首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The PH domain-containing proteins Slm1 and Slm2 were previously identified as effectors of the phosphatidylinositol-4,5-bisphosphate (PI4,5P(2)) and TORC2 signaling pathways. Here, we demonstrate that Slm1 and Slm2 are also targets of sphingolipid signaling during the heat shock response. We show that upon depletion of cellular sphingolipid levels, Slm1 function becomes essential for survival under heat stress. We further demonstrate that Slm proteins are regulated by a phosphorylation/dephosphorylation cycle involving the sphingolipid-activated protein kinases Pkh1 and Pkh2 and the calcium/calmodulin-dependent protein phosphatase calcineurin. By using a combination of mass spectrometry and mutational analysis, we identified serine residue 659 in Slm1 as a site of phosphorylation. Characterization of Slm1 mutants that mimic dephosphorylated and phosphorylated states demonstrated that phosphorylation at serine 659 is vital for survival under heat stress and promotes the proper polarization of the actin cytoskeleton. Finally, we present evidence that Slm proteins are also required for the trafficking of the raft-associated arginine permease Can1 to the plasma membrane, a process that requires sphingolipid synthesis and actin polymerization. Together with previous work, our findings suggest that Slm proteins are subject to regulation by multiple signals, including PI4,5P(2), TORC2, and sphingolipids, and may thus integrate inputs from different signaling pathways to temporally and spatially control actin polarization.  相似文献   

2.
The PH domain-containing proteins Slm1 and Slm2 were originally identified as substrates of the rapamycin-insensitive TOR complex 2 (TORC2) and as mediators of signaling by the lipid second messenger phosphatidyl-inositol-4,5-bisphosphate (PI4,5P2) in budding yeast S. cerevisiae. More recently, these proteins have been identified as critical effectors that facilitate phosphorylation and activation of the AGC kinases Ypk1 and Ypk2 by TORC2.1 Here, we review the molecular basis for this regulation as well as place it within the context of recent findings that have revealed Slm1/2 and TORC2-dependent phosphorylation of Ypk1 is coupled to the biosynthesis of complex sphingolipids and to their levels within the plasma membrane (PM) as well as other forms of PM stress. Together, these studies reveal the existence of an intricate homeostatic feedback mechanism, whereby the activity of these signaling components is linked to the biosynthesis of PM lipids according to cellular need.  相似文献   

3.
The PH domain-containing proteins Slm1 and Slm2 were originally identified as substrates of the rapamycin-insensitive TOR complex 2 (TORC2) and as mediators of signaling by the lipid second messenger phosphatidyl-inositol-4,5-bisphosphate (PI4,5P2) in budding yeast S. cerevisiae. More recently, these proteins have been identified as critical effectors that facilitate phosphorylation and activation of the AGC kinases Ypk1 and Ypk2 by TORC2.1 Here, we review the molecular basis for this regulation as well as place it within the context of recent findings that have revealed Slm1/2 and TORC2-dependent phosphorylation of Ypk1 is coupled to the biosynthesis of complex sphingolipids and to their levels within the plasma membrane (PM) as well as other forms of PM stress. Together, these studies reveal the existence of an intricate homeostatic feedback mechanism, whereby the activity of these signaling components is linked to the biosynthesis of PM lipids according to cellular need.  相似文献   

4.
The Stt4 phosphatidylinositol 4-kinase has been shown to generate a pool of phosphatidylinositol 4-phosphate (PI4P) at the plasma membrane, critical for actin cytoskeleton organization and cell viability. To further understand the essential role of Stt4-mediated PI4P production, we performed a genetic screen using the stt4(ts) mutation to identify candidate regulators and effectors of PI4P. From this analysis, we identified several genes that have been previously implicated in lipid metabolism. In particular, we observed synthetic lethality when both sphingolipid and PI4P synthesis were modestly diminished. Consistent with these data, we show that the previously characterized phosphoinositide effectors, Slm1 and Slm2, which regulate actin organization, are also necessary for normal sphingolipid metabolism, at least in part through regulation of the calcium/calmodulin-dependent phosphatase calcineurin, which binds directly to both proteins. Additionally, we identify Isc1, an inositol phosphosphingolipid phospholipase C, as an additional target of Slm1 and Slm2 negative regulation. Together, our data suggest that Slm1 and Slm2 define a molecular link between phosphoinositide and sphingolipid signaling and thereby regulate actin cytoskeleton organization.  相似文献   

5.
To further understand the roles played by the essential phosphoinositide PI4,5P(2), we have used a synthetic lethal analysis, which systematically combined the mss4(ts) mutation, partially defective in PI4P 5-kinase activity, with each of approximately 4700 deletion mutations. This genomic screening technique uncovered numerous new candidate effectors and regulators of PI4,5P(2) in yeast. In particular, we identified Slm1 (Yil105c), a previously uncharacterized PI4,5P(2) binding protein. Like Mss4, Slm1 and its homolog Slm2 (Ynl047c) were required for actin cytoskeleton polarization and viability. Co-immunoprecipitation experiments revealed that Slm1 interacts with a component of TORC2, a Tor2 kinase-containing complex, which also regulates the actin cytoskeleton. Consistent with these findings, phosphorylation of Slm1 and Slm2 was dependent on TORC2 protein kinase activity, both in vivo and in vitro, and Slm1 localization required both PI4,5P(2) and functional TORC2. Together, these data suggest that Slm1 and Slm2 function downstream of PI4,5P(2) and the TORC2 kinase pathway to control actin cytoskeleton organization.  相似文献   

6.
The WD-repeat protein factor associated with nSMase activity (FAN) is a member of the family of TNF receptor adaptor proteins that are coupled to specific signaling cascades. However, the precise functional involvement of FAN in specific cellular TNF responses remain unclear. Here, we report the involvement of FAN in TNF-induced actin reorganization and filopodia formation mediated by activation of Cdc42. The pleckstrin-homology (PH) domain of FAN specifically binds to phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P), which targets FAN to the plasma membrane. Site-specific mutagenesis revealed that the ability of FAN to mediate filopodia formation was blunted either by the destruction of the PtdIns(4,5)P binding motif, or by the disruption of intramolecular interactions between the PH domain and the adjacent beige and Chediak-Higashi (BEACH) domain. Furthermore, FAN was shown to interact with the actin cytoskeleton in TNF-stimulated cells via direct filamentous actin (F-actin) binding. The results of this study suggest that PH-mediated plasma membrane targeting of FAN is critically involved in TNF-induced Cdc42 activation and cytoskeleton reorganization.  相似文献   

7.
A major regulator of endocytosis and cortical F-actin is thought to be phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] present in plasma membranes. Here we report that in 3T3-L1 adipocytes, clathrin-coated membrane retrieval and dense concentrations of polymerized actin occur in restricted zones of high endocytic activity. Ultrafast-acquisition and superresolution deconvolution microscopy of cultured adipocytes expressing an enhanced green fluorescent protein- or enhanced cyan fluorescent protein (ECFP)-tagged phospholipase Cdelta1 (PLCdelta1) pleckstrin homology (PH) domain reveals that these zones spatially coincide with large-scale PtdIns(4,5)P2-rich plasma membrane patches (PRMPs). PRMPs exhibit lateral dimensions exceeding several micrometers, are relatively stationary, and display extensive local membrane folding that concentrates PtdIns(4,5)P2 in three-dimensional space. In addition, a higher concentration of PtdIns(4,5)P2 in the membranes of PRMPs than in other regions of the plasma membrane can be detected by quantitative fluorescence microscopy. Vesicular structures containing both clathrin heavy chains and PtdIns(4,5)P2 are revealed immediately beneath PRMPs, as is dense F actin. Blockade of PtdIns(4,5)P2 function in PRMPs by high expression of the ECFP-tagged PLCdelta1 PH domain inhibits transferrin endocytosis and reduces the abundance of cortical F-actin. Membrane ruffles induced by the expression of unconventional myosin 1c were also found to localize at PRMPs. These results are consistent with the hypothesis that PRMPs organize active PtdIns(4,5)P2 signaling zones in the adipocyte plasma membrane that in turn control regulators of endocytosis, actin dynamics, and membrane ruffling.  相似文献   

8.
Ho HL  Lee HY  Liao HC  Chen MY 《Eukaryotic cell》2008,7(8):1328-1343
Target-of-rapamycin proteins (TORs) are Ser/Thr kinases serving a central role in cell growth control. TORs function in two conserved multiprotein complexes, TOR complex 1 (TORC1) and TORC2; the mechanisms underlying their actions and regulation are not fully elucidated. Saccharomyces TORC2, containing Tor2p, Avo1p, Avo2p, Avo3p/Tsc11p, Bit61p, and Lst8p, regulates cell integrity and actin organization. Two classes of avo3 temperature-sensitive (avo3(ts)) mutants that we previously identified display cell integrity and actin defects, yet one is suppressed by AVO1 while the other is suppressed by AVO2 or SLM1, defining two TORC2 downstream signaling mechanisms, one mediated by Avo1p and the other by Avo2p/Slm1p. Employing these mutants, we explored Avo3p functions in TORC2 structure and signaling. By observing binary protein interactions using coimmunoprecipitation, we discovered that the composition of TORC2 and its recruitment of the downstream effectors Slm1p and Slm2p were differentially affected in different avo3(ts) mutants. These molecular defects can be corrected only by expressing AVO3, not by expressing suppressors, highlighting the role of Avo3p as a structural and signaling scaffold for TORC2. Phenotypic modifications of avo3(ts) mutants by deletion of individual Rho1p-GTPase-activating proteins indicate that two TORC2 downstream signaling branches converge on Rho1p activation. Our results also suggest that Avo2p/Slm1p-mediated signaling, but not Avo1p-mediated signaling, links to Rho1p activation specifically through the Rho1p-guanine nucleotide exchange factor Tus1p.  相似文献   

9.
The plasma membrane delimits the cell, and its integrity is essential for cell survival. Lipids and proteins form domains of distinct composition within the plasma membrane. How changes in plasma membrane composition are perceived, and how the abundance of lipids in the plasma membrane is regulated to balance changing needs remains largely unknown. Here, we show that the Slm1/2 paralogues and the target of rapamycin kinase complex 2 (TORC2) play a central role in this regulation. Membrane stress, induced by either inhibition of sphingolipid metabolism or by mechanically stretching the plasma membrane, redistributes Slm proteins between distinct plasma membrane domains. This increases Slm protein association with and activation of TORC2, which is restricted to the domain known as the membrane compartment containing TORC2 (MCT; ref.?). As TORC2 regulates sphingolipid metabolism, our discoveries reveal a homeostasis mechanism in which TORC2 responds to plasma membrane stress to mediate compensatory changes in cellular lipid synthesis and hence modulates the composition of the plasma membrane. The components of this pathway and their involvement in signalling after membrane stretch are evolutionarily conserved.  相似文献   

10.
Phosphoinositides (PIs) are signaling molecules that regulate cellular events including vesicle targeting and interactions between membrane and cytoskeleton. Phosphatidylinositol (PtdIns)(4,5)P(2) is one of the best characterized PIs; studies in which PtdIns(4,5)P(2) localization or concentration is altered lead to defects in the actin cytoskeleton and exocytosis. PtdIns(4,5)P(2) and its derivative Ins(1,4,5)P(3) accumulate in salt, cold, and osmotically stressed plants. PtdIns(4,5)P(2) signaling is terminated through the action of inositol polyphosphate phosphatases and PI phosphatases including supressor of actin mutation (SAC) domain phosphatases. In some cases, these phosphatases also act on Ins(1,4,5)P(3). We have characterized the Arabidopsis (Arabidopsis thaliana) sac9 mutants. The SAC9 protein is different from other SAC domain proteins in several ways including the presence of a WW protein interaction domain within the SAC domain. The rice (Oryza sativa) and Arabidopsis SAC9 protein sequences are similar, but no apparent homologs are found in nonplant genomes. High-performance liquid chromatography studies show that unstressed sac9 mutants accumulate elevated levels of PtdIns(4,5)P(2) and Ins(1,4,5)P(3) as compared to wild-type plants. The sac9 mutants have characteristics of a constitutive stress response, including dwarfism, closed stomata, and anthocyanin accumulation, and they overexpress stress-induced genes and overaccumulate reactive-oxygen species. These results suggest that the SAC9 phosphatase is involved in modulating phosphoinsitide signals during the stress response.  相似文献   

11.
Pleckstrin homology (PH) domains are protein modules that bind with varying degrees of affinity and specificity membrane phosphoinositides. Previously we have shown that although the PH domains of the Ras GTPase-activating proteins GAP1m and GAP1IP4BP are 63% identical at the amino acid level they possess distinct phosphoinositide-binding profiles. The GAP1m PH domain binds phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), whereas the domain from GAP1IP4BP binds PtdIns(3,4,5)P3 and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) equally well. These phosphoinositide specificities are translated into distinct subcellular localizations. GAP1m is cytosolic and undergoes a rapid PtdIns(3,4,5)P3-dependent association with the plasma membrane following growth factor stimulation. In contrast, GAP1IP4BP is constitutively associated, in a PtdIns(4,5)P2-dependent manner, with the plasma membrane (Cozier, G. E., Lockyer, P. J., Reynolds, J. S., Kupzig, S., Bottomley, J. R., Millard, T., Banting, G., and Cullen, P. J. (2000) J. Biol. Chem. 275, 28261-28268). In the present study, we have used molecular modeling to identify residues in the GAP1IP4BP PH domain predicted to be required for high affinity binding to PtdIns(4,5)P2. This has allowed the isolation of a mutant, GAP1IP4BP-(K591T), which while retaining high affinity for PtdIns(3,4,5)P3 has a 6-fold reduction in its affinity for PtdIns(4,5)P2. Importantly, GAP1IP4BP-(K591T) is predominantly localized to the cytosol and undergoes a PtdIns(3,4,5)P3-dependent association with the plasma membrane following growth factor stimulation. We have therefore engineered the phosphoinositide-binding profile of the GAP1IP4BP PH domain, thereby emphasizing that subtle changes in PH domain structure can have a pronounced effect on phosphoinositide binding and the subcellular localization of GAP1IP4BP.  相似文献   

12.
Phosphatidylinositol-4,5-bisphosphate, PtdIns(4,5)P(2), is an essential signalling lipid that regulates key processes such as endocytosis, exocytosis, actin cytoskeletal organization and calcium signalling. Maintaining proper levels of PtdIns(4,5)P(2) at the plasma membrane (PM) is crucial for cell survival and growth. We show that the conserved PtdIns(4)P 5-kinase, Mss4, forms dynamic, oligomeric structures at the PM that we term PIK patches. The dynamic assembly and disassembly of Mss4 PIK patches may provide a mechanism to precisely modulate Mss4 kinase activity, as needed, for localized regulation of PtdIns(4,5)P(2) synthesis. Furthermore, we identify a tandem PH domain-containing protein, Opy1, as a novel Mss4-interacting protein that partially colocalizes with PIK patches. Based upon genetic, cell biological, and biochemical data, we propose that Opy1 functions as a coincidence detector of the Mss4 PtdIns(4)P 5-kinase and PtdIns(4,5)P(2) and serves as a negative regulator of PtdIns(4,5)P(2) synthesis at the PM. Our results also suggest that additional conserved tandem PH domain-containing proteins may play important roles in regulating phosphoinositide signalling.  相似文献   

13.
The Ca2+/calmodulin-dependent phosphatase calcineurin promotes yeast survival during environmental stress. We identified Slm1 and Slm2 as calcineurin substrates required for sphingolipid-dependent processes. Slm1 and Slm2 bind to calcineurin via docking sites that are required for their dephosphorylation by calcineurin and are related to the PXIXIT motif identified in NFAT. In vivo, calcineurin mediates prolonged dephosphorylation of Slm1 and Slm2 during heat stress, and this response can be mimicked by exogenous addition of the sphingoid base phytosphingosine. Slm proteins also promote the growth of yeast cells in the presence of myriocin, an inhibitor of sphingolipid biosynthesis, and regulation of Slm proteins by calcineurin is required for their full activity under these conditions. During heat stress, sphingolipids signal turnover of the uracil permease, Fur4. In cells lacking Slm protein activity, stress-induced endocytosis of Fur4 is blocked, and Fur4 accumulates at the cell surface in a ubiquitinated form. Furthermore, cells expressing a version of Slm2 that cannot be dephosphorylated by calcineurin display an increased rate of Fur4 turnover during heat stress. Thus, calcineurin may modulate sphingolipid-dependent events through regulation of Slm1 and Slm2. These findings, in combination with previous work identifying Slm1 and Slm2 as targets of Mss4/phosphatidylinositol 4,5-bisphosphate and TORC2 signaling, suggest that Slm proteins integrate information from a variety of signaling pathways to coordinate the cellular response to heat stress.  相似文献   

14.
The group I family of pleckstrin homology (PH) domains are characterized by their inherent ability to specifically bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) and its corresponding inositol head-group inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P(4)). In vivo this interaction results in the regulated plasma membrane recruitment of cytosolic group I PH domain-containing proteins following agonist-stimulated PtdIns(3,4,5)P(3) production. Among group I PH domain-containing proteins, the Ras GTPase-activating protein GAP1(IP4BP) is unique in being constitutively associated with the plasma membrane. Here we show that, although the GAP1(IP4BP) PH domain interacts with PtdIns(3,4, 5)P(3), it also binds, with a comparable affinity, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) (K(d) values of 0.5 +/- 0.2 and 0.8 +/- 0.5 microm, respectively). Intriguingly, whereas this binding site overlaps with that for Ins(1,3,4,5)P(4), consistent with the constitutive plasma membrane association of GAP1(IP4BP) resulting from its PH domain-binding PtdIns(4,5)P(2), we show that in vivo depletion of PtdIns(4,5)P(2), but not PtdIns(3,4,5)P(3), results in dissociation of GAP1(IP4BP) from this membrane. Thus, the Ins(1,3,4,5)P(4)-binding PH domain from GAP1(IP4BP) defines a novel class of group I PH domains that constitutively targets the protein to the plasma membrane and may allow GAP1(IP4BP) to be regulated in vivo by Ins(1,3,4,5)P(4) rather than PtdIns(3,4,5)P(3).  相似文献   

15.
The pleckstrin homology (PH) domains of phospholipase C (PLC)-delta1 and a related catalytically inactive protein, p130, both bind inositol phosphates and inositol lipids. The binding to phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] by PLC-delta1 is proposed to be the critical interaction required for membrane localization to where the substrate resides; it is also required for the Ca(2+)-dependent activation of PLC-delta1 observed in the permeabilized cells. In the proximity of the PH domain, both PLC-delta1 and p130 possess the EF-hand domain, containing classical motifs implicated in calcium binding. Therefore, in the present study we examined whether the binding of the PH domain to PtdIns(4,5)P2 is regulated by changes in free Ca2+ concentration within the physiological range. A Ca2+ dependent increase in the binding to PtdIns(4,5)P2 was observed with a full-length PLC-delta1, while the isolated PH domain did not show any Ca2+ dependence. However, the connection of the EF-hand motifs to the PH domain restored the Ca2+ dependent increase in binding, even in the absence of the C2 domain. The p130 protein showed similar properties to PLC-delta1, and the EF-hand motifs were again required for the PH domain to exhibit a Ca2+ dependent increase in the binding to PtdIns(4,5)P2. The isolated PH domains from several other proteins which have been demonstrated to bind PtdIns(4,5)P2 showed no Ca2+ dependent enhancement of binding. However, when present within a chimera also containing PLC-delta1 EF-hand motifs, the Ca2+ dependent binding was again observed. These results suggest that the binding of Ca2+ to the EF-hand motifs can modulate binding to PtdIns(4,5)P2 mediated by the PH domain.  相似文献   

16.
Elucidation of the role of PtdIns(4,5)P(2) in epithelial function has been hampered by the inability to selectively manipulate the cellular content of this phosphoinositide. Here we report that SigD, a phosphatase derived from Salmonella, can effectively hydrolyze PtdIns(4,5)P(2), generating PtdIns(5)P. When expressed by microinjecting cDNA into epithelial cells forming confluent monolayers, wild-type SigD induced striking morphological and functional changes that were not mimicked by a phosphatase-deficient SigD mutant (C462S). Depletion of PtdIns(4,5)P(2) in intact SigD-injected cells was verified by detachment from the membrane of the pleckstrin homology domain of phospholipase Cdelta, used as a probe for the phosphoinositide by conjugation to green fluorescent protein. Single-cell measurements of cytosolic pH indicated that the Na(+)/H(+) exchange activity of epithelia was markedly inhibited by depletion of PtdIns(4,5)P(2). Similarly, anion permeability, measured using two different halide-sensitive probes, was depressed in cells expressing SigD. Depletion of PtdIns(4,5)P(2) was associated with marked alterations in the actin cytoskeleton and its association with the plasma membrane. The junctional complexes surrounding the injected cells gradually opened and the PtdIns(4,5)P(2)-depleted cells eventually detached from the monolayer, which underwent rapid restitution. Similar observations were made in intestinal and renal epithelial cultures. In addition to its effects on phosphoinositides, SigD has been shown to convert inositol 1,3,4,5,6-pentakisphosphate (IP(5)) into inositol 1,4,5,6-tetrakisphosphate (IP(4)), and the latter has been postulated to mediate the diarrhea caused by Salmonella. However, the effects of SigD on epithelial cells were not mimicked by microinjection of IP(4). In contrast, the cytoskeletal and ion transport effects were replicated by hydrolyzing PtdIns(4,5)P(2) with a membrane-targeted 5-phosphatase or by occluding the inositide using high-avidity tandem PH domain constructs. We therefore suggest that opening of the tight junctions and inhibition of Na(+)/H(+) exchange caused by PtdIns(4,5)P(2) hydrolysis combine to account, at least in part, for the fluid loss observed during Salmonella-induced diarrhea.  相似文献   

17.
Sprouty (Spry) proteins have been revealed as inhibitors of the Ras/mitogen-activated protein kinase (MAPK) cascade, a pathway crucial for developmental processes initiated by activation of various receptor tyrosine kinases. In COS-1 and Swiss 3T3 cells, all Spry isoforms translocate to the plasma membrane, notably ruffles, following activation. Here we show that microinjection of active Rac induced the translocation of Spry isoforms, indicating that the target of the Spry translocation domain (SpryTD) is downstream of active Rac. Targeted disruption of actin polymerization revealed that the SpryTD target appeared upstream of cytoskeletal rearrangements. Accumulated evidence indicated that phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] is the likely SpryTD target. Human Spry2TD (hSpry2TD) binds to PtdIns(4,5)P(2) in vesicle-binding assays. hSpry2TD colocalizes with the pleckstrin homology domain of phospholipase Cdelta, which binds PtdIns(4,5)P(2). The plasma membrane localization of hSpry2TD was abolished in ionomycin-treated MDCK cells or when PtdIns(4,5)P(2) was specifically dephosphorylated by overexpression of an engineered, green fluorescent protein-tagged inositol 5-phosphatase. Similarly, Spred, a novel Ras/MAPK inhibitor recently found to contain the conserved cysteine-rich SpryTD, also translocated to peripheral membranes and bound to PtdIns(4,5)P(2). Alignment of the Spry and Spred proteins led us to identify a translocation-defective point mutant, hSpry2 D252. Targeting of hSpry2 to PtdIns(4,5)P(2) was shown to be essential for the down-regulation of Ras/MAPK signaling.  相似文献   

18.
SHIP-2 is a phosphoinositidylinositol 3,4,5 trisphosphate (PtdIns[3,4,5]P3) 5-phosphatase that contains an NH2-terminal SH2 domain, a central 5-phosphatase domain, and a COOH-terminal proline-rich domain. SHIP-2 negatively regulates insulin signaling. In unstimulated cells, SHIP-2 localized in a perinuclear cytosolic distribution and at the leading edge of the cell. Endogenous and recombinant SHIP-2 localized to membrane ruffles, which were mediated by the COOH-terminal proline-rich domain. To identify proteins that bind to the SHIP-2 proline-rich domain, yeast two-hybrid screening was performed, which isolated actin-binding protein filamin C. In addition, both filamin A and B specifically interacted with SHIP-2 in this assay. SHIP-2 coimmunoprecipitated with filamin from COS-7 cells, and association between these species did not change after epidermal growth factor stimulation. SHIP-2 colocalized with filamin at Z-lines and the sarcolemma in striated muscle sections and at membrane ruffles in COS-7 cells, although the membrane ruffling response was reduced in cells overexpressing SHIP-2. SHIP-2 membrane ruffle localization was dependent on filamin binding, as SHIP-2 was expressed exclusively in the cytosol of filamin-deficient cells. Recombinant SHIP-2 regulated PtdIns(3,4,5)P3 levels and submembraneous actin at membrane ruffles after growth factor stimulation, dependent on SHIP-2 catalytic activity. Collectively these studies demonstrate that filamin-dependent SHIP-2 localization critically regulates phosphatidylinositol 3 kinase signaling to the actin cytoskeleton.  相似文献   

19.
Eisosomes are furrows in the yeast plasma membrane that form a membrane domain with distinct lipid and protein composition. Recent studies highlighted the importance of this domain for the regulation of proton‐nutrient symporters. The amino acids and other nutrients, which these transporters deliver to the cytoplasm not only feed into metabolic pathways but also activate the metabolic regulator TORC1. Eisosomes have also been shown to harbor the membrane stress sensors Slm1 and Slm2. Membrane tension caused by hypoosmotic shock results in the redistribution of Slm1/2 from eisosomes to TORC2 which in turn regulates lipid synthesis. Therefore, eisosomes function upstream of both TORC1 and TORC2 regulation.  相似文献   

20.
The Arf6-specific exchange factor EFA6 coordinates membrane trafficking with actin cytoskeleton remodeling. It localizes to the plasma membrane where it catalyzes Arf6 activation and induces the formation of actin-based membrane ruffles. We have shown previously that the pleckstrin homology (PH) domain of EFA6 was responsible for its membrane localization. In this study we looked for the partners of the PH domain at the plasma membrane. Mutations of the conserved basic residues suspected to be involved in the binding to phosphoinositides redistribute EFA6-PH to the cytosol. In addition, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) breakdown also leads to the solubilization of EFA6-PH. Direct binding measured by surface plasmon resonance gives an apparent affinity of approximately 0.5 microm EFA6-PH for PI(4,5)P2. Moreover, we observed in vitro that the catalytic activity of EFA6 is strongly increased by PI(4,5)P2. These results indicate that the plasma membrane localization of EFA6-PH is based on its interaction with PI(4,5)P2, and this interaction is necessary for an optimal catalytic activity of EFA6. Furthermore, we demonstrated by fluorescence recovery after photobleaching and Triton X-100 detergent solubility experiments that in addition to the phophoinositides, EFA6-PH is linked to the actin cytoskeleton. We observed both in vivo and in vitro that EFA6-PH interacts directly with F-actin. Finally, we demonstrated that EFA6 could bind simultaneously filamentous actin and phospholipids vesicles. Our results explain how the exchange factor EFA6 via its PH domain could coordinate at the plasma membrane actin cytoskeleton organization with membrane trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号