首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physiological, biochemical and morpho‐anatomical traits that determine the phenotypic plasticity of plants under drought were tested in two Arundinoideae with contrasting habitats, growth traits and metabolism: the fast‐growing Arundo donax, which also is a strong isoprene emitter, and the slow‐growing Hakonechloa macra that does not invest on isoprene biosynthesis. In control conditions, A. donax displayed not only higher photosynthesis but also higher concentration of carotenoids and lower phenylpropanoid content than H. macra. In drought‐stressed plants, photosynthesis was similarly inhibited in both species, but substantially recovered only in A. donax after rewatering. Decline of photochemical and biochemical parameters, increased concentration of CO2 inside leaves, and impairment of chloroplast ultrastructure were only observed in H. macra indicating damage of photosynthetic machinery under drought. It is suggested that volatile and non‐volatile isoprenoids produced by A. donax efficiently preserve the chloroplasts from transient drought damage, while H. macra invests on phenylpropanoids that are less efficient in preserving photosynthesis but likely offer better antioxidant protection under prolonged stress.  相似文献   

2.
In wild species of almond (Prunus spp.), the activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR), as well as the levels of ascorbate/glutathione pools and H2O2 were subjected to water deficit and shade conditions. After 60 days of water shortage, the species were subjected to a rewatering treatment. During water recovery, leaves exposed to sunlight and leaves under shade conditions of about 20–35% of environmental irradiance were sampled. After 70 days without irrigation, mean predawn leaf water potential of all the species fell from −0.32 to −2.30 MPa and marked decreases in CO2 uptake and transpiration occurred. The activities of APX, MDHAR, DHAR, and GR increased in relation to the severity of drought stress in all the wild species studied. Generally, APX, MDHAR, DHAR, and GR were down-regulated during the rewatering phase and their activities decreased faster in shaded leaves than in sun-exposed leaves. The levels in total ascorbate, glutathione, and H2O2 were directly related to the increase in drought stress and subsequently decreased during rewatering. The antioxidant response of wild almond species to drought stress limits cellular damage caused by reactive oxygen species during periods of water deficit and may be of key importance for the selection of drought-resistant rootstocks for cultivated almond.  相似文献   

3.
石斛属植物多附着在其他植物体或岩石上,水分获取困难,其特殊的水分利用策略是其生存和发展的重要保证.为弄清石斛属植物对干旱胁迫的适应能力和机制,该文选用3年生金钗石斛和铁皮石斛,通过盆栽控水进行干旱胁迫和复水处理,探讨在不同干旱历时和干旱后复水条件下两种石斛的叶水势变化情况.结果表明:随着干旱时间的延长,两种石斛叶水势均...  相似文献   

4.
To understand physiological acclimation of psammophyte to repeated soil drought and rewatering, two psammophytes (Setaria viridis and Digitaria ciliaris) were subjected to three cycles of soil drought and rewatering. The response process of leaf relative water content (RWC), membrane permeability, lipid peroxidation, gas exchange characteristics, antioxidant enzymes, soluble protein, and free proline was examined. Leaf RWC, the net photosynthesis rate, stomatal conductance, and water use efficiency decreased, while membrane permeability, lipid peroxidation, intercellular CO2 concentration, soluble protein, and free proline increased during three soil drought periods for both psammophytes. These physiological characteristics were recovered to the control levels following rewatering for 4 days. However, activities of SOD, CAT, and POD were induced continuously under soil drought conditions, and remained higher than those in the control throughout the whole experiment period, which agrees with our hypothesis that drought hardening activates defensive systems of both psammophytes continuously. Decreasing level of leaf RWC and increasing levels of leaf membrane permeability and lipid peroxidation were suppressed with increasing the number of drought cycles, suggesting that drought hardening alleviates damages of both psammophytes and improves their drought tolerance and acclimation to soil drought conditions in the future. Additionally, the photosynthesis decreased more slowly in the subsequent drought cycles than in the first cycle, allowing both psammophytes to maximize assimilation in response to repeated soil drought conditions. Thus, both psammophytes acclimatize themselves to repeated soil drought.  相似文献   

5.
Water regulation caused by enzymes, such as carbonic anhydrase (CA), changes the water status, making it difficult to diagnose water deficit using leaf water potential (ψL) or stomatal conductance (gs). Therefore, new methods for timely and accurately determining plant water status should be established. In this study, CA activity, ψL, leaf tensity (Td), photosynthetic characteristics and plant growth of Brassica napus L. seedlings under drought and subsequent rewatering were analysed. Results indicated that Td could reflect the plant water status better than ψL or gs and played an important role in the photosynthesis of B. napus. B. napus exhibited good restorability at the 40?g?L?1 polyethylene glycol level. The rewatering strategy for B. napus was excellent at 40?g?L?1 (?0.15?MPa) →20?g?L?1 (?0.11?MPa). Td could be used for the rapid determination of water requirement information in B. napus during winter drought period.  相似文献   

6.
Six lines of sorghum ( Sorghum bicolor L. Moench) with differing drought resistance (IS 22380, ICSV 213, IS 13441 and SPH 263, resistant and IS 12739 and IS 12744, susceptible) were grown under field conditions in the semi-arid tropics and analysed for proline and nitrate reductase activity (NRA; EC 1.6.6.1) during a mid-season drought. The resistant lines accumulated high levels of proline, while the susceptible lines showed no significant proline accumulation. Most of the proline was accumulated after growth of the plants had ceased. In a separate greenhouse experiment, most of the proline was found in the green rather than the fired portions of leaves. The levels returned to that of irrigated controls within 5 days of rewatering. Proline levels increased as leaf water potential and relative water content fell, and there was no apparent difference among the different sorghum lines with change in plant water status. Susceptible lines accumulated less proline than resistant lines as leaf death occurred at higher water potentials. Proline accumulation may, however, contribute to the immediate recovery of plants from drought. Leaf NRA reached high levels at about 35 days after sowing in both the stressed and irrigated plants, after which it declined. The decline in NRA was more pronounced in the stressed than in the irrigated plants and closely followed changes in the growth rate. Upon rewatering, NRA increased several-fold in all the lines and, in contrast to proline accumulation, genotypic differences in NRA were small, both during stress and upon rewatering. The high sensitivity of NRA to mild drought stress was reflected in the rapid decline of activity with small changes in leaf water potential and relative water content. The results are discussed in the light of a possible role for proline during recovery from drought, and the maintenance of NRA during stress and its recovery upon rewatering.  相似文献   

7.
The tropical rainforest mesocosm within the Biosphere 2 Laboratory, a model system of some 110 species developed over 12 years under controlled environmental conditions, has been subjected to a series of comparable drought experiments during 2000–2002. In each study, the mesocosm was subjected to a 4–6 week drought, with well‐defined rainfall events before and after the treatment. Ecosystem CO2 uptake rate (Aeco) declined 32% in response to the drought, with changes occurring within days and being reversible within weeks, even though the deeper soil layers did not become significantly drier and leaf‐level water status of most large trees was not greatly affected. The reduced Aeco during the drought reflected both morphological and physiological responses. It is estimated that the drought‐induced 32% reduction of Aeco has three principal components: (1) leaf fall increased two‐fold whereas leaf expansion growth of some canopy dominants declined to 60%, leading to a 10% decrease in foliage coverage of the canopy. This might be the main reason for the persistent reduction of Aeco after rewatering. (2) The maximum photosynthetic electron transport rate at high light intensities in remaining leaves was reduced to 71% for three of the four species measured, even though no chronic photo‐inhibition occurred. (3) Stomata closed, leading to a reduced ecosystem water conductance to water vapour (33% of pre‐drought values), which not only reduced ecosystem carbon uptake rate, but may also have implications for water and energy budgets of tropical ecosystems. Additionally, individual rainforest trees responded differently, expressing different levels of stress and stress avoiding mechanisms. This functional diversity renders the individual response heterogeneous and has fundamental implications to scale leaf level responses to ecosystem dynamics.  相似文献   

8.
Few studies have investigated the response of perennial legumes to drought stress (DS) and their ability, following rewatering, to regrow and restore photosynthetic activity. We examined these responses for two genotypes of drought‐tolerant tedera (Bituminaria bituminosa var. albomarginata) and one genotype of lucerne (Medicago sativa). Plants were grown outdoors in 1‐m deep PVC pots with a reconstructed field soil profile, regularly watered for 8 months (winter to mid‐summer), and then moved to a glasshouse where either watering was maintained or drought was imposed for up to 47 days, before rewatering for 28 days. Drought stress greatly decreased shoot dry matter (DM) production in both species. Lucerne plants showed severe leaf desiccation after 21 days of withholding water. Relative leaf water content (RWC = 42%) and midday leaf water potential (LWP = ?6.5 MPa) decreased in tedera in response to DS, whereas leaf angle (85°) and lateral root DM both increased. Proline and pinitol accumulated in tedera leaves during DS, and their concentration declined after rewatering. Nine days after rewatering, previously drought‐stressed tedera had similar RWC and LWP to well‐watered control plants. In tedera and lucerne, 28 days after rewatering, photosynthesis and stomatal conductance were greater than in the well‐watered controls. The lateral root DM for one tedera genotype decreased during the recovery phase but for lucerne, the lateral root DM did not change during either the drought or the recovery phases. Overall, the root systems in tedera showed greater plasticity in response to DS and rewatering than in lucerne. In conclusion, tedera and lucerne showed different physiological and morphological strategies to survive and recover from DS. Proline and soluble sugars may act as a carbon source for regrowth in tedera during recovery. In comparison with lucerne, tedera's more rapid recovery after rewatering should contribute to a greater aboveground DM yield under alternating dry and wet periods. Tedera genotypes are highly heterogeneous and selecting genotypes with enhanced concentrations of pinitol and proline could be a valuable tool to improve plant performance during DS and recovery.  相似文献   

9.
Rehmannia glutinosa seedlings were pretreated with choline chloride (CC) in concentrations of 0, 0.7, 2.1 and 3.5 mM, and then subjected to drought and rewatering treatment to study the effects of CC on the generation of reactive oxygen species (O2, H2O2), lipid peroxidation, proline accumulation, water status and photosynthesis. The results showed that pretreatment with CC alleviated the inhibition of SOD and APX activity caused by drought stress, and therefore, the rate of O2 production and H2O2 concentration were reduced and lipid peroxidation decreased in pretreated plants. CC pretreatment also accelerated accumulation of proline, maintained higher Ψw and RWC, deferred leaf water loss during drought stress and retarded the drop in proline concentration after rewatering. Consequently, drought-induced decreases in Fm/F0, Fv/Fm, ΦPS2, qP, and A and increase in qNP were inhibited and the recovery of photosynthesis after rewatering was quicker in pretreated plants. Although differences in Fv/Fm, ΦPS2 and qP between treatments were not significant, there was a general trend that the effects of CC increased with the rise of its concentrations. The data suggested that 2.1 mM of CC be suitable for alleviating lipid peroxidation, promoting proline accumulation, retarding leaf water loss and improving photosynthesis of R. glutinosa seedlings under drought stress.  相似文献   

10.
Drought stress is one of the most important factors in limiting the survival and growth of plants in the harsh karst habitats of southwestern China, especially at the seedling establishment stage. The ecophysiological response to drought stress of native plants with different growth forms is useful for re-vegetation programs. Two shrub and four tree species were studied, including Pyracantha fortuneana (evergreen shrub), Rosa cymosa (deciduous shrub), Cinnamomum bodinieri (evergreen tree), and other three deciduous trees, Broussonetia papyrifera, Platycarya longipes, and Pteroceltis tatarinowii. The seedlings were randomly assigned to four drought treatments, i.e., well-watered, mild drought stress, moderate drought stress, and severe drought stress. Leaf water relations, gas exchange, chlorophyll fluorescence, and growth of the seedlings were investigated. Under severe drought stress, the two shrubs with low leaf area ratio (LAR) maintained higher water status, higher photosynthetic capacity, and larger percent biomass increase than the most of the trees. The two shrubs also had lower specific leaf area, greater intrinsic water use efficiency, and thermal dissipation than the trees. This suggested that the two shrubs had high tolerance to severe drought and were suitable for re-vegetation in harsh habitats. The evergreen C. bodinieri exhibited higher leaf mass ratio (LMR) and LAR than the deciduous species under mild and moderate stress. However, the low maximum quantum efficiency of PSII photochemistry (F v/F m) and net assimilation rate, and the sharp decreases of water potential, LMR, LAR, and biomass under severe stress indicated C. bodinieri’s weak tolerance to severe drought. In response to drought stress, the three deciduous trees revealed sharp reductions of biomass due to the large drought-induced decreases of gas exchange, LAR, and LMR. Under drought conditions, the deciduous trees minimized water loss by stomatal closure and by reducing transpiration leaf area and light harvesting through shedding leaves. This suggested that the three deciduous trees were more sensitive to water availability than the shrubs and used avoidance strategies against drought stress. However, the better growth performance of the deciduous trees than that of the shrubs under favorable conditions suggested that deciduous trees could be suitable for habitats with mild and temporary drought stress.  相似文献   

11.
In contrast with other native Populus species in North America, Populus tremuloides (aspen) can successfully establish itself in drought‐prone areas, yet no comprehensive analysis has been performed on the ability of seedlings to withstand and recover from a severe drought resulting in complete leaf mortality. Here, we subjected 4‐month‐old aspen seedlings grown in two contrasting soil media to a progressive drought until total leaf mortality, followed by a rewatering cycle. Stomatal conductance (gs), photosynthesis and transpiration followed a sigmoid decline with declining fraction of extractable soil water values. Cessation of leaf expansion occurred close to the end of the linear‐decrease phase, when gs was reduced by 95%. Leaf mortality started after gs reached the lowest values, which corresponded to a stem–xylem pressure potential (Ψxp) of ?2.0 MPa and a percent loss of stem hydraulic conductivity (PLC) of 50%. In plants with 50% leaf mortality, PLC values remained around 50%. Complete leaf mortality occurred at an average stem PLC of 90%, but all seedlings were able to resprout after 6–10 days of being rewatered. Plants decapitated at soil level before rewatering developed root suckers, while those left with a 4‐cm stump or with their stems intact resprouted exclusively from axillary buds. Resprouting was accompanied by recovery of stem hydraulic conductivity, with PLC values around 30%. The percentage of resprouted buds was negatively correlated with the stem %PLC. Thus, the recovery of stem hydraulic conductivity appears as an important factor in the resprouting capacity of aspen seedlings following a severe drought.  相似文献   

12.
Soil water deficit is a major limitation to agricultural productivity in arid regions. Leaf photosynthesis can quickly recover after rewatering and remains at a higher level for a longer period, thus increasing crop yield and water-use efficiency (WUE). We tested our hypothesis that leaf photosynthesis and root activity of water-stressed cotton (Gossypium hirsutum L.) plants could quickly recover after rewatering at a certain growth stage and it should not influence a cotton yield but increase WUE. Treatments in this study included two degrees of water stress: mild water stress (V1) and moderate water stress (V2) imposed at one of four cotton growth stages [i.e., S1 (from the full budding to early flowering stage), S2 (from early flowering to full flowering), S3 (from full flowering to full bolling), and S4 (from full bolling to boll-opening)]. The soil water content before and after the water stress was the same as that in the control treatment (CK, 70–75% of field capacity). Water deficit significantly reduced the leaf water potential, net photosynthetic rate, and stomatal conductance in cotton. The extent of the decline was greater in S2V2 treatment compared to others. Water deficit also reduced root activity, but the extent of inhibition varied in dependence on soil depth and duration. When plants were subjected to S1V1, the root activity in the 20–100 cm depth recovered rapidly and even exceeded CK one day after rewatering. An overcompensation response was observed for both photosynthesis and aboveground dry mass within one to three days after rewatering. Compared with the CK, S1V1 showed no significant effect on the yield but it increased total WUE and irrigation WUE. These results suggest that even a short-term water stress during the S1, S2 and S4 stages mitigated, with respect to the root activity, the negative effect of drought and enhanced leaf photosynthesis compensatory effects of rewatering in order to increase cotton WUE with drip irrigation under mulch in arid areas.  相似文献   

13.
以转CBF_1基因棉花及其野生型棉花为材料,设置轻度(900 mL)、中度(400 mL)、重度(300 mL)和对照(1 200mL)浇水处理的不同干旱胁迫和复水处理,考察各种处理后对盆栽植株不同部位叶片光合性能和离体叶片在暗处理条件下叶绿素含量的变化,以及在大田苗期、蕾期、花期、铃期断水胁迫对棉花产量的影响,为转基因抗旱棉花新品种的培育提供理论依据。结果表明:(1)在盆栽试验中,随着干旱胁迫时间的延长和复水3d处理,各浇水处理的转基因和野生型棉花叶片净光合速率(P_n)、原初光能转化效率(F_v/F_m)表现出先降低后增加的变化趋势,受到胁迫后对顶部叶片的影响比中部叶片大,且转基因棉花叶片保留数量显著高于野生型棉花;它们的离体叶片叶绿素a、叶绿素b的含量随着干旱胁迫时间的延长而逐渐下降,但转基因棉花的下降速率显著低于野生型棉花。(2)在田间试验的苗期、蕾期、花期、铃期干旱胁迫下,各干旱胁迫处理的转基因植株的皮棉产量、衣分、种子质量、株高均显著高于野生型棉花;转基因棉花的籽棉产量分别比正常灌溉处理降低了78.4%、55.1%、12.7%、8.3%,野生型棉花则分别降低了80.4%、55.4%、19.2%、14.4%,不同时期的水分胁迫严重影响了棉花籽棉产量,但是转基因棉花的籽棉产量显著高于野生型棉花。研究认为,在不同干旱胁迫条件下,转CBF_1基因棉花表现出优良的生长和生理优势,可提高棉花的耐旱性。  相似文献   

14.
Drought is the primary limitation to plant growth and yield in agricultural systems. Cucumber (Cucumis sativus) is one of the most important vegetables worldwide and has little tolerance for water deficit. To understand the drought stress response strategy of this plant, the responses of cucumber to short‐term drought and rewatering were determined in this study by morphological structure and proteomic analyses. The leaf relative water content was significantly decreased under drought, and the cell structure was altered, while rewatering obviously alleviated the symptoms of water shortage and cell damage. A total of 320 and 246 proteins exhibiting significant abundance changes in response to drought and recovery, respectively, were identified. Our proteome analysis showed that 63 co‐regulated proteins were shared between drought and rewatering, whereas most of the responsive proteins were unique. The proteome is adjusted through a sequence of regulatory processes including the biosynthesis of secondary metabolites and the glutathione metabolism pathway, which showed a high correlation between protein abundance profile and corresponding enzyme activity. Drought and recovery regulated different types of proteins, allowing plants to adapt to environmental stress or restore growth, respectively, which suggests that short‐term drought and recovery are almost fully uncoupled processes. As an important component of the antioxidant system in plants, glutathione metabolism may be one of the main strategies for regulating antioxidant capacity during drought recovery. Our results provide useful information for further analyses of drought adaptability in cucumber plants.  相似文献   

15.
Summary Gas exchange characteristics of droughted and rewatered Portulacaria afra were studied during the seasonal shift from CAM to C3 photosynthesis. 14CO2 uptake, stomatal conductance, and total titratable acidity were determined for both irrigated and 2, 4, and 7.5 month waterstressed plants from summer 1984 to summer 1985. Irrigated P. afra plants were utilizing the CAM pathway throughout the summer and shifted to C3 during the winter and spring. Beginning in September, P. afra plants shifted from CAM to CAM-idling after 2 months of water-stress. When water-stress was initiated later in the fall, exogenous CO2 uptake was still measurable after 4 months of drought. After 7.5 months of stress, exogenous CO2 uptake was absent. The shift from CAM to CAM-idling or C3 in the fall and winter was related to when water stress was initiated and not to the duration of the stress. Gas exchange resumed within 24 h of rewatering regardless of the duration of the drought. In the winter and spring, rewatering resulted in a full resumption of daytime CO2 uptake. Whereas during the summer, rewatering quickly resulted in early morning CO2 uptake, but nocturnal CO2 uptake through the CAM pathway was observed after 7 days. Gas exchange measurements, rewatering characteristics, and transpirational water loss support the hypothesis that the C3 pathway was favored during the winter and spring. The CAM pathway was functional during the summer when potential for water loss was greater. Our investigations indicate that P. afra has a flexible photosynthetic system that can withstand long-term drought and has a rapid response to rewatering.  相似文献   

16.
The objective of this study was to determine the response of nitrogen metabolism to drought and recovery upon rewatering in barley (Hordeum vulgare L.) plants under ambient (350 μmol mol−1) and elevated (700 μmol mol−1) CO2 conditions. Barley plants of the cv. Iranis were subjected to drought stress for 9, 13, or 16 days. The effects of drought under each CO2 condition were analysed at the end of each drought period, and recovery was analysed 3 days after rewatering 13-day droughted plants. Soil and plant water status, protein content, maximum (NRmax) and actual (NRact) nitrate reductase, glutamine synthetase (GS), and aminant (NADH-GDH) and deaminant (NAD-GDH) glutamate dehydrogenase activities were analysed. Elevated CO2 concentration led to reduced water consumption, delayed onset of drought stress, and improved plant water status. Moreover, in irrigated plants, elevated CO2 produced marked changes in plant nitrogen metabolism. Nitrate reduction and ammonia assimilation were higher at elevated than at ambient CO2, which in turn yielded higher protein content. Droughted plants showed changes in water status and in foliar nitrogen metabolism. Leaf water potential (Ψw) and nitrogen assimilation rates decreased after the onset of water deprivation. NRact and NRmax activity declined rapidly in response to drought. Similarly, drought decreased GS whereas NAD-GDH rose. Moreover, protein content fell dramatically in parallel with decreased leaf Ψw. In contrast, elevated CO2 reduced the water stress effect on both nitrate reduction and ammonia assimilation coincident with a less-steep decrease in Ψw. On the other hand, Ψw practically reached control levels after 3 days of rewatering. In parallel with the recovery of plant water status, nitrogen metabolism was also restored. Thus, both NRact and NRmax activities were restored to about 75-90% of control levels when water supply was restored; the GS activity reached 80-90% of control values; and GDH activities and protein content were similar to those of control plants. The recovery was always faster and slightly higher in plants grown under elevated CO2 conditions compared to those grown in ambient CO2, but midday Ψw dropped to similar values under both CO2 conditions. The results suggest that elevated CO2 improves nitrogen metabolism in droughted plants by maintaining better water status and enhanced photosynthesis performance, allowing superior nitrate reduction and ammonia assimilation. Ultimately, elevated CO2 mitigates many of the effects of drought on nitrogen metabolism and allows more rapid recovery following water stress.  相似文献   

17.
Photosynthetic gas exchange, vegetative growth, water relations and fluorescence parameters as well as leaf anatomical characteristics were investigated on young plants of two Olea europaea L. cultivars (Chemlali and Zalmati), submitted to contrasting water availability regimes. Two-year-old olive trees, grown in pots in greenhouse, were not watered for 2 months. Relative growth rate (RGR), leaf water potential (ΨLW) and the leaf relative water content (LWC) of the two cultivars decreased with increasing water stress. Zalmati showed higher values of RGR and LWC and lower decreased values of ΨLW than Chemlali, in response to water deficit, particularly during severe drought stress. Water stress also caused a marked decline on photosynthetic capacity and chlorophyll fluorescence. The net photosynthetic rate, stomatal conductance, transpiration rate, the maximal photochemical efficiency of PSII (F v/F m) and the intrinsic efficiency of open PSII reaction centres (F′ v/F′ m) decreased as drought stress developed. In addition, drought conditions, reduced leaf chlorophyll and carotenoids contents especially at severe water stress. However, Zalmati plants were the less affected when compared with Chemlali. In both cultivars, stomatal control was the major factor affecting photosynthesis under moderate drought stress. At severe drought-stress levels, the non-stomatal component of photosynthesis is inhibited and inactivation of the photosystem II occurs. Leaf anatomical parameters show that drought stress resulted in an increase of the upper epidermis and palisade mesophyll thickness as well as an increase of the stomata and trichomes density. These changes were more characteristic in cv. ‘Zalmati’. Zalmati leaves also revealed lower specific leaf area and had higher density of foliar tissue. From the behaviour of Zalmati plants, with a smaller reduction in relative growth rate, net assimilation rate and chlorophyll fluorescence parameters, and with a thicker palisade parenchyma, and a higher stomatal and trichome density, we consider this cultivar more drought-tolerant than cv. Chemlali and therefore, very promising for cultivation in arid areas.  相似文献   

18.
In the context of future climate change new habitats will be threatened and unique species will be forced to develop different strategies to survive. Saxifraga longifolia Lapeyr. is an endemic species from the Pyrenees with a very particular habitat. We explored the capacity and strategies of S. longifolia plants to face different severities of drought stress under both natural conditions and controlled water stress followed by a re-watering period of 20 days. Our results showed a role for abscisic acid (ABA), salicylic acid (SA) and cytokinins (CKs) in plant survival from drought stress, and as the stress increased, ABA lost significance and SA appeared to be more associated with the response mechanisms. Moreover, photo-oxidative stress markers revealed that both xanthophyll cycles played a photoprotection role with a stronger participation of the lutein epoxide cycle as the stress was more intense. Severe drought decreased the maximum efficiency of photosystem II (Fv/Fm) below 0.45, being this the limit to survive upon rewatering. Overall, our results proved different strategies of S. longifolia plants to cope with drought stress and suggested a Fv/Fm threshold to predict plant survival in high-mountain environments.  相似文献   

19.
Three wheat (Triticum aestivum L.) genotypes, Sadovo, Katya and Prelom, with different tolerance to drought were comparatively evaluated in terms of leaf respiratory responses to progressing dehydration and consecutive rewatering. Under drought stress, the respiration of all varieties gradually decreased, as the drought-tolerant Katya showed the most pronounced decline at earlier stages of dehydration. When water stress intensified, this genotype gave relatively stable respiration rates compared with the drought-sensitive varieties. Additionally, dehydrated Katya leaves displayed lower stomatal conductance and higher photosynthesis values, which resulted in greater water use efficiency during the dehydration period. Combination of drought stress and short-term changes in leaf temperature also induced genotype-specific response that differed from the response to drought only. Over the whole temperature range, the leaves of Katya exposed to dehydration for 14 days, showed higher respiration rates compared to the drought-sensitive varieties. The sensitive varieties maintained higher respiration rates under control conditions and mild dehydration, and very low rates under severe drought. In Katya, respiration and photosynthesis were fully restored from the stress within the first day of rewatering. The drought-sensitive genotypes displayed a considerably slower recovering capacity. The results are discussed in terms of possible physiological mechanisms underlying plant tolerance to drought.  相似文献   

20.
Turgor maintenance, solute content and recovery from water stress were examined in the drought-tolerant shrub Artemisia tridentata. Predawn water potentials of shrubs receiving supplemental water remained above ?2 MPa throughout summer, while predawn water potentials of untreated shrubs decreased to ?5 MPa. Osmotic potentials decreased in conjunction with water potentials maintaining turgor pressures above 0 MPa. The decreases in osmotic potentials were not the result of osmotic adjustment (i.e. solute accumulation). Leaf solute contents decreased during drought, but leaf water volumes decreased more than 75% from spring to summer, thereby passively concentrating solutes within the leaves. The maintenance of positive turgor pressures despite decreases in leaf water volumes is consistent with other studies of species with elastic cell walls. Inorganic ion, organic acid, and carbohydrate contents of leaves declined during drought. The only solutes accumulating in leaves of A. tridentata with water stress were proline and a cyclitol, both considered compatible solutes. Total and osmotic potentials recovered rapidly following rewatering of shrubs; solute contents did not change except for a decrease in proline. Maintaining turgor through the passive concentration of solutes may be advantageous compared to synthesis of new solutes for osmotic adjustment in arid environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号