首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The ultrastructure of the nuchal organ and cerebral organ is described for the first time in a species of the Sipuncula, Onchnesoma squamatum. The nuchal organ is an unpaired structure lying outside and dorsal to the tentacular crown; furrows give the organ a paired appearance. The cerebral organ is an unciliated pad anterior to the nuchal organ. The nuchal organ consists of ciliated supporting cells, non-ciliated supporting cells and bipolar primary sensory cells. The cerebral organ is composed of unciliated supporting cells and numerous bipolar sensory cells. This clearly favours the hypothesis that this structure has a sensory function in adults rather than being a vestige of a larval organ. The sensory cells are similar in both organs and exhibit features indicative of chemoreception. Since the density of the sensory cells is low in the nuchal organ, an exclusively sensory function is questioned. There is some evidence that the two organs represent a functional unit. The present findings do not support the view that the nuchal organs of Sipuncula and ”Polychaeta” are homologous, but instead suggest that they are convergent structures. Accepted: 18 September 1996  相似文献   

2.
G. Purschke 《Zoomorphology》1990,110(2):91-104
Summary The statocysts inProtodrilus ciliatus, P. oculifer, P. haurakiensis andP. helgolandicus are situated in the prostomium anterior to the palps and have been investigated by electron microscopy. The sensory organs were reconstructed from serial sections, volumes were calculated from areas of consecutive section profiles, and additional data on surface area of distal receptor elements have been determined. In spite of variations in size (diameter 8–20 m) their structure is nearly identical. The organs consist of one cup-shaped supportive cell, one large bi- or multiciliated sensory cell and two small uni- or biciliated sensory cells forming an extracellular cavity. This cavity is completely filled with microvillus-like or paracrystalline structures and there are no signs of statoliths composed of extracellular material. The most striking feature is the occurrence of paracrystals made up of undulating ciliary membranes extending from the large sensory cell and occupying 75–90% of the cavity inP. ciliatus, P. oculifer andP. haurakiensis. The remaining space is filled with microvilli or dendritic processes of the sensory cells. InP. helgolandicus the ciliary paracrystals are almost completely replaced by microvillus-like branches of cilia of the corresponding sensory cell. Paracrystals fill less than 10% of the cavity and are formed of flattened membranes. These sensory organs enclose large surface areas of membranes (15,000–38,000 m2). The surface areas of the paracrystals composed of undulating membranes is almost identical to that of densely arranged arrays of microvilli (about 25 m2 per m3). These sensory organs are so different from all known statocysts that it is likely that they have another function. Their greatest structural correspondence is to light-receptive organs, especially in the structure and arrangement of microvilli. The role the paracrystals play is discussed: they might bear photopigments or simply represent a lens — a transparent, refractile and crystalline structure. These sensory organs are completely different from pigmented ocelli and phaosomes occurring in some protodrilids and represent a type of sensory organ thus far undescribed in polychaetes.  相似文献   

3.
Sea spiders are unique and poorly known marine chelicerates. Their larvae are even less studied, especially at the ultrastructural level. Here, we examined the hatchlings of Pycnogonum litorale (Strøm, 1,762) using histology, SEM and TEM. Existing classifications place these larvae among “typical” protonymphons, together with Nymphon brevirostre. Our results, however, revealed major differences between the two species. Hatchlings of P. litorale are endotrophic for 1–2 weeks, with yolk deposits in the body wall and a reduced secretory apparatus. They lack a body cavity, demonstrate an unusual modification of the midgut sheath cells and a complex subesophageal ganglion, which includes neuromeres of the prospective walking legs 1. These larvae also possess well-developed glia and complex sensory structures: eyes, V-shaped mechanoreceptive bristles, integrated chemo- and mechanoreceptors, and three types of concealed mechanoreceptors embedded into the body wall and only seen on the sections. In this paper we also propose a new interpretation of the pycnogonid larval types: we present a set of traits useful for diagnosis and a preliminary classification. Finally, we discuss the complexity of glial types in sea spiders and other arthropods.  相似文献   

4.
Summary The organization of marine gastrotrichs (Macrodasyoidea) is reviewed by ultrastructural analysis of one representative,Turbanella cornuta Remane, and the fine structure of tissues and cells is described. Turbanella cornuta has a mono-layeredcellular epidermis rich withsensory hairs, epidermal bodies, isolatedepidermal glands, glandular adhesive organs belonging to a duo-gland type, andventral ciliated epidermal cells of the multiciliated type. The voluminous neuropil of thebrain consists of a circular commissure which sends out four anterior and posterior longitudinal headnerves. The posterior ones unite on each side to one single longitudinal nerve of the periphery which is occupied with single peripheral neurons and has thin commissures that make it anorthogon. The position and the structure of the neurons indicate their sensitive, associative, motoric, and neurosecretory functions. The different forms of synapses give first hints to neuronal connections within gastrotrichs. There is a big cellularglia around the brain commissure and a small cellular glia within the brain neurons. In between the cross-striated muscle fibrils of thepharyngeal wall there are also nerves and sensory hairs.TheY-organ lies in the interior of the lateral body cavities, which are delimited by an outer musculature of the body wall and an inner musculature of the intestinal tract. In the pharyngeal region, theY-organ fills the body cavities completely and, in the intestinal region, it covers thegonads, which also lie in the lateral body cavities, dorsally. The testicles lie separately in front of the paired ovaries. Single states of oogenesis could be identified as oogonia, and young and old oocytes. There is a paired gland organ in front of the dorsomedian ovary which may produce a mucous cover for the egg.Theintestinal tract is adapted to mechanical stress by a myoepithelium in the pharyngeal region, by various interdigitations, and by narrow intercellular gaps with hemidesmosomal adhesions to the basement membrane. The majority of the resorbing intestinal cells have a high seam of microvilli and contain various numbers of lysosomes. In addition, there are some secerning cells without microvilli, but with a centrically arranged ER and with big secretion granules in the dorsomedian sector.The ultrastructure affirms a close correlation between the conditions of life in the interstitium and structural adaptations, such as may be observed in single structures of the body wall, the y-organ, the intestinal tract and, in some respect, even in the nervous system and in the formerly researched musculature and spermatohistogenesis. On the other hand, for the construction of the glandular adhesive organs, the nervous system, and the formerly investigated body cavities, a phylogenetical relevance is discussed. Thereafter, gastrotrichs have more primitive characters than the closely related nematodes.Abbreviations a sensory hair cells - am ampoule - at outleading tube - b basement membrane - bb basal body - c cilium - cr rootlet of the cilium - cu cuticle - cw cell wall - d d-cells of the brain - de desmosomes - e e-cells of the brain - eb epidermal bodies - ee ripe egg in the dorsomedian ovary - ep epidermis - er endoplasmatic reticulum - ev ventral ciliated epidermal cells - f f-cells of the brain - fr fibrillar structure - g gland cell - ge germ epithelium - gl(1+2) small and big cellular glia of the br - go Golgi-apparatus - gp genital pore - h h-cells of the brain - hf lateral adhesive tubules - hfp posterior adhesive tubules - i intestine - il intestinal lumen - 1 lumen of the organ - li lipid granules - ly lysosomes - m mitochondrium - mb multivesicular body - mc circular musculature - mi microvilli - ml longitudinal musculature - mo mouth opening - mt microtubules - mpl longitudinal muscle fibers of the pharyngeal wall - mpr radial muscle fibers of the pharyngeal wall - n nucleus - nb brain neurons - nc brain commissure - nf nerve fibers - nl lateral headnerve - nm nuclear membrane - nn nucleolus - nv ventrolateral headnerve - nz peripheric neuron - ncp peripheric nerve commissure - nvp longitudinal peripheric nerve - o lateral ovary - oc oocyte - oo oogonium - ow wall cells of the ovary - p secretory pore - ph pharynx - po palpar organ - phb pharyngeal bulbs - phl pharyngeal lumen - phn nerve plexus of the pharynx wall - sa anterior sense organ - sg secretory granules - sh sensory hair cell - sp posterior sense organ - st supporting stick - su supporting cell - sv synaptic vesicles - sy synaptic gap - t testicles - tl testicular lumen - tw wall cells of the testicles and the vas deferens - v ventral - va vacuoles - vd vas deferens - vs vesicles - y y-organ - yc anterior commissure of the y-organ - z yolk granules  相似文献   

5.
B. Neuhaus 《Zoomorphology》1997,117(1):33-40
 The ultrastructure of the paired cephalic sensory organs of adult Pycnophyes dentatus and of the first juvenile stage of P. kielensis (Kinorhyncha, Homalorhagida) was investigated by TEM. In both species, each sensory organ is composed of one receptor cell and one enveloping cell which border a common intercellular lumen. A single receptor cilium extends from the receptor cell into this lumen. The cilium expands behind the basal body and branches into numerous processes. A pair of cephalic sensory organs with these characteristics belongs to the ground pattern of, at least, the Pycnophyidae. The sensory organs of these Kinorhyncha correspond closely with the anterior cephalic organs of the Gastrotricha, but differ from the known cephalic receptors of other Nemathelminthes. Currently, it cannot be evaluated conclusively whether the last common ancestor of the Nemathelminthes possessed cephalic sensory organs and, if it did, what these organs looked like. Accepted: 3 December 1996  相似文献   

6.
Abstract. The phylogenetic position of Polygordius is still pending; relationships with either Opheliidae or with Saccocirrus are the most favored hypotheses. The present study of Polygordius appendiculatus was designed to look for morphological characters supporting either of these two hypotheses. The homology of the anterior appendages, and the structure of the central nervous system and nuchal organ all required clarification; we also examined whether photoreceptor‐like sense organs exist in adults. From their innervation pattern, it is likely that the anterior appendages represent palps. They lack structures typical of palps in Canalipalpata, such as musculature and coelomic cavities, which would be expected in the case of a saccocirrid relationship. Thirteen photoreceptor‐like sense organs were found in front of the brain, the only structures resembling photoreceptors in adults of P. appendiculatus. These multicellular sense organs comprise a supportive cell and several sensory cells enclosing an extracellular cavity. There are three different types of sensory cells: one rhabdomeric and two ciliary. These sensory cells are combined differently into three forms of sense organ: the most frequent uses all three types of sensory cells, the second possesses one rhabdomeric and one ciliary cell type, and the third has two types of ciliary sensory cells. Whereas similar sensory cells are frequently found in various polychaetes, their combination in one sensory organ is unique to Polygordius and is considered to represent an autapomorphy. The nuchal organs exhibit features typical of polychaetes; there are no specific features in common with Saccocirrus. Instead, the covering structures show obvious similarities to Opheliidae, as can also be found in the central nervous system. Altogether, the current observations do not contradict a relationship with opheliids but provide no evidence of a relationship with Saccocirrus as has been found in certain molecular analyses, and thus currently leave the phylogenetic position of Polygordius unresolved.  相似文献   

7.
The dipteran parasitoids Therobia leonidei and Homotrixa alleni (Tachinidae) use acoustic cues to locate their calling tettigoniid (Ensifera, Orthoptera) hosts. The sexually dimorphic tympanal organs of both fly species are located at the prosternum. For comparison a homologous chordotonal organ in the non-hearing fly Phormia regina, Meigen (Phoridae) is also described. The scolopidial sense organs of the ears have approximately 180 sensory cells in Th. leonidei and 250 cells in H. alleni. Interspecific analysis indicates that the cell number and arrangement might be genus specific in Tachinidae. The mononematic scolopidia, each with one sensory cell, are of different sizes and insert at the tympanal membrane. Large scolopidial units (diameter of sensory cells up to 50 μm) extend longitudinally from the centre of the sensory organ towards the ligament, whereas small units (sensory cell diameter up to 10 μm) are arranged sequentially within the sensory organ. This arrangement is discussed to be a possible basis for frequency discrimination. The ultrastructure of the scolopidia is similar in the hearing and non-hearing flies. In both groups, the majority of scolopales has a diameter from 2 to 2.9 μm, although hearing species have additionally wider scolopales. The homologous chordotonal organ of Ph. regina consists of approximately 55 sensory cells of uniform direction. The data are discussed in comparison to the ears of other Diptera.  相似文献   

8.
The spikemoss is marked by the unique root-producing pleurogeous rhizophore as well as the lycophytic microphyll. Imaichi and Kato (Bot Mag Tokyo 102:369–380, 1989; Am J Bot 78:1694–1703, 1991) revealed that the exogenous developmental process in the rhizophore is clearly distinguishable from the developmental process in the endogenous root, argued that the axial organ could be coordinate with other fundamental organs including the root and stem, and demonstrated the “rhizophore concept.” In this paper, we report on the expression pattern of the spikemoss Selaginella class 1 KNOX gene, SuKNOX1, in the rhizophore. We show that the SuKNOX1 mRNA is specifically accumulated at the tip of the rhizophore as well as the shoot apical apex, but not in the root tip. This result supports the “rhizophore concept” at the molecular level.  相似文献   

9.
This study focuses on selective feeding by developmental stages of two oceanic copepods, Calanus finmarchicus and Calanus helgolandicus from nauplii to adults. A mixture of four algal species of different biochemical composition, Prorocentrum nanum (dinoflagellate), Thalassiosira minima (diatom), Rhodomonas baltica (cryptophyte) and Dunaliella tertiolecta (chlorophyte), added in an equal biovolume, was used in three different experimental set-ups. In set-up 1 the algal species were present as single cells of similar size (14 μm). In set-up 2 the diatom T. minima was present in chains of two or three cells and was therefore larger than the other algae, while the biovolume of all species remained the same. In set-up 3, the diatom T. minima was excluded from the mixture. Feeding selectivity of the copepods was assessed in relation to the quality of the algal species expressed in terms of carbon and nitrogen content, fatty acid composition, and chain length of the diatom. The results show that younger stages and adult females of C. finmarchicus and C. helgolandicus did not show a preference for an algal species when the algae were of similar size. In the feeding experiments where the diatoms were offered as chains, both copepod species showed a selective behaviour only on the basis of algal size. Individual ingestion rates increased from 0.4 to 0.7 μg C day–1 for nauplii of both species to 5 μg C day–1 for adult females of C. helgolandicus to 12 μg C day–1 for C. finmarchicus. Individual filtration rates ranged from 5 ml day–1 for C. finmarchicus nauplii to 70–98 ml day–1 for adult females, and from 3 ml day–1 for C. helgolandicus nauplii to 35–46 ml day–1 for adult females. Ingestion and filtration rates per unit body carbon decreased gradually in both copepod species with increasing body carbon. The daily ingested amount of food decreased for C. finmarchicus from 124–134% of the body carbon for nauplii to 19% of the body carbon for adult females, and for C. helgolandicus from 117–137% of the body carbon for nauplii to 13–26% of the body carbon of adult females. Electronic Publication  相似文献   

10.
In studying the soft tissue anatomy and histology of notothenioids, especially the bovichtids Bovichtus diacanthus and Cottoperca gobio, I evaluated the structure and phyletic distribution of two characters identified by Balushkin (2000) and a new ocular character complex first recognized here. Histology indicates that Balushkin’s antesupracleithral organ is the thymus, a lymphoid organ that involutes with age in notothenioids. Given the universal phyletic distribution of the thymus in gnathostomes, the variation introduced by ontogenetic regression, and its predilection to preservation artifacts, neither its presence nor the appearance of its epidermis are reliable systematic characters in notothenioids. Balushkin’s hypoglossal gland, found in Bovichtus and Cottoperca, is a projection of the mucosa of the oral cavity lateral to the tongue. Histology reveals that it is not a multicellular gland and that its composition does not differ from that of the oral musosa in general—stratified squamous epithelium containing unicellular mucous glands and a few taste buds. While an elaboration of a mucosal fold present in some other notothenioids, the hypoglossal gland is nevertheless sufficiently different and distinct in Bovichtus and Cottoperca that it is a valid synapomorphy for bovichtids. Study of ocular vascular morphology reveals that bovichtids, but not other notothenioids, have a persistent choroid fissure and a low falciform process with a “Dreiecke” (triangle of Virchow). A lentiform body is also present in these two genera but is seen in Pseudaphritis urvillii and Eleginops maclovinus as well. A choroid fissure, falciform process and lentiform body have not been previously noted in notothenioids. The ocular character complex reinforces the phyletically basal position of bovichtids since a choroid fissure and falciform process are widely distributed among perciform outgroups but lost in non-bovichtid notothenioids. Non-traditional morphological characters provide useful information, but preservation can be problematic and museum specimens may not suffice when the structures are truly soft tissue such as the thymus and interior of the eye.  相似文献   

11.
We present a reconstruction of the nervous system of Neodasys chaetonotoideus Remane, 1927 (Gastrotricha, Chaetonotida) based on different microscopical methods: (1) immunohistochemistry (anti-acetylated α- and β-tubulin-, anti-5-HT- and anti-FMRFamide labelling) and (2) histochemistry (labelling of musculature and nuclei) by the means of confocal laser scanning microscopy (cLSM) and (iii) ultrastructure by means of transmission electron microscopy (TEM). All parts of the nervous system contain structures with an immunoreaction against the used immunohistochemical markers and labelling of histochemical markers. Results of both techniques (cLSM, TEM) reveal that the nervous system of N. chaetonotoideus is composed of a “dumb-bell-shaped” brain and one pair of posterior longitudinal neurite bundles. The brain is made up of a pair of laterally located clusters of neuronal somata, a large dorsal interconnecting dorsal commissure and two tiny ventral commissures in the region of the lateral clusters. From this, it follows that the brain is circumpharyngeal in position. The innervation of the head region is conducted by three pairs of anterior-directed neurite bundles. We describe here the gross anatomy of the nervous system and give additional details of the ultrastructure and the 5-HT and RFamide-like IR components of the nervous system. We compare our newly obtained data with already published data on the nervous system of gastrotrichs to reconstruct the hypothetical ground pattern of the nervous system in Gastrotricha, respectively, in Macrodasyida.  相似文献   

12.
13.
Summary Adhesive organs of 17 gastrotrich species of the order Macrodasyida and 2 species of the order Chaetonotida (Chaetonotida-Paucitubulatina) can be seen by transmission electron microscopy to comprise two gland cell types. These cells are morphologically similar to viscid and releasing glands of the Turbellaria and so are identified by these same names; the adhesive system in these gastrotrichs is therefore called a duo-gland system considered at least functionally comparable to the duo-gland organs of turbellarians. The two gland cell types project their necks through tubiform extensions of the animal's cuticle. Some adhesive tubules have only one of each gland type; others, even in the same species, may have two viscid and one releasing glands; and compound organs such as posterior footlike appendages may have three and four viscid glands and one releasing gland per tubule. Gland cells in some species have fibers, evidently cytoskeletal in function. The adhesive tubules are quite similar in all of these species and provide few characters for determining within-group relationships of the gastrotrichs. The duo-gland system of the Gastrotricha is probably not homologous with that of the Turbellaria.Abbreviations Used in Figures cu cuticle - ep epidermal cell - f fiber - la lateral adhesive organ - m muscle - pa posterior adhesive organ - rg releasing gland - sc sensory cilium - scb sensory cell body - vg viscid gland This research was supported by NSF grants DEB-77-06058 (S. Tyler, P.I.) and GB 42211 (R.M. Rieger, P.I.)  相似文献   

14.
Individuals of the insect order Mantophasmatodea use species-specific substrate vibration signals for mate recognition and location. In insects, substrate vibration is detected by mechanoreceptors in the legs, the scolopidial organs. In this study we give a first detailed overview of the structure, sensory sensitivity, and function of the leg scolopidial organs in two species of Mantophasmatodea and discuss their significance for vibrational communication. The structure and number of the organs are documented using light microscopy, SEM, and x-ray microtomography. Five scolopidial organs were found in each leg of male and female Mantophasmatodea: a femoral chordotonal organ, subgenual organ, tibial distal organ, tibio-tarsal scolopidial organ, and tarso-pretarsal scolopidial organ. The femoral chordotonal organ, consisting of two separate scoloparia, corresponds anatomically to the organ of a stonefly (Nemoura variegata) while the subgenual organ complex resembles the very sensitive organs of the cockroach Periplatena americana (Blattodea). Extracellular recordings from the leg nerve revealed that the leg scolopidial organs of Mantophasmatodea are very sensitive vibration receptors, especially for low-frequency vibrations. The dominant frequencies of the vibratory communication signals of Mantophasmatodea, acquired from an individual drumming on eight different substrates, fall in the frequency range where the scolopidial organs are most sensitive.  相似文献   

15.
The distribution of a glial cell-associated glycoprotein, glionexin (GX), on sensory receptors of the adult cricket Acheta domesticus is described, using the monoclonal antibody 5B12 as an immunohistochemical probe. GX was previously shown to be widely distributed in the embryo and to persist in the postembryonic to adult central nervous system. Here we demonstrate that it is restricted in the adult periphery to three subclasses of mechano-receptor sensilla: large socketed hair mechanoreceptors, their associated campaniform sensilla, and chordotonal organs. GX was not detected in photoreceptors, chemoreceptors, or other mechanoreceptors. The pattern of distribution differs significantly within the three subclasses of mechanoreceptors. In the hair and campaniform receptors GX is restricted to the extracellular space among glial cells clustered around the axon hillock region, but in chordotonal organs it surrounds the scolopidium at the tip of dendrites. The highly restricted distribution of GX in the periphery suggests possible functions that include mechanical stability of the sensory apparatus and ionic homeostasis in the respective neuronal spike-generating regions. The developmental modulation of GX expression is taken to imply multiple functions for the molecule during the life of the insect. 1994 John Wiley & Sons, Inc.  相似文献   

16.
Mechanoreceptor organs occur in great diversity in insect legs. This study investigates sensory organs in the leg of atympanate cave crickets (Troglophilus neglectus KRAUSS, 1879) by neuronal tracing. Previously, the subgenual and the intermediate organs were recognised in the subgenual organ complex, lacking the tympanal membranes present for example in the tibial hearing organs of Gryllidae and Tettigoniidae. We document the presence of the accessory organ in T. neglectus. This scolopidial organ is located in the posterior tibia close to the subgenual organ and can be identified by position, innervation and orientation of the dendrites of sensory neurons. The main motor nerve in the leg innervates a part of the subgenual organ and the accessory organ. The dendrites of sensory neurons in the accessory organ are characteristically bent in proximo‐dorsal direction, while the subgenual organ dendrites run distally along the longitudinal axis of the leg. The accessory organ contains 6–10 scolopidial sensilla, and no differences in neuroanatomy occur between the three thoracic leg pairs. Hence, the subgenual organ complex in cave crickets is more complex than previously known. The wider taxonomic distribution of the accessory scolopidial organ among orthopteroid insects is inconsistent, indicating its repeated losses or convergent evolution.  相似文献   

17.
The myrophine ophichthid fishes (worm eels) Muraenichthys aoki Jordan and Snyder 1901 and Muraenichthys gymnotus Bleeker 1857 are redescribed as valid species of Scolecenchelys based on the types and non-type specimens collected from the Indo-Pacific. Because both species are similar to each other in having acute snouts, the posterior margin of the eye before the rictus, and their dorsal-fin origins located slightly posterior to a vertical line through the anus, Scolecenchelys aoki has usually been regarded as a junior synonym of Scolecenchelys gymnota. However, S. aoki is clearly distinguishable from S. gymnota by having a median groove on the ventral side of snout (absent in S. gymnota), uniserial maxillary teeth in smaller specimens (<200 mm TL; vs. biserial), three infraorbital sensory pores at postorbital area (vs. two), and more numerous vertebrae (56–65 in predorsal vs. 51–57; 53–58 in preanal vs. 47–52). Scolecenchelys aoki is restricted to Japanese waters and regarded as a senior synonym of Muraenichthys borealis Machida and Shiogaki 1990. Scolecenchelys gymnota is widely distributed in the Indo-Pacific, from South Africa and the Red Sea to Samoa, north to Okinawa, Japan. Sphagebranchus huysmani Weber 1913 and Muraenichthys fowleri Schultz 1943 are synonymized under S. gymnota.  相似文献   

18.
Ampullary organs of the transparent catfish, Kryptopterus bicirrhus, are present in large numbers on the head and in a regular pattern of lines on the body and fins. The organs lie in the epidermis, and have a pore that opens to the surface. Flattened cells form a roof and walls. On the floor of the organ there are a “sensory hillock,” composed of spherical receptor cells and columnar supporting cells, and a “secretory hillock” composed of columnar secretory cells. The receptor cells are nonciliated and have only afferent innervation. The organ cavity is filled with jelly. The organs are compared with ampullary organs of the weakly electric fish Eigenmannia, ampullae of Lorenzini of Raja, and small pit organs of Amiurus. Structural characteristics of the ampullary organs of Kryptopterus make them especially suitable for electrophysiological studies.  相似文献   

19.
20.

Background  

Intercostal muscles are richly innervated by mechanoreceptors. In vivo studies of cat intercostal muscle have shown that there are 3 populations of intercostal muscle mechanoreceptors: primary muscle spindles (1°), secondary muscle spindles (2°) and Golgi tendon organs (GTO). The purpose of this study was to determine the mechanical transduction properties of intercostal muscle mechanoreceptors in response to controlled length and velocity displacements of the intercostal space. Mechanoreceptors, recorded from dorsal root fibers, were localized within an isolated intercostal muscle space (ICS). Changes in ICS displacement and the velocity of ICS displacement were independently controlled with an electromagnetic motor. ICS velocity (0.5 – 100 μm/msec to a displacement of 2,000 μm) and displacement (50–2,000 μm at a constant velocity of 10 μm/msec) parameters encompassed the full range of rib motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号