regions, with particular attention to the origins of the homology regions (domains) of the heavy chains. We conclude that all of the sequenced heavy chains share a common ancestor consisting of four domains and that the two shorter heavy chains, alpha and gamma, have independently lost most of the second domain. These conclusions allow us to align corresponding regions of these sequences for the purpose of deriving evolutionary trees. Three independent internal gene duplications are postulated to explain the observed pattern of relationships among the four domains: first a duplication of the ancestral single domain C region, followed by independent duplications of the resulting first and last domains. In these studies there was no evidence of crossing-over and recombination between ancestral chains of different classes; however, certain types of recombinations would not be detectable from the available sequence data.  相似文献   

3.
Prosaposin is a multifunctional protein encoded by a single-copy gene. It contains four saposin domains (A, B, C, and D) occurring as tandem repeats connected by linker sequences. Because the saposin domains are similar to one another, it is deduced that they were created by sequential duplications of an ancestral domain. There are two types of evolutionary scenarios that may explain the creation of the four-domain gene: (1) two rounds of tandem internal gene duplication and (2) three rounds of duplications. An evolutionary and phylogenetic analysis of saposin DNA and amino acid sequences from human, mouse, rat, chicken, and zebrafish indicates that the first evolutionary scenario is the most likely. Accordingly, an ancestral saposin-unit duplication produced a two-domain gene, which, subsequently, underwent a second complete tandem duplication to give rise to the present four-domain structure of the prosaposin gene. Received: 8 February 2001 / Accepted: 29 June 2001  相似文献   

4.
Susumo Ohno's influential book Evolution by gene duplication dealt with the idea that gene and genome duplication events are the principal forces by which the genetic raw material is provided for increasing complexity during evolution. In 1970, the evidence for this hypothesis consisted mostly of karyotypic information, crude information by today's standard genetic data, DNA sequences. Nonetheless, although the type of data are outdated, the idea remained current and is still debated today in the age of complete genome sequences. Even more than thirty years after the initial publication more research than ever is being carried out on the evolutionary significance of gene and genome duplications and the contribution of these mechanisms to the advances in genomic and organismal evolution.  相似文献   

5.

Background  

Segmental duplications, or low-copy repeats, are common in mammalian genomes. In the human genome, most segmental duplications are mosaics comprised of multiple duplicated fragments. This complex genomic organization complicates analysis of the evolutionary history of these sequences. One model proposed to explain this mosaic patterns is a model of repeated aggregation and subsequent duplication of genomic sequences.  相似文献   

6.
Grapevine is an important fruit crop that has undergone a long history of evolution. Analysis of the whole genome sequence of grapevine has revealed presence of an early palaeo-hexaploid along with three complements. Thus, gene duplication and genome expansion are common in this genome. In this study, we identified 17,922 duplicated genes in the whole grapevine genome. Among these, 2,039; 628; 1,428; 722; and 2,942 were identified respectively as produced by genome-wide, tandem, proximal, retrotransposed, and DNA-based transposed duplications. Analyses of the evolutionary patterns for different types of duplication using non-synonymous and synonymous substitution rates uncovered a series of underlying rules. Thereafter, all the grapevine genes were classified into families, and the contributions of different types of duplication to the expansion of large families were revealed. No duplication type was solely responsible for the formation of any large gene family, but some families showed enrichment of a special type of duplication. On the basis of this study, we believe that uncovering the underlying rules for gene duplications, expansions of gene families, and their evolutionary styles will contribute significantly to a comprehensive understanding of the features of the grapevine genome.  相似文献   

7.
Two ways of estimating superimposed fixed mutations in the divergent descent of proteins are examined. One method counts these in terms of a Poisson process operating within selective constraints. The other uses the maximum parsimony method to connect the contemporary sequences through intervening ancestral sequences in an evolutionary tree, and then, from the distribution of fixed mutations in dense regions of this genealogy, estimates how many fixations should be added to sparse regions. An algorithm is described which determines such augmented distances. The two methods yield similar estimates of genetic divergence when tested on a series of cytochrome c amino acid sequences. Within those constraints imposed by Darwinian selection, the dynamic behavior of the evolutionary divergence of proteins is described by the probabilistic pathways of the stochastic model. The parsimony model provides a valid Aufbau-Prinzip for examining which of those pathways occurred along a particular lineage. Concordance of the numerical magnitudes of genetic divergence estimates made by the two methods reveals them as logically consistent complements, not as mutually exclusive antagonists. Both methods indicate that cytochrome c has evolved in a non-uniform manner over geological time and more rapidly than previously estimated.  相似文献   

8.
New genes commonly appear through complete or partial duplications of pre-existing genes. Duplications of long DNA segments are constantly produced by rare mutations, may become fixed in a population by selection or random drift, and are subject to divergent evolution of the paralogous sequences after fixation, although gene conversion can impede this process. New data shed some light on each of these processes. Mutations which involve duplications can occur through at least two different mechanisms, backward strand slippage during DNA replication and unequal crossing-over. The background rate of duplication of a complete gene in humans is 10(-9)-10(-10) per generation, although many genes located within hot-spots of large-scale mutation are duplicated much more often. Many gene duplications affect fitness strongly, and are responsible, through gene dosage effects, for a number of genetic diseases. However, high levels of intrapopulation polymorphism caused by presence or absence of long, gene-containing DNA segments imply that some duplications are not under strong selection. The polymorphism to fixation ratios appear to be approximately the same for gene duplications and for presumably selectively neutral nucleotide substitutions, which, according to the McDonald-Kreitman test, is consistent with selective neutrality of duplications. However, this pattern can also be due to negative selection against most of segregating duplications and positive selection for at least some duplications which become fixed. Patterns in post-fixation evolution of duplicated genes do not easily reveal the causes of fixations. Many gene duplications which became fixed recently in a variety of organisms were positively selected because the increased expression of the corresponding genes was beneficial. The effects of gene dosage provide a unified framework for studying all phases of the life history of a gene duplication. Application of well-known methods of evolutionary genetics to accumulating data on new, polymorphic, and fixed duplication will enhance our understanding of the role of natural selection in the evolution by gene duplication.  相似文献   

9.
Duplicated genes produce genetic variation that can influence the evolution of genomes and phenotypes. In most cases, for a duplicated gene to contribute to evolutionary novelty it must survive the early stages of divergence from its paralog without becoming a pseudogene. I examined the evolutionary dynamics of recently duplicated genes in the Drosophila pseudoobscura genome to understand the factors affecting these early stages of evolution. Paralogs located in closer proximity have higher sequence identity. This suggests that gene conversion occurs more often between duplications in close proximity or that there is more genetic independence between distant paralogs. Partially duplicated genes have a higher likelihood of pseudogenization than completely duplicated genes, but no single factor significantly contributes to the selective constraints on a completely duplicated gene. However, DNA-based duplications and duplications within chromosome arms tend to produce longer duplication tracts than retroposed and inter-arm duplications, and longer duplication tracts are more likely to contain a completely duplicated gene. Therefore, the relative position of paralogs and the mechanism of duplication indirectly affect whether a duplicated gene is retained or pseudogenized. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Susumo Ohno's influential book Evolution by gene duplication dealt with the idea that gene and genome duplication events are the principal forces by which the genetic raw material is provided for increasing complexity during evolution. In 1970, the evidence for this hypothesis consisted mostly of karyotypic information, crude information by today's standard genetic data, DNA sequences. Nonetheless, although the type of data are outdated, the idea remained current and is still debated today in the age of complete genome sequences. Even more than thirty years after the initial publication more research than ever is being carried out on the evolutionary significance of gene and genome duplications and the contribution of these mechanisms to the advances in genomic and organismal evolution.  相似文献   

11.
12.
Summary Complete amino acid sequences are presented for lysozymesc from camel and goat stomachs and compared to sequences of other lysozymesc. Tree analysis suggests that the rate of amino acid replacement went up as soon as lysozyme was recruited for the stomach function in early ruminants. The two lysozymes from goat stomach are the products of a gene duplication that probably took place before the divergence of cow, goat, and deer about 25 million years ago. Partial sequences of three lysozymes from goat tears indicated that (a) the goat tear family of lysozymes may have diverged from the stomach lysozyme family by an ancient duplication and (b) later duplications are probably responsible for the multiple forms of tear and milk lysozymes in ruminants.  相似文献   

13.
Evolutionary change of the numbers of homeobox genes in bilateral animals   总被引:6,自引:0,他引:6  
It has been known that the conservation or diversity of homeobox genes is responsible for the similarity and variability of some of the morphological or physiological characters among different organisms. To gain some insights into the evolutionary pattern of homeobox genes in bilateral animals, we studied the change of the numbers of these genes during the evolution of bilateral animals. We analyzed 2,031 homeodomain sequences compiled from 11 species of bilateral animals ranging from Caenorhabditis elegans to humans. Our phylogenetic analysis using a modified reconciled-tree method suggested that there were at least about 88 homeobox genes in the common ancestor of bilateral animals. About 50-60 genes of them have left at least one descendant gene in each of the 11 species studied, suggesting that about 30-40 genes were lost in a lineage-specific manner. Although similar numbers of ancestral genes have survived in each species, vertebrate lineages gained many more genes by duplication than invertebrate lineages, resulting in more than 200 homeobox genes in vertebrates and about 100 in invertebrates. After these gene duplications, a substantial number of old duplicate genes have also been lost in each lineage. Because many old duplicate genes were lost, it is likely that lost genes had already been differentiated from other groups of genes at the time of gene loss. We conclude that both gain and loss of homeobox genes were important for the evolutionary change of phenotypic characters in bilateral animals.  相似文献   

14.
An improved method for testing similarities or repeats in protein sequences is described. It includes three features: a measure of similarity for amino acids, based on observed substitutions in homologous proteins; a search procedure which compares all pairs of segments of two proteins; new statistical tests which estimate the probabilities that observed correlations could have occurred by chance. Calculations show that gene duplication has probably not occurred in plant ferredoxins; phage Qβ and f2 coat proteins may be homologous; and repeats in cytochrome c are not statistically significant. The method predicted an alignment of cytochrome c and c551 sequences which later appeared consistent with Dickerson's atomic model of horse cytochrome c.  相似文献   

15.
1. Genetic duplications can give rise to homologous physiological mechanisms that include structurally related protein components. There are many such examples of related proteins within the human body. 2. Evolutionary histories showing the origins and subsequent divergences of these distantly related proteins can be derived from the protein sequences and correlated with the functional characteristics of these proteins. 3. The hormones related to glucagon provide an example of homology of physiological mechanisms and emergence of new functions subsequent to gene duplications. 4. The proteins related to troponin C illustrate the participation of distantly related proteins in the same mechanism (muscle contraction), the relationship of proteins characteristic of a specialized tissue to proteins found in all eukaryote cells, and the correlation of genetic duplications with the evolutionary appearance of different types of muscle.  相似文献   

16.
Chromosome I Duplications in Caenorhabditis Elegans   总被引:8,自引:7,他引:1       下载免费PDF全文
K. S. McKim  A. M. Rose 《Genetics》1990,124(1):115-132
We have isolated and characterized 76 duplications of chromosome I in the genome of Caenorhabditis elegans. The region studied is the 20 map unit left half of the chromosome. Sixty-two duplications were induced with gamma radiation and 14 arose spontaneously. The latter class was apparently the result of spontaneous breaks within the parental duplication. The majority of duplications behave as if they are free. Three duplications are attached to identifiable sequences from other chromosomes. The duplication breakpoints have been mapped by complementation analysis relative to genes on chromosome I. Nineteen duplication breakpoints and seven deficiency breakpoints divide the left half of the chromosome into 24 regions. We have studied the relationship between duplication size and segregational stability. While size is an important determinant of mitotic stability, it is not the only one. We observed clear exceptions to a size-stability correlation. In addition to size, duplication stability may be influenced by specific sequences or chromosome structure. The majority of the duplications were stable enough to be powerful tools for gene mapping. Therefore the duplications described here will be useful in the genetic characterization of chromosome I and the techniques we have developed can be adapted to other regions of the genome.  相似文献   

17.
Whole‐genome duplications are major evolutionary events with a lasting impact on genome structure. Duplication events complicate genetic analyses as paralogous sequences are difficult to distinguish; consequently, paralogs are often excluded from studies. The effects of an ancient whole‐genome duplication (approximately 88 MYA) are still evident in salmonids through the persistence of numerous paralogous gene sequences and partial tetrasomic inheritance. We use restriction site‐associated DNA sequencing on 10 collections of chum salmon from the Salish Sea in the USA and Canada to investigate genetic diversity and population structure in both tetrasomic and rediploidized regions of the genome. We use a pedigree and high‐density linkage map to identify paralogous loci and to investigate genetic variation across the genome. By applying multivariate statistical methods, we show that it is possible to characterize paralogous loci and that they display similar patterns of population structure as the diploidized portion of the genome. We find genetic associations with the adaptively important trait of run‐timing in both sets of loci. By including paralogous loci in genome scans, we can observe evolutionary signals in genomic regions that have routinely been excluded from population genetic studies in other polyploid‐derived species.  相似文献   

18.
Are all fishes ancient polyploids?   总被引:10,自引:0,他引:10  
Euteleost fishes seem to have more copies of many genes than their tetrapod relatives. Three different mechanisms could explain the origin of these 'extra' fish genes. The duplicates may have been produced during a fish-specific genome duplication event. A second explanation is an increased rate of independent gene duplications in fish. A third possibility is that after gene or genome duplication events in the common ancestor of fish and tetrapods, the latter lost more genes. These three hypotheses have been tested by phylogenetic tree reconstruction. Phylogenetic analyses of sequences from human, mouse, chicken, frog (Xenopus laevis), zebrafish (Danio rerio) and pufferfish (Takifugu rubripes) suggest that ray-finned fishes are likely to have undergone a whole genome duplication event between 200 and 450 million years ago. We also comment here on the evolutionary consequences of this ancient genome duplication.  相似文献   

19.
We now know that the evolution of multidomain proteins has frequently involved genetic duplication events. These, however, are sometimes difficult to trace because of low sequence similarity between duplicated segments. Spectrin, the major component of the membrane skeleton that provides elasticity to the cell, contains tandemly repeated sequences of 106 amino acid residues. The same repeats are also present in α-actinin, dystrophin and utrophin. Sequence alignments and phylogenetic trees of these domains allow us to interpret the evolutionary relationship between these proteins, concluding that spectrin evolved from α-actinin by an elongation process that included two duplications of a block of seven repeats. This analysis shows how a modular protein unit can be used in the evolution of large cytoskeletal structures.  相似文献   

20.
Gene and genome duplications provide a source of genetic material for mutation, drift, and selection to act upon, making new evolutionary opportunities possible. As a result, many have argued that genome duplication is a dominant factor in the evolution of complexity and diversity. However, a clear correlation between a genome duplication event and increased complexity and diversity is not apparent, and there are inconsistencies in the patterns of diversity invoked to support this claim. Interestingly, several estimates of genome duplication events in vertebrates are preceded by multiple extinct lineages, resulting in preduplication gaps in extant taxa. Here we argue that gen(om)e duplication could contribute to reduced risk of extinction via functional redundancy, mutational robustness, increased rates of evolution, and adaptation. The timeline for these processes to unfold would not predict immediate increases in species diversity after the duplication event. Rather, reduced probabilities of extinction would predict a latent period between a genome duplication and its effect on species diversity or complexity. In this paper, we will develop the idea that genome duplication could contribute to species diversity through reduced probability of extinction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号