首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Vitis vinifera L. cv. ‘Manicure Finger’ is one of the major table grape varieties in China. To provide a strong foundation for genetic transformation with potential for crop improvement, we undertook plant regeneration via somatic embryogenesis. Anthers and gynoecia were harvested from immature flowers and used as explants to induce embryogenic calli. Explants cultured in MS1 medium (based on Murashige and Skoog basal salts), supplemented with 4.5-μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.4-μM 6-benzylaminopurine (6-BA) showed the highest rates of embryogenic callus induction (3.7%?±?1.3% for anthers and 4.8%?±?2.5% for gynoecia). After several months, somatic embryos were produced from embryogenic calli cultured in plant growth regulator-free MS2 medium (with reduced sucrose). Somatic embryos (SE) at the cotyledonary stage were isolated and cultured on three different media (MS2, MS3, or B) for conversion into plantlets, the efficiency of which ranged from 63.9%?±?4.8% to 83.9%?±?8.4%. After 1 mo of in vitro culture, 80% of plants with at least six leaves were successfully transplanted into soil. SE was repeatedly induced from previously induced somatic embryos for up to 1.5 yr. Using embryogenic calli as starting material, suspension cultures containing embryogenic cell aggregates were also established in liquid MS medium supplemented with 4.5-μM 2,4-D. The embryogenic cell aggregates continued to proliferate without differentiating for successive subculture cycles. After transfer to 2,4-D-free liquid medium for 4 wk, an average of 63.7%?±?9.0% mature SEs were produced per 20 mL of liquid medium. More than 40% of somatic embryos at cotyledonary stage, derived from the suspension cultures, successfully germinated into plants using solid medium.  相似文献   

2.
Somatic embryogenesis (SE) has been achieved from hypocotyl-derived callus culture in Pterocarpus marsupium. Ninety percent of hypocotyl explants (excised from 12-day-old in vitro germinated axenic seedlings) produced callus on Murashige and Skoog medium supplemented with 5 μM 2,4-dichlorophenoxyacetic acid and 1 μM a 6-benzyladenine (BA). Induction of SE occurred after transfer of callus clumps (200 ± 20 mg fresh mass) to MS medium supplemented with BA at 2.0 μM, where a maximum of 23.0 ± 0.88 globular stage embryos per callus clump were observed after 4 weeks of culture. Subculturing of these embryos on MS medium supplemented with 0.5 μM BA, 0.1 μM α-naphthalene acetic acid and 10 μM abscisic acid significantly enhanced the maturation of somatic embryos to early cotyledonary stage, where 21.4 ± 0.32 embryos per callus clump were recorded after 4 weeks of culture. Of 30-well developed somatic embryos, 16.6 ± 0.33 germinated and subsequently converted into plantlets on half-strength MS medium supplemented with 1.0 μM BA. The morphologically normal plantlets with well-developed roots were first transferred to 1/4-liquid MS medium for 48 h and then to pots containing autoclaved soilrite and acclimatized in a culture room. Thereafter, they were transferred to a greenhouse, where 60% of them survived.  相似文献   

3.
A simple efficient in vitro plant regeneration system was developed by direct and indirect somatic embryogenesis of Drimia robusta, a medicinal plant extensively used in South African traditional medicine. Different developmental stages of somatic embryos (SEs: globular embryos, partial pear-shaped embryos and club-shaped embryos), club-shaped cotyledon initiation, plumule initiation and plantlets were directly obtained from leaf explants on Murashige and Skoog (MS) medium containing 3.5 % (w/v) sucrose and different plant growth regulators (PGRs). In MS medium containing 3.5 % (w/v) sucrose and supplemented with 10 μM picloram, 1 μM thidiazuron (TDZ) and 20 μM glutamine, a higher number of SEs and plantlets were achieved. These were established onto half-strength MS medium followed by successful acclimatization (100 %) in the greenhouse. Liquid somatic embryo medium (SEML) containing 500 mg of friable embryogenic callus on MS medium supplemented with different concentrations and combinations of PGRs and organic elicitors produced different stages of SEs. Somatic embryo production was enhanced by 0.5 μM picloram, 1 μM TDZ and mebendazole treatment. The highest number of plantlets (9.0 ± 0.70) was obtained in SEML containing 0.5 μM picloram, 1 μM TDZ and 25 mg l?1 haemoglobin. All the cotyledon and plumule embryos germinated on half-strength MS medium, however 90 % of SEs germinated on half-strength MS medium containing 0.5 μM naphthaleneacetic acid. All plantlets were successfully acclimatized in the greenhouse. This first report of D. robusta somatic embryogenesis provides an opportunity to control extinction threats, ensure germplasm conservation and provides a system for analysis of bioactive compounds and bioactivity.  相似文献   

4.
Somatic embryogenesis was achieved from cell suspension cultures of niger (Guizotia abyssinica Cass.). Initially, friable embryogenic calluses were induced from cotyledonary leaves of niger on Murashige and Skoog (MS) agar medium containing 5 μM 2,4-Dichlorophenoxyacetic acid (2,4-D) and 0.5 μM kinetin (KIN). Cell suspension cultures were established by using embryogenic calluses in MS liquid medium containing 5 μM 2,4-D and 0.5 μM KIN. Initiation of somatic embryogenesis and development up to globular stage from embryogenic cell clumps occurred in the liquid medium itself. Thereafter embryogenic cell aggregates were transferred to MS agar medium supplemented with 3 μM KIN for embryo differentiation, whereas maturation of somatic embryos occurred in MS agar medium containing 10 μM abscisic acid.  相似文献   

5.
A method for secondary somatic embryogenesis was developed on embryos derived from embryogenic callus formed on Hepatica nobilis seedlings. Somatic embryogenesis (SE) was induced on seedlings (on the hypocotyl and epicotyl parts) grown on the Murashige and Skoog (1962) medium (MS) supplemented with 1 µM naphthaleneacetic acid (NAA), and/or 0.1 µM 6-benzyladenine (BA) and on medium without plant growth regulators (PGR). The best response of embryogenic callus formation was observed on the medium containing 1 µM NAA alone or with 0.1 µM BA. Individual somatic embryos, formed on embryogenic callus on the medium without PGR (MS0), at heart, torpedo and cotyledonary stage, were transferred to the media where secondary somatic embryo formation and development into plantlets occurred. Although the most efficient repetitive cycles of secondary SE were recorded for all stages of somatic embryos (heart, torpedo, cotyledonary) on the MS0 medium (77.8–87.4 %), secondary somatic embryos were also obtained on all media supplemented with cytokinins. The best rate of somatic embryos germination was achieved on MS media with 0.2 µM NAA and 2 µM BA, and 0.1 µM NAA and 1 µM BA (48.8–52.0 %) when more mature embryos (cotyledonary stage) were used. Plantlets grown from somatic embryos were successfully acclimatized to greenhouse conditions.  相似文献   

6.
Maturation of somatic embryos of Anthurium andraeanum cv. Eidibel from embryogenic callus was evaluated. Following induction of embryogenic calli from nodal segments, tissues were transferred to 125-mL Erlenmeyer flasks containing 25 mL liquid medium, with 0, 4.52, or 9.05 μM 2,4-dichlorophenoxyacetic acid and 0, 0.47, or 2.32 μM kinetin. Callus cultures were maintained in a dark growth room at 25?±?2°C. At 45 d, the mass of embryogenic calli, number of primary and secondary somatic embryos, and percentage browning were evaluated. Nonparametric tests were used to evaluate color, texture, and somatic embryo development. The highest yield of somatic embryos was in the medium with 0.47 μM kinetin. Calli were friable, with a lower yield of secondary somatic embryos, and have minimal browning. Histology revealed polar globular somatic embryos and mature somatic embryos with defined apical and root meristematic zones, axillary buds, and primary leaves. These are important features for converting somatic embryos into plantlets.  相似文献   

7.
A protocol for somatic embryogenesis was developed for Thymus hyemalis, a wild species in the Mediterranean region. First, the effects of explant type, plant growth regulators [kinetin (KIN) and 2,4-dichlorophenoxyacetic acid (2,4-D)], and genotype on callus induction were tested. For callus induction, the node was the best explant; Murashige and Skoog (MS) medium supplemented with 1.8 μM 2,4-D and 0.5 μM KIN was the best medium, and the genotype had a highly significant effect. To induce production of somatic embryos, the effects of KIN, 6-benzylaminopurine (BAP), and naphthalene acetic acid (NAA) were evaluated. After 5 wk of culture in the dark, MS medium supplemented with 4.44 μM BAP, 0.54 μM NAA, and 4.65 μM KIN gave the highest percentage (85%) of embryogenic callus and the highest number of somatic embryos (27.00) per 45 mg of callus. For germination and plant recovery, somatic embryos were transferred to MS medium without plant growth regulators and plantlet conversion from developed somatic embryos was 90%. In vitro plants with adequate growth and sufficient root systems were subsequently transplanted into a mixture of peat and vermiculite (2:1?v/v) under greenhouse conditions. The survival rate of the plantlets under ex vitro conditions was 80%.  相似文献   

8.
Young healthy cotyledon and leaf explants of Rhinacanthus nasutus (L.) Kurz. were incubated on Murashige and Skoog (MS) medium supplemented with 1.0–5.0 mg/l 2, 4-dichlorophenoxyacetic acid (2,4-D) either alone or in combination with 0.3–1.5 mg/l indole-3-butyric acid (IBA). The optimum callus induction (100 %) was observed from cotyledon explants on MS medium supplemented with 4 mg/l 2, 4-D and 0.5 mg/l IBA. The friable, embryogenic callus when subcultured on half strength MS medium supplemented with IBA (3.0–5.0 mg/l) produced several somatic embryos at various stages of development (globular, heart, torpedo) after 45 days of culture. The highest frequency of callus embryogenesis was observed on ½MS medium supplemented with 4.0 mg/l IBA. Moreover, 47 % of incubated callus responded with a mean number of 16.3 somatic embryos per gram callus. For germination, somatic embryos at the torpedo stage were isolated and subcultured on ½MS medium supplemented with 0.5 mg/l each of 6-benzyladenine and indole-3-acetic acid. After 45 days of culture, plantlets developed with mean lengths of 3.8 cm. Somatic embryos at the torpedo stage were collected and suspended in a matrix of MS medium containing sodium alginate (3 % W/V), dropped into 100 mM calcium chloride (CaCl2·2H2O) solution for the production of synthetic seeds. Optimum growth ability of synthetic seed was obtained on MS medium supplemented with 0.2 mg/l gibberellic acid (GA3). Well developed healthy plantlets derived from somatic embryos and synthetic seeds were hardened and successfully transplanted to soil.  相似文献   

9.
Rugosa rose (Rosa rugosa) is cultivated as a garden flower and an important genetic resource for the breeding of roses (R. hybrida). This study describes culture conditions for high frequency plant regeneration from zygotic embryo explants via somatic embryogenesis in rugosa rose. Mature zygotic embryo, cotyledon, and radicle explants formed embryogenic calluses at frequencies of 38, 6.7, and 8.8% when cultured on half-strength Murashige and Skoog medium (½MS) supplemented with 2.26, 9.05, and 9.05 μM 2,4-dichlorophenoxyacetic acid, respectively. Embryogenic calluses produced numerous somatic embryos, which then developed into plantlets on ½MS without growth regulators. Regenerated plantlets were grown to whole plants in a growth chamber.  相似文献   

10.
We developed an efficient and simple system for inducing somatic embryogenesis and regenerating plantlets from mature zygotic embryos of oil palm. Embryogenic calli were induced from mature zygotic embryos of oil palm on modified Murashige and Skoog medium with 2,4-dichlorophenoxyacetic acid or picloram, alone or in combination with activated charcoal. The greatest frequency of embryogenic callus induction (97.5%) was obtained by culturing mature zygotic embryos on callus induction medium with 450 μM picloram and 2.5 g?L?1 activated charcoal. Embryogenic calli proliferated on a medium with a reduced concentration of picloram. Embryogenic calli were then subcultured on a medium supplemented with 12.3 μM 2-isopentenyladenine and 0.54 μM naphthaleneacetic acid, with subcultures at 4-wk intervals. Somatic embryos were regenerated on a medium with Murashige and Skoog macro- and micronutrients at half-strength concentrations supplemented with 20 g?L?1 sucrose, 2.5 g?L?1 activated charcoal, and 2.5 g?L?1 Phytagel. Detailed histological analysis revealed that somatic embryogenesis followed an indirect pathway. Primary calli were observed after 4–6 wk of culture and progressed to embryogenic calli at 12 wk. Embryogenic cells exhibited dense protoplasm, a high nucleoplasmic ratio, and small starch grains. Proembryos, which seemed to have a multicellular origin, formed after 16–20 wk of culture and successive cell divisions. Differentiated somatic embryos had a haustorium, a plumule, and the first and second foliar sheaths. In differentiated embryos, the radicular protrusion was not apparent because it generally does not appear until after the first true leaves emerge.  相似文献   

11.
An efficient in vitro plant regeneration system was established through somatic embryogenesis for Anoectochilus elatus Lindley, an endangered jewel orchid. Direct somatic embryogenesis was achieved from nodal explants (17.4 embryos per explant with 63.4% response) on Mitra medium supplemented with Morel vitamins, thidiazuron (4.54 µM) and ∞-naphthaleneacetic acid (2.69 µM). Simultaneously, a protocol was developed for indirect somatic embryogenesis from internodal explant, produced embryogenic calli and embryos (31.3 embryos with 76.4% response) on same medium amended with 50 mg/L peptone and 5% coconut water. Both types of embryogenic pathways, produced morphologically similar globular embryos in the form of protocorm like bodies and successfully germinated on hormone free Mitra medium supplemented with Morel vitamins. Morpho-histological investigation of the embryo revealed the initiation and developmental features of somatic embryos. In vitro regenerated plantlets were successfully established from heterotrophic to a photoautotrophic stage by reducing the nutrient content in culture media, adjusting temperature and humidity through three step method. During the process, no morphological and physiological abnormalities were observed. Hardened plantlets were successfully acclimatized at poly tunnel chamber with 95% of survival rate. Further, inter simple sequence repeats (ISSRs) molecular markers were used to analyse the genetic homogeneity of regenerated plants. Analysis with this method showed that the homogeneity is comparatively higher in direct somatic embryo regenerated plants (94.22%) as compared to plants elevated from an indirect somatic embryo (93.05%). The present study provides morpho-histological and genetically stable plants for germplasm conservation and further utility of this endangered jewel orchid.  相似文献   

12.
A protocol has been developed for achieving somatic embryogenesis from callus derived from nodal cuttings and production of synthetic seeds in Hemidesmus indicus L. R. Br. a highly traded ethnomedicinal plant. Proembryogenic, friable, light yellowish callus was induced from the basal cut end of the nodal cuttings on Murashige and Skoog (MS) medium supplemented with 3 μM indole-3-butyric acid (IBA). The highest rate of somatic embryogenesis (92 %) was observed when the callus was subcultured on half strength MS medium supplemented with 2 μM IBA. On induction medium somatic embryos were developed up to the torpedo stage. Further elongation and germination of somatic embryos were obtained in MS medium supplemented with 4 μM 6-benzylaminopurine (BA) in combination with 1.5 μM gibberellic acid (GA3). Somatic embryos were collected and suspended in a matrix of MS medium containing sodium alginate (3 % W/V) dropped into 75 mM calcium chloride (CaCl2·2H2O) solution for the production of synthetic seeds and later transferred to MS medium for germination. The synthetic seeds were successfully germinated on medium even after 120 days of storage at 4 °C. The plantlets were eventually transferred to soil with 92 % success.  相似文献   

13.
Somatic embryos were obtained from immature zygotic embryos of Cedrela fissilis Well. (Meliaceae), after a culture period of 12 months, with regular subcultures every 6–8 weeks. Callus was developed on explants in 2 months on Murashige and Skoog (MS) medium containing 2,4 dichlorophenoxyacetic acid (2,4-D) or picloram (PIC). When the calli were transferred to fresh medium, embryogenic tissue appeared on MS + 45 μM 2,4-D, or 22.5 μM 2,4-D + 0.4 μM 6-benzyladenine (BA), or 20.7 μM PIC after 6 months. Sub-culture of embryogenic tissue in MS medium supplemented with 4.5 μM 2,4-D resulted in the differentiation into somatic embryos after further 4 months. Repeated secondary somatic embryogenesis was achieved by regular subculture on this medium. Maturation and conversion of somatic embryos into plantlets was achieved on MS medium without plant growth regulators and the conversion frequency was approximately 12.5 %. The plantlets were successfully acclimatized in pots with soil. Histological studies showed that somatic embryos had no detectable connection with the mother explants and that somatic embryos in advanced stages were bipolar with shoot and root apical meristems, they contained vascular system and showed typical characteristics of a somatic dicotyledonous embryo.  相似文献   

14.
A protocol for induction of direct somatic embryogenesis and subsequent plant regeneration for the medicinally important and endangered plant Paris polyphylla Sm. has been developed for the first time. Immature zygotic embryos (IZEs) were cultured on different media namely Gamborg (B5), ½ B5, Murashige and Skoog (MS), ½ MS, Chu et al. (N6), ½ N6, Schenk and Hildebrandt (SH) and ½ SH. Highest frequency of somatic embryogenesis (32.6 %) and mean number of somatic embryos (SEs) per explant (28.7 ± 1.7) were obtained on ½ MS medium directly without an intermediate callus phase. The frequency of SE induction was significantly increased to 40.7 % when ½ MS medium was solidified with gelrite compared to agar (32.6 %). Secondary somatic embryos (SSEs) appeared on the primary SEs in a repetitive way on plant growth regulator-free ½ MS medium but with a gradual decrease in embryogenic potential during subsequent subcultures. Plasmolyzing pre-treatment of SSEs with 1.0 M mannitol for 12 h effectively maintains its embryogenic capacity. Primary embryos at the elongated dimpled and early cotyledonary stage displayed the highest embryo forming capacity of 26.94 and 27.87, respectively. High frequency of SE germination (94.0 %) occurred on ½ MS medium with 0.5 mg/l gibberellic acid. Highest percentage of seedling to plantlet conversion was observed in the medium supplemented with 0.05 mg/l 6-benzylaminopurine and 0.1 mg/l α-naphthalene acetic acid. Regenerated plants displayed morphological characteristics similar to that of the wild plants. Flow cytometry analysis showed ploidy stability of the regenerated plants.  相似文献   

15.
Experiments have been carried out on seedling and primary leaf explants of Gentiana kurroo Royle. Morphogenic capacities of cotyledons, hypocotyls and roots were investigated using MS (1962) medium supplemented with 4.64 μM kinetin and 2.26, 4.52 or 9.04 μM 2,4-D. Percentage of callusing explants for each combination was inversely proportional to numbers of obtained embryos. Cotyledons showed the highest morphogenic capabilities. To assess the morphogenic potential of leaf explants, 189 combinations of auxin (NAA, dicamba and 2,4-D) and cytokinin (kinetin, BAP, zeatin, CPPU and TDZ) in different concentrations were tested. The presence of NAA with BAP and dicamba with zeatin produced the greatest number of differentiated somatic embryos. Microscopic analysis of responsive explants led to identifying rhizogenic centers, non-embryogenic and embryogenic cells. The best embryo conversion into germlings was obtained on MS medium containing 4.46 μM kinetin, 1.44 μM GA3 and 2.68 μM NAA or ½ MS. Both media were supplemented with 4.0% sucrose and 8.0% agar. Depending on explant origin and conversion medium, 55.8–71.0% of somatic embryos developed into germlings and plants.  相似文献   

16.
Somatic embryogenic system was developed in Sapindus mukorossi Gaertn. using rachis as explants from a mature tree. Explants showed callus initiation on Murashige and Skoog medium supplemented with TDZ (1-Phenyl-3-(1, 2, 3-thiadiazol-5-yl) urea), zeatin or 6-benzylaminopurine. Induction of somatic embryogenesis was achieved on both MS basal medium and MS medium supplemented with 8.88 µM 6-benzylaminopurine. Hundred percent embryogenesis was observed on MS medium supplemented with 8.88 µM 6-benzylaminopurine with maximum intensity of embryogenesis (51.92 ± 0.40 a). Maximum maturation of somatic embryos (92.86 ± 0.34 a) was observed on induction medium supplemented with 0.0378 µM abscisic and treated for 21 days. Germination of somatic embryos was maximum (77.33 ± 0.58 a) on MS medium supplemented with 8.88 µM 6-benzylaminopurine. In vitro raised plantlets were hardened, acclimatized and transferred to the field. Survival frequency of plantlets was 80 % in field conditions. The genetic fidelity of in vitro regenerated plants was also evaluated and compared with mother plant using random amplified polymorphic DNA and inter simple sequence repeat. Both markers showed similarity in molecular profile of mother plant and in vitro regenerated plants.  相似文献   

17.
Summary Somatic embryogenesis was obtained from hypocotyls and cotyledons of one month old plantlets of Picea abies. Embryogenic yield was higher with expiants from somatic embryo-derived plantlets (80 %) than with plantlets issued from zygotic embryos (10 %). This report also describes production of embryogenic calli from needles of 14 month old somatic embryo-derived plants cultivated in greenhouse. The influence of the physiological status and genotype of the mother plant on somatic embryogenic potential is discussed.Abbreviations ABA abscisic acid - (±) ABA racemic ABA - BAP 6-benzylaminopurine - CI callus inducing culture medium - NAA 1-naphtaleneacetic acid  相似文献   

18.
An efficient protocol was developed using cell suspensions for somatic embryogenesis and plantlet regeneration in a most popular diploid AB banana (M.accuminata X M.bulbisiana hybrid) cv. Elakki Bale (syn Neypoovan) known for its taste and keeping quality in southern India. Floral primodia from position 8–16 of male inflorescence which were more responsive for embryogenesis were used as explants for the embryogenic callus production in MS media supplemented with different concentration of 2,4-D. A concentration of 18.1 μM 2, 4-D produced maximum embryogenic calli in 1 % of the explants inoculated. Embryogenic calli on repeated sub culturing on MA2 media produced good embryogenic cell suspensions (ECS). Microscopic examination of ECS showed globular, smaller with dense cytoplasm filled with starchy granules characteristic of embryogenic cells. Highest number of somatic embryos (189) was produced on modified MA3 media. A germination percentage of 31 % were observed in BAP 22.19 μM concentration. Regenerated plants with normal shoot and root were hardened in soilrite. Direct somatic embryogenesis and plant regeneration was also noticed in embryogenic calli which did not pass through the ECS stage. The protocol optimized for somatic embryogenesis through cell suspension and also direct embryogenesis leading to plantlet regeneration can be used for the micropropagation and genetic manipulation.  相似文献   

19.
The factors affecting the induction and development of somatic embryos and plantlet acclimatization of peach palm (Bactris gasipaes Kunth) were evaluated to establish an efficient regenerative protocol based on somatic embryogenesis. Mature zygotic embryos were cultured in Murashige and Skoog (MS) medium supplemented with 0–40 μM of picloram (4-amino-3,5,6-trichloropicolinic acid) and 0 or 5 μM of 2-isopentyladenine (6-dimethylaminopurine) (2-iP). After 5 mo. in culture embryogenic callus arose from primary calli. Picloram (10 μM) was effective in inducing embryogenic calli in 9.8% of the explants. The use of 1 μM of AgNO3 enhanced embryogenic competence. Embryogenic calli showed an organized structure, a globular aspect, and were white to yellowish in color. Histological analyses showed that cell proliferation arose from subepidermal cells adjacent to vascular bundles, resulting in primary callus formed by a meristematic zone from which somatic embryos arose. Protein profile analyses revealed two high molecular mass bands in these embryogenic calli, but not in other tissues. Embryogenic calli were transferred to a culture medium containing 40 μM of 2,4-dichlorophenoxyacetic acid, 10 μM of 2-iP, plus 1 g l−1 of glutamine, hydrolyzed 0.5 g l−1 casein, and activated 1.5 g l−1 of charcoal. Morphogenetic responses achieved in this medium were the development of somatic embryos, rooting, and loss of embryogenic capacity. Somatic embryos were converted to plantlets on MS medium plus 24.6 μM of 2-iP and 0.44 μM of naphthalene acetic acid. Plantlets were maintained in MS medium with activated charcoal (1.5 g l−1) until they were 6 cm tall, and then acclimatized. After 16 wk, 84.2 ± 6.4% survival was observed. M. P. Guerra and C. R. Clement are Fellows of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, DF.  相似文献   

20.
Direct somatic embryo induction was achieved from leaf and internodal explants of Solanum tuberosum (L.) cultivar ‘Kufri Chipsona 2’ on Murashige and Skoog (Physiol Plant 15:473–497, 1962) medium containing 10.0 µM silver nitrate (MS1 medium) supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D; 2.5 µM) and 6-benzyladenine (BA; 1.0 µΜ). It was observed that in absence of AgNO3, friable callus was induced from cut ends of the explants, which does not develop into any kind of organised structure; thus highlighting the requirement of AgNO3 for somatic embryogenesis in potato. Furthermore, the effect of medium strength, sucrose concentration and heat shock treatment on somatic embryogenic potential of explants was also investigated. When the strength of basal medium was reduced to half, the frequency of internodal segments differentiating somatic embryos was almost double in comparison to full strength MS medium. Sucrose concentration and heat shock treatment were found to have interactive effect on somatic embryo induction. Explants subcultured on medium containing 174 mM sucrose and subjected to heat shock (1 h; 50 °C) showed maximum somatic embryo differentiation. Although, the percent explants differentiating somatic embryos decreased sharply with increase in sucrose concentration (>?174 mM), yet the number of somatic embryos differentiated per explant were found to increase with further increase in sucrose concentration. Histological observations revealed that somatic embryos directly developed from epidermis of leaf explant and cut ends of internodal segments progressed from globular to cotyledonary stage after passing through intermediate embryogenic stages (heart shaped and torpedo shaped). Conversion of somatic embryos into plantlets (92%) was achieved on MS1 medium supplemented with BA (10.0 µM) and gibberellic acid (15.0 µM) and all regenerated plants were found to be phenotypically alike.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号