首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Induction of central deletional T cell tolerance by gene therapy   总被引:4,自引:0,他引:4  
Transgenic mice expressing an alloreactive TCR specific for the MHC class I Ag K(b) were used to examine the mechanism by which genetic engineering of bone marrow induces T cell tolerance. Reconstitution of lethally irradiated mice with bone marrow infected with retroviruses carrying the MHC class I gene H-2K(b) resulted in lifelong expression of K(b) on bone marrow-derived cells. While CD8 T cells expressing the transgenic TCR developed in control mice reconstituted with mock-transduced bone marrow, CD8 T cells expressing the transgenic TCR failed to develop in mice reconstituted with H-2K(b) transduced bone marrow. Analysis of transgene-expressing CD8 T cells in the thymus and periphery of reconstituted mice revealed that CD8 T cells expressing the transgenic TCR underwent negative selection in the thymus of mice reconstituted with K(b) transduced bone marrow. Negative selection induced by gene therapy resulted in tolerance to K(b). Thus, genetic engineering of bone marrow can be used to alter T cell education in the thymus by inducing negative selection.  相似文献   

2.
3.
Leukemia inhibitory factor (LIF) is a cytokine involved in embryonic and hematopoietic development. To investigate the effects of LIF on the lymphoid system, we generated a line of transgenic mice that expresses diffusible LIF protein specifically in T cells. These mice display two categories of phenotype that were not previously attributed to LIF overexpression. First, they display B cell hyperplasia, polyclonal hypergammaglobulinemia and mesangial proliferative glomerulonephritis, defects similar to those described for transgenic mice overexpressing the functionally related cytokine, interleukin-6. Secondly, the LIF transgenic mice display novel thymic and lymph node abnormalities. In the thymus, cortical CD4+CD8+ lymphocytes are lost, while numerous B cell follicles develop. Peripheral lymph nodes contain a vastly expanded CD4+CD8+ lymphocyte population. Furthermore, the thymic epithelium is profoundly disorganized, suggesting that disruption of stroma-lymphocyte interactions is responsible for many observed defects. Transplantation of transgenic bone marrow into wild type recipients transfers both the thymic and lymph node defects. However, transplantation of wild type marrow into transgenic recipients rescues the lymph node abnormality, but not the thymic defect, indicating the thymic epithelium is irreversibly altered. Our observations are consistent with a role for LIF in maintaining a functional thymic epithelium that will support proper T cell maturation.  相似文献   

4.
Copper/zinc superoxide dismutase (CuZnSOD) catalyses the conversion of O2•− into H2O2. Constitutive overexpression of CuZnSOD in cells and animals creates an indigenous oxidative stress that predisposes them to added insults. In this study, we used transgenic CuZnSOD (Tg-CuZnSOD) mice with elevated levels of CuZnSOD to determine whether overexpression of CuZnSOD affected the susceptibility of these mice to plasmodium infection. Acute malaria is associated with oxidative stress, mediated by redox-active iron released from the infected RBC. Two independently derived Tg-CuZnSOD lines showed higher sensitivity than control mice to infection by Plasmodium berghei (P. berghei), reflected by an earlier onset and increased rate of mortality. Nevertheless, while Tg-CuZnSOD mice were more vulnerable than control mice, the levels of parasitemia were comparable in both strains. Moreover, treatment of infected red blood cells (RBC) with oxidative stress inducers, such as ascorbate or paraquat, reduced the viability of parasites equally in both transgenic and control RBC. This further confirms that increased CuZnSOD does not support plasmodia development. The data are consistent with the possibility that the combination of increased redox-active iron and elevated H2O2 in the plasmodium-infected Tg-CuZnSOD mice, led to an enhanced Fenton’s reaction-mediated HO production, and the resulting oxidative injury renders the transgenic mice more vulnerable to parasite infection.  相似文献   

5.
D Minc-Golomb  H Knobler    Y Groner 《The EMBO journal》1991,10(8):2119-2124
Patients with Down's syndrome (DS) exhibit elevated activity of copper zinc superoxide dismutase (CuZnSOD) caused by the trisomy 21 state. To investigate the possible involvement of CuZnSOD gene dosage in perturbation of prostaglandin biosynthesis we analyzed transfected cells and transgenic mice that express elevated levels of human CuZnSOD. It was found that the synthesis of prostaglandin E2 (PGE2) was diminished in transfected PC12-CuZnSOD cells as well as in fibroblasts from DS patients. Primary cells derived from transgenic CuZnSOD mice showed similar reduction. Impaired biosynthesis of prostaglandins was not confined to cells grown in culture since secretion of PGE2 and PGD2 by kidney and cerebellum of transgenic CuZnSOD was significantly lower than in non-transgenic littermate mice. These findings strongly suggest that overexpression of the CuZnSOD gene induces a demotion in PGE2 and PGD2 formation and establish a connection between alteration of prostaglandin biosynthesis in trisomy 21 cells and gene dosage of CuZnSOD.  相似文献   

6.
Transgenic mice expressing hK10 under the keratin K5 promoter display several alterations in the epidermis including decreased cell proliferation, and reduced susceptibility to tumor development. Given that K5 promoter is also active in the epithelial cells of the thymus, we explored the possible alterations of the thymus because of K10 transgene expression. We found severe thymic alterations, which affect not only the thymic epithelial cells (TEC), but also thymocytes. We observed altered architecture and premature thymus involution in the transgenic mice associated with increased apoptosis and reduced proliferation of the thymocytes. Interestingly, prior to the development of this detrimental phenotype, thymocytes of the transgenic mice also displayed altered differentiation, which is aggravated later on. Molecular characterization of this phenotype indicated that Akt activity is reduced in TEC, but not in thymocytes. In addition, we also observed altered expression of Notch family members and some of their ligands both in TEC and T cells. This produces reduced Notch activity in TEC but increased Notch activity in thymocytes, which is detectable prior to the disruption of the thymic architecture. In addition, we also detect altered Notch expression in the epidermis of bK5hK10 transgenic mice. Collectively the present data indicate that keratin K10 may induce severe alterations not only in a cell autonomous manner, but also in neighboring cells by the modulation of signals involved in cell-cell interactions.  相似文献   

7.
8.
9.
Autophagy is a conserved cellular pathway responsible for the sequestration of spent organelles and protein aggregates from the cytoplasm and their delivery into lysosomes for degradation. Autophagy plays an important role in adaptation to starvation, in cell survival, immunity, development and cancer. Recent evidence in mice suggests that autophagic defects in hematopoietic stem cells (HSCs) may be implicated in leukemia. Indeed, mice lacking Atg7 in HSCs develop an atypical myeloproliferation resembling human myelodysplastic syndrome (MDS) progressing to acute myeloid leukemia (AML). Studies suggest that accumulation of damaged mitochondria and reactive oxygen species result in cell death of the majority of progenitor cells and, possibly, concomitant transformation of some surviving ones. Interestingly, bone marrow cells from MDS patients are characterized by mitochondrial abnormalities and increased cell death. A role for autophagy in the transformation to cancer has been proposed in other cancer types. This review focuses on autophagy in human MDS development and progression to AML within the context of the role of mitochondria, apoptosis and reactive oxygen species (ROS) in its pathogenesis.  相似文献   

10.
目的:利用IL-33转基因小鼠研究IL-33对造血干/祖细胞的增殖和分化影响。方法利用流式细胞仪分析IL-33转基因小鼠及同窝野生对照小鼠的外周血、脾脏、骨髓细胞的免疫表型及造血干细胞分化不同阶段细胞的数量变化;利用体外成克隆实验和细胞周期分析研究IL-33对于造血干细胞增殖能力的影响。结果与野生型小鼠相比,IL-33转基因小鼠B细胞和T细胞在外周血中都明显降低,粒细胞在外周血和骨髓中都有明显增加;IL-33转基因小鼠的骨髓造血干细胞和多能祖细胞数量减少,共同淋系祖细胞数量减少,共同髓系祖细胞和粒单系祖细胞数量增加;IL-33转基因小鼠的造血干细胞处于S-G2-M的细胞增多;体外单克隆实验发现IL-33转基因小鼠造血干细胞形成的集落数增加。结论 IL-33转基因小鼠造血干细胞增殖能力增强,更易向髓系细胞分化。  相似文献   

11.
Transgenic mice were obtained inheriting the human erythropoietin gene under the control of viral regulatory elements. The reliable difference in haematocrit, the content of haemoglobin and percentage of reticulocytes in peripheral blood were not revealed. The level of serum erythropoietin in transgenic mice is several fold higher than in control mice. The increased pool of erythroid cells was observed in the bone marrow of transgenic mice, especially of normoblasts (3-fold) and reticulocytes (4,5-fold).  相似文献   

12.
Baculovirus p35 protein protects cells from apoptotic cell death by inhibiting caspase activation. We have established transgenic mouse lines specifically expressing p35 in cardiomyocytes, and primary cardiomyocytes isolated from these mice exhibit resistance to staurosporine-induced apoptosis. In a previous study, we observed defects in heart formation associated with abdominal hemorrhage and cardiomyocyte cell death in caspase-8-deficent animals. In order to better understand the etiology of the cardiac defects and embryonic lethality in caspase-8-deficient mice, we crossed these mice with the p35 transgenic animals. Although the newly generated mice still died in utero and exhibited some cardiac defects, cardiomyocyte apoptosis was suppressed and ventricular trabeculation was restored. Thus, cardiomyocyte expression of p35 prevented cell death induced by staurosporine or caspase-8 deficiency. Additionally, our data suggest that caspase-8 plays multiple roles in cardiac development.  相似文献   

13.
14.
Helios, a member of the Ikaros family of DNA-binding proteins, is expressed in multipotential lymphoid progenitors and throughout the T lineage. However, in most B lineage cells, Helios is not expressed, suggesting that its absence may be critical for B cell development and function. To test this possibility, transgenic mice were generated that express Helios under the control of an Ig mu enhancer. Commitment to the B cell lineage was unaltered in Helios transgenic mice, and numbers of surface IgM(+) B cells were normal in the bone marrow and spleen. However, both bone marrow and splenic B cells exhibited prolonged survival and enhanced proliferation. B cells in Helios transgenic mice were also hyperresponsive to Ag stimulation. These alterations were observed even though the concentration of ectopic Helios in B lineage cells, like that of endogenous Helios in thymocytes, was well below the concentration of Ikaros. Further evidence that ectopic Helios expression contributes to B cell abnormalities was provided by the observation that Helios transgenic mice developed metastatic lymphoma as they aged. Taken together, these results demonstrate that silencing of Helios is critical for normal B cell function.  相似文献   

15.
SET-CAN associated with the t(9;9) in acute undifferentiated leukemia encodes almost the entire sequence of SET and the C-terminal two-third portion of CAN, including the FG repeat region. To clarify a role(s) of SET-CAN in leukemogenesis, we developed transgenic mice expressing SET-CAN under the control of the Gata1 gene hematopoietic regulatory domain that is active in distinct sets of hematopoietic cells. SET-CAN transgenic mice showed anemia, thrombocytopenia, and splenomegaly. A significant number of transgenic mice started dying after 6 months post-birth, being in good agreement with the fact that red blood cells and platelets decreased. We found that a significant number of c-kit+ myeloid cells appeared in peripheral blood in transgenic mice. Characterization of the bone marrow cells of transgenic mice indicated impairment in hematopoietic differentiation of erythroid, megakaryocytic, and B cell lineages by SET-CAN. Transgenic mice, in particular, exhibited a high population of the c-kit+Sca-1+Lin- fraction in bone marrow cells compared with that of the control littermates. Our results demonstrate that SET-CAN blocks the hematopoietic differentiation program--one of the characteristics of acute myeloid leukemia.  相似文献   

16.
目的研究Cramp蛋白过表达对小鼠骨髓造血干细胞自我更新和分化能力的影响。方法应用流式细胞仪分析Cramp过表达转基因小鼠及同龄野生型小鼠的骨髓、脾脏、胸腺等组织器官中各种细胞的比例;分选骨髓造血干细胞,体外培养,观察其克隆形成能力。结果与野生型小鼠相比,Cramp过表达转基因小鼠的骨髓、脾脏、胸腺等组织器官中各种细胞的比例、骨髓造血干细胞的克隆形成能力等均无明显变化。结论本研究中,Cramp过表达转基因小鼠骨髓造血干细胞的分化能力、克隆形成能力无明显变化。  相似文献   

17.
The first TCR-dependent checkpoint in the thymus determines αβ versus γδ T lineage fate and sets the stage for later T cell differentiation decisions. We had previously shown that early T cells in NOD mice that are unable to rearrange a TCR exhibit a defect in checkpoint enforcement at this stage. To determine if T cell progenitors from wild-type NOD mice also exhibit cell-autonomous defects in development, we investigated their differentiation in the Notch-ligand-presenting OP9-DL1 coculture system, as well as by analysis of T cell development in vivo. Cultured CD4 and CD8 double-negative cells from NOD mice exhibited major defects in the generation of CD4 and CD8 double-positive αβ T cells, whereas γδ T cell development from bipotent precursors was enhanced. Limiting dilution and single-cell experiments show that the divergent effects on αβ and γδ T cell development did not spring from biased lineage choice but from increased proliferation of γδ T cells and impaired accumulation of αβ T lineage double-positive cells. In vivo, NOD early T cell subsets in the thymus also show characteristics indicative of defective β-selection, and peripheral αβ T cells are poorly established in mixed bone marrow chimeras, contrasting with strong γδ T as well as B cell repopulation. Thus, NOD T cell precursors reveal divergent, lineage-specific differentiation abnormalities in vitro and in vivo from the first TCR-dependent developmental choice point, which may have consequences for subsequent lineage decisions and effector functions.  相似文献   

18.
Differentiation of neutrophil granulocytes (neutrophils) occurs through several steps in the bone marrow and requires a coordinate regulation of factors determining survival and lineage-specific development. A number of genes are known whose deficiency disrupts neutrophil generation in humans and in mice. One of the proteins encoded by these genes, glucose-6-phosphatase-β (G6PC3), is involved in glucose metabolism. G6PC3 deficiency causes neutropenia in humans and in mice, linked to enhanced apoptosis and ER stress. We used a model of conditional Hoxb8 expression to test molecular and functional differentiation as well as survival defects in neutrophils from G6PC3−/− mice. Progenitor lines were established and differentiated into neutrophils when Hoxb8 was turned off. G6PC3−/− progenitor cells underwent substantial apoptosis when differentiation was started. Transgenic expression of Bcl-XL rescued survival; however, Bcl-XL-protected differentiated cells showed reduced proliferation, immaturity and functional deficiency such as altered MAP kinase signaling and reduced cytokine secretion. Impaired glucose utilization was found and was associated with ER stress and apoptosis, associated with the upregulation of Bim and Bax; downregulation of Bim protected against apoptosis during differentiation. ER-stress further caused a profound loss of expression and secretion of the main neutrophil product neutrophil elastase during differentiation. Transplantation of wild-type Hoxb8-progenitor cells into irradiated mice allowed differentiation into neutrophils in the bone marrow in vivo. Transplantation of G6PC3−/− cells yielded few mature neutrophils in bone marrow and peripheral blood. Transgenic Bcl-XL permitted differentiation of G6PC3−/− cells in vivo. However, functional deficiencies and differentiation abnormalities remained. Differentiation of macrophages from Hoxb8-dependent progenitors was only slightly disturbed. A combination of defects in differentiation and survival thus underlies neutropenia in G6PC3−/− deficiency, both originating from a reduced ability to utilize glucose. Hoxb8-dependent cells are a model to study differentiation and survival of the neutrophil lineage.  相似文献   

19.
Transgenic mice homogeneously expressing enhanced green fluorescence protein (EGFP) in primitive hematopoietic cells and all blood cell progeny, including erythrocytes and platelets, have not been reported. Given previous data indicating H2Kb promoter activity in murine hematopoietic stem cells (HSCs), bone marrow (BM), and lymphocytes, an H2Kb enhancer/promoter EGFP construct was used to generate transgenic mice. These mice demonstrated pancellular EGFP expression in both primitive BM Sca-1+Lin-Kit+ cells and side population (SP) cells. Additionally, all peripheral blood leukocytes subsets, erythrocytes, and platelets uniformly expressed EGFP strongly. Competitive BM transplantation assays established that transgenic H2Kb-EGFP HSCs had activity equivalent to wildtype HSCs in their ability to reconstitute hematopoiesis in lethally irradiated mice. In addition, immunohistochemistry revealed EGFP transgene expression in all tissues examined. This transgenic strain should be a useful reagent for both murine hematopoiesis studies and functional studies of specific cell types from particular tissues.  相似文献   

20.
Transgenic mice expressing a T cell receptor heterodimer specific for a fragment of pigeon cytochrome c plus an MHC class II molecule (I-Ek) have been made. We find that H-2k alpha beta transgenic mice have an overall increase in the number of T cells and express a 10-fold higher fraction of cytochrome c-reactive cells than H-2b mice. Surface staining of thymocytes indicates that in H-2b mice, T cell development is arrested at an intermediate stage of differentiation (CD4+8+, CD310). Analyses of mice carrying these T cell receptor genes and MHC class II I-E alpha constructs indicate that his developmental block can be reversed in H-2b mice by I-E expression on cortical epithelial cells of the thymus. These data suggest that a direct T cell receptor-MHC interaction occurs in the thymus in the absence of nominal antigen and results in the enhanced export of T cells, consistent with the concept of "positive selection".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号