首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescent peroxidized lipids are present in lipid extractsof microsomal membranes and cytosol from young and senescingbean (Phaseolus vulgaris) cotyledon tissue. In young tissue,the peroxidized membrane lipids are mainly phospholipids, whereasthose in the cytosol are primarily free fatty acids. With advancingsenescence, microsomal peroxidized lipids increase by 200% relativeto membrane protein and by 50% on a per cotyledon basis, andthe increase is mainly attributable to enhanced levels of peroxidizedfree fatty acids. Cytosolic peroxidized lipids expressed ona per cotyledon basis decline by 55% over the same period. Fractionationof the cytosol revealed that, for both young and senescing tissue,about 50% of the cytosolic fluorescent peroxidized lipids areassociated with non-sedimentable microvesicles, which are formedfrom membranes and enriched in phospholipid catabolites. Moreover,the decline in cytosolic peroxidized lipids with advancing senescencecorrelates with progressive impairment of the formation of thesenon-sedimentable microvesicles. Key words: Phaseolus vulgaris, senescence, lipid peroxidation, fluorescence  相似文献   

2.
The lipid and fatty acid compositions of mesophyll protoplastsof Broad bean (Vicia faba) have been analysed by gas chromatography.The results indicate that protoplast isolation triggered therapid hydrolysis of several membrane lipids, notably phosphatidylcholineand monogalactosyldiacylglycerol. The decrease of these lipidswas compensated for by an increase in the amount of the neutrallipid fraction. Analyses of the fatty acid compositions suggestthat phosphatidylcholine from the microsomes and monogalactosyldiacylglycerolfrom the chloroplast were degraded to diacylglycerol and freefatty acids and used for the biosynthesis of triacylglycerols. (Received April 20, 1984; Accepted September 27, 1984)  相似文献   

3.
Abstract— The distribution of radioactivity among lipids of subcellular membrane fractions was examined after intracerebral injections of [1-14C]oleic and [1-14C]arachidonic acids. Labelled free fatty acids were distributed among the synaptosomal-rich, microsomal, myelin and cytosol fractions at 1 min after injection. However, incorporation of the fatty acids into phospholipids and trïacylglycerols after pulse labelling occurred mainly in the microsomal and synaptosomal-rich fractions. With both types of labelled precursors, there was a higher percentage of radioactivity of diacyl-glycerophosphoryl-inositols in the synaptosomal-rich fraction as compared to the microsomal fraction. Radioactivity of [1-14C]oleic acid was effectively incorporated into the triacylglycerols in the microsomal fraction whereas radioactivity of the [1-14C]arachidonic acid was preferentially incorporated into the diacyl-glycerophosphorylinositols in the synaptosomal-rich fraction. Result of the study indicates that synaptosomal-rich fraction in brain is able to metabolize long chain free fatty acids in vivo and to incorporate these precursors into the membrane phosphoglycerides.  相似文献   

4.
Smooth microsomal membranes were isolated from axes of soybean (Glycine max L. Merr.) seeds at the dehydration-tolerant (6 hours of imbibition) and dehydration-susceptible (36 hours of imbibition) stages of development and were exposed to free radicals in vitro using xanthine-xanthine oxidase as a free radical source. Wide angle x-ray diffraction studies indicated that the lipid phase transition temperature of the microsomal membranes from the dehydration-tolerant axes increased from 7 to 14°C after exposure to free radicals, whereas those from the dehydration-susceptible axes increased from 9 to 40°C by the same free radical dose. The increased phase transition temperature was associated with a decrease in the phospholipid:sterol ratio, and an increase in the free fatty acid:phospholipid ratio. There was no significant change in total fatty acid saturation, which indicated that free radical treatment induced deesterification of membrane phospholipid, and not a change in fatty acid saturation. Similar compositional and structural changes have been previously observed in dehydration-injured soybean axes suggesting that dehydration may induce free radical injury to cellular membranes. Further, these membranes differ in their susceptibility to free radical injury, presumably reflecting compositional differences in the membrane since these membranes were exposed to free radicals in the absence of cytosol.  相似文献   

5.
Age-induced changes in cellular membranes of imbibed soybean seed axes   总被引:1,自引:0,他引:1  
The physical and chemical properties of microsomal membranes and cellular antioxidant systems were investigated in imbibed soybean ( Glycine max L. Merr. cv. Maple Arrow) seeds following aging for 5 years at room temperature. The loss of germination capacity in aged seeds was associated with increased solute leakage during imbibition and with a loss of membrane phospholipid. Higher levels of free fatty acids were observed in the microsomal membranes from aged seeds. However, there was no change in fatty acid saturation. Wide angle X-ray diffraction studies indicated the presence of gel phase in addition to liquid-crystalline phase lipid domains in the membranes of aged seeds. Those from fresh seeds were exclusively liquid-crystalline. Fluorescence depolarization, using diphenylhexatriene, suggested that the microviscosity of the membrane bilayer was increased by aging. Aged seeds had a lower antioxidant potential in the lipid fraction, lower tocopherol content, and reduced ascorbate:dehydroxyascorbate ratio indicating that the aging process was associated with exposure to an oxidative stress.  相似文献   

6.
The physical properties and chemical composition of microsomal membranes were examined during a 7 day period of ice encasement in crown tissue of winter wheat (Triticum aestivum L. cv Norstar). Membrane damage, detected as an increase in microviscosity and electrolyte leakage, began between 1 and 3 days of icing, and was associated with a reduction in the recovery of microsomal membranes from stressed tissue, an increase in the microsomal free fatty acid:total fatty acid ratio, and a decrease in the phospholipid:total fatty acid ratio. These trends were amplified between 3 and 7 days of ice encasement. Examination of the free and total fatty acid fractions showed there was a slight, but not statistically significant (P = 0.05) reduction in the degree of unsaturation of the total fatty acid fraction. The composition of the free and total fatty acid fractions were very similar during ice encasement. Furthermore, analysis of phospholipid classes revealed no significant change in the relative amounts of phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid, or lysophospholipids in microsomal membranes during icing. Membrane injury during ice encasement apparently involves hydrolysis of the ester bond between glycerol and the acyl groups of the phospholipid resulting in loss of the phosphate-containing polar head group and a concomitant accumulation of free fatty acids in the bilayer.  相似文献   

7.
When bean plants (Phaseolus vulgaris L. cv. Red Cherokee Bush) are mechanically perturbed by rubbing, their stem elongation is inhibited and the stem thickness increases. The decrease in cell elongation and the increase in lateral cell divisions, which are partially responsible for this syndrome, were correlated with a decrease in the tree fatty acids and in the phospholipids of the membranes of microsomal fractions of first and second internodes of mechanically stimulated plants. This was true even though only the first internode was mechanically stimulated. Of the microsomal free fatty acids, mechanical perturbation induced an increase in myristic acid and large decreases in stearic, oleic, linoleic and linolenic acids. It also reduced the unsaturated:saturated ratio of the fatty acids. It induced a decrease in phosphatidyl choline but an increase in phosphatidyl ethanolamine. When the fatty acids were cleaved from the microsomal phospholipids, mechanical perturbation caused only a slight decrease in the unsaturated:saturated ratio and no significant changes in the double bond index. Mechanical perturbation induced an increase in the total microsomal protein and of membrane-associated latent IDPase. However, the activity of membrane-associated KCN-insensitive NADPH cytochrome-c reductase was decreased by mechanical perturbation. Treatment of the first internode with exogenous Ethrel produced results that were very similar in all respects to those obtained by mechanical perturbation. The factors inducing hardening against frost and drought, as achieved by mechanical perturbation and Ethrel treatment, are not only related to sterols or the polar head-groups of phospholipids but may also be related to the protein components, and all may have an effect on the fluidity of a bilayer membrane model. These data support the hypothesis that ethylene mediates thigmomorphogenesis and that mechanical perturbation of the first internode results in the acropetal transport of a translocatable thigmomorphogenetic factor.  相似文献   

8.
The effects of normobaric hyperoxia on both microsomal membrane fluidity and mechanism of phospholipid synthesis in rabbit liver and kidney have been studied. Hyperoxia induces in both organs an impairment of de novo synthesis of glycerolipids which could be due to an inactivation of acyltransferase activities involved in the initial formation of phosphatidic acid. The ability to replace phospholipid fatty acids by reacylation mechanism decreases slightly in the hyperoxic kidney, while it does not change in the hyperoxic liver. Concerning the effect of high arterial pO2 on microsomal membrane fluidity, the hyperoxic liver shows a more fluid environment within the membrane core of microsomes; however, no difference was shown in that of microsomal membrane core of hyperoxic kidney. An insight into the lipid composition of microsomes indicates that liver microsomal membranes have lower cholesterol content and higher unsaturation degree of phospholipid fatty acids, whereas hyperoxic kidney microsomes become more saturated and did not show any difference in their cholesterol content. In both hyperoxic liver and kidney microsomes, phospholipid content decreases in agreement with the depression of phosphatidic acid biosynthesis. These results are discussed in relation to the values of microsomal membrane microviscosity obtained.  相似文献   

9.
Changes in membrane lipid components and cellular antioxidant systems were investigated through 7 years in seeds of Acer platanoides L. after storage in natural conditions, i.e. - 3°C and 10% water content. The loss of germination capacity in aged seeds was associated with increased solute leakage during imbibition, reduced content of phospholipids, especially phosphatidylcholine, and increased free fatty acid content. A marked decrease of unsaturated fatty acids in the phospholipid fraction was observed after one year of storage. Antioxidant potential in the lipid fraction and level of -SH groups decreased during storage. The results are consistent with the hypothesis that ageing in seeds is mediated by a free radical mechanism.  相似文献   

10.
Intact human sperm incorporated radiolabelled fatty acids into membrane phospholipids when incubated in medium containing bovine serum albumin as a fatty acid carrier. The polyunsturated fatty acids were preferentially incorporated into the plasmalogen fraction of phospholipid. Uptake was linear with time over 2 hr; at this time sufficient label was available to determine the loss of fatty acids under conditions of spontaneous lipid peroxidation. Loss of the various phospholipid types, the loss of the various fatty acids from these phospholipids, and the overall loss of fatty acids were all first order. The loss of saturated fatty acids was slow with first order rate constant k1 = 0.003 hr?1; for the polyunsaturated fatty acids, arachidonic and docosahexaenoic acids, k1 = 0.145 and 0.162 hr?1, respectively. The rate of loss of fatty acids from the various phospholipid types was dependent on the type, with loss from phosphatidylethanolamine being the most rapid. Among the phospholipid types, phosphatidylethanolamine was lost at the greatest rate. Analysis of fatty acid loss through oxidation products was determined for radiolabelled arachidonic acid. Under conditions of spontaneous lipid peroxidation at 37°C under air in the absence of albumin, free arachidonic acid was found in the medium, along with minor amounts of hydroxylated derivative. All the hydroperoxy fatty acid remained in the cells. In the presence of albumin, all the hydroperoxy fatty acid was found in the supernatant bound to albumin; none could be detected in the cells. Albumin is known as a very potent inhibitor of lipid peroxidation in sperm; its action may be explained, based on these results, as binding the damaging hydroperoxy fatty acids. These results also indicate that a phospholipase A2 may act in peroxidative defense by excising a hydroperoxy acyl group from phospholipid and providing the hydroperoxy fatty acid product as substrate to glutathione peroxidase. This formulation targets hydroperoxy fatty acid as a key intermediate in peroxidative degradation. © 1995 wiley-Liss, Inc.  相似文献   

11.
The following study was carried out with the aim of widening our understanding of the thermoadaptive mechanisms of the membrane of thermophiles, using Bacillus stearothermophilus var. nondiastaticus as test-organism. The phospholipids and their acyl chain composition of this Bacillus studied in relation to the physical properties of its membrane from bacteria grown at various temperatures. Phospholipids account for 68-75 weight% of the total lipid in cells grown at 45, 55 or 65 degrees C. Phosphatidylglycerol and diphosphatidylglycerol constitute up to 90% of the total phospholipids; no amino phospholipids were found. Increasing the growth temperatures from 45 degrees to 65 degrees C caused an approximately 4-fold decrease in the proportion of the branched-chain fatty acids and a 2-fold increase in the amount of the saturated acyl chains. The reduced proportion of the branched fatty acids was mainly due to a decrease in their anteiso forms. Unsaturated fatty acids were not produced by cells grown at 65 degrees C. In accordance with the fatty acid composition, the molecular packing of phospholipids in monolayers was more expanded with phospholipids from 45 degrees C grown cells as compared with cultures grown at 55 degrees C. The thermotropic gel to liquid-crystalline phase transition of the membrane lipids was monitored by differential scanning calorimetry and fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene. With increase of the growth temperature the phase transition was progressively shifted to higher but narrower range of temperatures. Completion of the lipid melting occurred always at temperatures below those employed for growth. A constructed phase diagram enabled to relate the growth temperature, the fatty acid composition and the lipid apparent microviscosity at temperatures not used in the present study for growth of the thermophile. The minimum temperature for growth and the upper boundary temperature of the least saturated lipid crystallization were extrapolated in this manner; they correspond to the experimentally determined minimal growth temperature. The apparent microviscosity, a measure of membrane order, decreased gradually and conspicuously as the growth temperature was elevated. The delimiting apparent microviscosity values, at the maximal (65 degrees C) and minimal (41 degrees C) growth temperatures were 0.8 and 1.8 poise, respectively. This lack of rigorous homeostatic control of the bulk lipid viscosity prompted reevaluation of the physiological significance of 'homeoviscous adaptation' in Bacillus stearothermophilus.  相似文献   

12.
Synaptosomes obtained from rat striata lesioned by central injection of endothelin-1 (ET-1) were analyzed for the levels of lipid peroxidation products, the susceptibility to lipid peroxidation, the phospholipid and free fatty acid composition and the activity of Na+,K+-ATPase one hour after ET-1 treatment. The intrastriatal injection of ET-1 promoted an increase of endogenous thiobarbituric reactive substances (TBARS), as index of free radical mediated lipid damage, and a greater susceptibility to iron/ascorbate-induced lipid peroxidation. The pattern of free fatty acids showed a significant decrease of arachidonic and docosahexaenoic acid consequent to ET-1 treatment. The analysis of lipid composition showed a significant loss of phospholipids: among phospholipid species, sphingomyelin and phosphatidylethanolamine plasmalogen were particularly reduced by ET-1 treatment. The activity of membrane-bound Na+,K+-ATPase was also significantly reduced in synaptosomes obtained from ET-1 lesioned striata. Taken together these results indicate a significant modification of synaptosomal membrane of ET-1 treated rat striata, possibly due to a free radical mediated damage.  相似文献   

13.
Fatty acid composition of the phospholipids of mouse LM cells grown in suspension culture in serum-free chemically defined medium was modified by supplementing the medium with various fatty acids bound to bovine serum albumin.Following supplementation with saturated fatty acids of longer than 15 carbons (100 μM) profound inhibition of cell growth occurred; this inhibitory effect was completely abolished when unsaturated fatty acids were added at the same concentration. Supplementing with unsaturated fatty acids such as linoleic acid, linolenic acid or arachidonic acid had no effect on the cell growth.Fatty acid composition of membrane phospholipids could be manipulated by addition of different fatty acids. The normal percentage of unsaturated fatty acids in LM cell membrane phospholipids (63%) was reduced to 35–41% following incorporation of saturated fatty acids longer than 15 carbon atoms and increased to 72–82% after addition of unsaturated fatty acids.A good correlation was found between the unsaturated fatty acid content of membrane phospholipids and cell growth. When incorporated saturated fatty acids reduced the percentage of unsaturated fatty acids in membrane phospholipids to less than 50%, severe inhibition of the cell growth was found. Simultaneous addition of an unsaturated fatty acid completely abolished this effect of saturated fatty acids.  相似文献   

14.
In a series of experiments the desiccation-sensitive seeds ofQuercus robur were exposed to drying conditions both beforeand after a period of moist storage. Viability loss occurredat higher moisture contents in stored seed than in newly harvestedseeds. Measurements were made at intervals during desiccation.In both stored and unstored seeds viability loss was precededby an increase in the rate of ethane evolution, a commonly usedindicator of lipid peroxidation, and by an increase in electrolyteleakage indicative of membrane damage. Jasmonic acid (JA), itsmethyl ester (MeJA) and ABA were quantified in the same extractsfrom both cotyledonary and axis tissues. The concentration ofall three hormones was higher in the axis than in the cotyledonsof untreated seeds and were within the range of concentrationsquantified elsewhere in seed tissues from other species. Theconcentration of JA, MeJA and ABA progressively increased duringdrying in both cotyledons and axes of whole seeds and in excisedaxes prior to viability loss and then subsequently declined.The concentration of these hormones increased earlier duringdrying in stored seeds in line with their enhanced desiccationsensitivity. Exogenous JA, MeJA and ABA were shown to inhibit germination.However, none of these substances promoted ethylene evolution,which also inhibits germination of Q. robur seeds, or inducedsenescence-like deterioration. The results presented are discussed in relation to the natureof desiccation sensitivity and viability loss in Q. robur seeds. Key words: Quercus robur, seed, desiccation, jasmonates, abscisic acid  相似文献   

15.
Peroxidative modification of phospholipids in myocardial membranes   总被引:2,自引:0,他引:2  
Rat heart myocardial membranes exposed to the free radical generating system, Fe2+/ascorbate, undergo lipid peroxidation as evidenced by the accumulation of thiobarbituric acid-reactive substances, loss of polyunsaturated fatty acids from phospholipids, and formation of conjugated dienes and fluorescent substances. In addition, the treated membranes exhibit a dramatic decrease in extractable phospholipids. This decrease is even more pronounced in individual phospholipid classes isolated by high-performance liquid chromatography. The decrease in lipid phosphorus under oxidant stress is accompanied by an increase in the phosphorus content of the aqueous phase after Folch extraction and by an even greater increase of phosphorus in the protein residue. In addition, increased amounts of saturated and monounsaturated fatty acyl groups are found in the protein residue of Fe2+/ascorbate-treated membranes. Extraction of the oxidant-treated membranes with acidic solvents does not enhance the recovery of phospholipids and neither does treatment with detergents, trypsin, and chymotrypsin prior to lipid extraction. However, treatment with the bacterial protease, Pronase, markedly enhances the recovery of phospholipids from the peroxidized membranes. These results indicate that membrane phospholipids undergoing free radical-induced peroxidation may form lipid-protein adducts, which renders them inextractable with lipid solvents.  相似文献   

16.
The lipid fluidity of microsomal membranes from the petals of cut carnation flowers decreases as the flowers senesce. A comparable change in fluidity was induced by in vitro aging of microsomal membranes from young flowers under conditions in which membranous lipoxygenase-like activity was active. There was no change in fluidity when the membranes were aged in the presence of inhibitors of lipoxygenase or were heat-denatured prior to aging. Membranes from naturally senesced flowers and membranes that had been aged in vitro both sustained an increase in saturated:unsaturated fatty acid ratio that accounted for the decrease in lipid fluidity, and in both instances there was evidence for depletion of the unsaturated fatty acids, linoleic acid, and linolenic acid, which are substrates for lipoxygenase. Loss of lipid phosphate reflecting breakdown of membrane phospholipids preceded the depletion of unsaturated fatty acids attributable to the lipoxygenase-like activity. The data have been interpreted as indicating that fatty acid substrates for membrane-associated lipoxygenase-like activity are made available by the initiation of phospholipid degradation, and that the utilization of these substrates results in a selective depletion of unsaturated fatty acids from the membrane and an ensuing decrease in bulk lipid fluidity.  相似文献   

17.
An accelerated degradation of phospholipid is the likely basis of irreversible cell injury in ischemia, and the membranes of the endoplasmic reticulum of the liver are a convenient system with which to study the effect of such a disturbance on the structure and function of cellular membranes. In the present report, electron spin resonance spectroscopy has been used to evaluate changes in the molecular ordering of microsomal membrane phospholipids in the attempt to relate the loss of lipid to alterations in membrane structure. The order parameter, S, was calculated from spectra reflecting the anisotropic motion of 12-doxyl stearic acid incorporated into normal and 3-h ischemic microsomal membranes. Over the temperature range 4-40 degrees C, the molecular order (S) of ischemic membranes was increased by 8-10%. This increase was reproduced in the ordering of the phospholipids in liposomes prepared from total lipid extracts of the same membranes. In contrast, after removal of the neutral lipids, liposomes prepared from phospholipids of ischemic and control membranes had the same molecular order. There were no differences in the phospholipid species of control and ischemic membranes or in the fatty acid composition of the phospholipids. In the neutral lipid fraction of ischemic membranes, however, triglycerides and cholesterol were increased compared to control preparations. There were no free fatty acids. The total cholesterol content of the liver was unchanged after 3 h of ischemia. The cholesterol-to-phospholipid ratio of ischemic membranes, however, was increased by 22% from 0.258 to 0.315 as a consequence of the loss of phospholipid. Addition of cholesterol to the control total lipid extracts to give a cholesterol-to-phospholipid ratio the same as in ischemic membranes resulted in liposomes with order parameters similar to those of liposomes prepared from ischemic total lipids. It is concluded that the degradation of the phospholipids of the microsomal membrane results in a relative increase in the cholesterol-to-phospholipid ratio. This is accompanied, in turn, by an increased molecular order of the residual membrane phospholipids.  相似文献   

18.
This is the first report of the effect of prostaglandins on the biochemical pathways for fatty acid synthesis. PGE2 and PGF inhibited fatty acid elongation in a lung microsomal fraction. Neither prostaglandin affected the de novo, or soluble, system for fatty acid synthesis (i.e. acetyl CoA carboxylase or fatty acid synthetase). The results also suggest that the initial inhibition of fatty acid synthesis leads to a decrease in free fatty acids available for esterification into phospholipids. The site and possible mechanisms of inhibition are discussed.  相似文献   

19.
The effect of benzyl viologen (a stimulator of free radical production in cells) on lipid composition, fluidity and enzymes involved in both polyunsaturated fatty acid biosynthesis and cholesterol metabolism was studied in liver microsomal membrane of adult rats. In viologen-treated animals, a significant decrease in the levels of free cholesterol and cholesteryl esters, accompanied to a decrease at the free cholesterol/phospholipid ratio, were observed. The levels of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and acyl-coenzyme A : cholesterol acyltransferase (ACAT) were also lower in viologen-treated rats than in controls. Linoleic and arachidonic acids were both severely lower while docosatetraenoic, docosapentaenoic and docosahexaenoic acids were significantly higher as compared with controls. Furthermore, a decrease in monounsaturated/saturated ratio was found. In addition, the treatment evoked a depression in the fatty acid desaturation complex, with a diminish of 9, 9, and 5 desaturase activities in microsomal membrane.It was concluded that changes in phospholipid microsomal fatty acid and cholesterol content could be directly responsible for changes in membrane fluidity and function, and that extensive yield of docosahexaenoic acid may serve to maintain the physical characteristics of particular domains against oxidative stress caused by benzyl viologen treatment.  相似文献   

20.
Homogenates of the placental tissue of near term sheep were separated by differential centrifugation into mitochondrial, microsomal and cytosolic fractions. The relative proportions of the major neutral lipids and phospholipids, together with their fatty acid compositions, were determined in the homogenates and in each subcellular fraction. The cytosolic fraction contained the highest proportion of cholesteryl esters (CEs) and these possessed a fatty acid composition markedly different from the total CEs extracted from the homogenate. Both the mitochondrial and microsomal fractions contained significant proportions of solvent front phospholipid (SFP) and whereas the mitochondrial SFP displayed the relatively unsaturated fatty acid composition characteristic of diphosphatidylglycerol (cardiolipin), the fatty acids of the microsomal SFP were distinctly more saturated. These results are compared with those obtained from other mammalian tissues, both ruminant and non-ruminant, and discussed in terms of the function of the components of the subcellular fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号