首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used Q-banding and analyzed nucleolar organizing regions (NORs) to study the cytogenetic evolution of tetraploids within the Palearctic Bufo viridis subgroup, the only known amphibian complex comprising di-, tri- and tetraploid bisexually reproducing taxa. We examined three diploid (2n) nominal taxa (Bufo viridis viridis, B. v. turanensis, B. v. kermanensis) from five Eurasian localities and six tetraploid (4n) nominal taxa (B. oblongus, B. o. danatensis, B. pewzowi pewzowi, B. p. taxkorensis, B. p. unicolor, B. p. strauchi) from eight Central Asian localities. Homeologous chromosomes of 2n and 4n toads exhibit a similar morphology. Silver-staining and in situ hybridization revealed terminal NORs in the long arms of chromosomes 6 in all 2n but in only two out of four chromosomes 6 in all 4n taxa. Q-banding and a rapidly evolving mitochondrial marker suggest at least two origination events for Asian 4n toads: “Western Central Asian tetraploids’’ (B. oblongus Nikolsky, 1896) exhibit distinct differences within some chromosome quartets, which are divisible into pairs of chromosomes and may be allopolyploid. In contrast, “Central Asian tetraploids” (B. pewzowi Bedriaga, 1898) showed homogenous Q-banding patterns within each quartet, suggesting autopolyploidy. In Northeastern Iran, we discovered a zone of either common ancestry or hybridization of 2n and Western Central Asian 4n toads. This raises intriguing questions about how diploid and tetraploid taxa may evolve by exchanging genetic material.  相似文献   

2.
The first proven data on natural hybridization in the genus Hieracium s. str. are presented. Plants with intermediate morphological characters between the diploids H. alpinum and H. transsilvanicum were found in the Muntii Rodnei (Romanian Eastern Carpathians) in 2001 and in the Chornohora Mts (Ukrainian Eastern Carpathians) in 2003. While plants of intermediate morphology between usually so called basic species are usually tri- or tetraploid in Hieracium s. str., these plants were diploid (2n=18) like both parental species in this region. The Romanian plant did not produce fertile achenes in free pollination and in control backcrosses with H. transsilvanicum, two hybrids from Ukraine were completly seed sterile in free pollination and reciprocal crosses. Pollen stainability as an indirect measure of male fertility was quite high in the studied Ukrainian hybrid plants and similar to the parental taxa. Evidence from allozyme analysis also confirmed the hybrid origin of the studied plants. Sequencing and PCR-RFLP analyses of the trnT-trnL intergenic spacer revealed that all hybrid plants had the H. transsilvanicum chloroplast DNA haplotype. Maternal inheritance of chloroplast DNA in this particular cross was proved with artificial hybrids from reciprocal experimental crosses between H. alpinum and H. transsilvanicum. In both localities, the natural hybrid plants were found in disturbed habitats, exceptionally allowing contact of the otherwise ecologically vicariate parental species. Morphologically, the hybrid plants belong to H. × krasani Woł.  相似文献   

3.
Whereas frequent recombination characterizes flowering plant mitochondrial genomes, some mitochondrial gene arrangements may, in contrast, be conserved between streptophyte algae and early land plant clades (bryophytes). Here we explore the evolutionary fate of the mitochondrial gene arrangement trnA-trnT-nad7, which is conserved among the alga Chara, the moss Physcomitrella, and the liverwort Marchantia, although trnT is inverted in orientation in the latter. Surprisingly, we now find that the Chara-type gene arrangement is generally conserved in mosses, but that trnT is lacking between trnA and nad7 in all simple-thalloid and leafy (jungermanniid) liverworts. The ancient gene continuity trnA-trnT-nad7 is, however, conserved in Blasia, representing the sister lineage to all other complex-thalloid (marchantiid) liverworts. The recombinogenic insertion of short sequence stretches, including nad5 and rps7 pseudogene fragments copied from elsewhere in the liverwort mtDNA, likely mediated a subsequent inversion of trnT and flanking sequences in a basal grade of marchantiid liverworts, which was then followed by an independent secondary loss of trnT in derived marchantiid taxa later in evolution. In contrast to the previously observed extreme degree of coding sequence conservation and the assumed absence of active recombination in Marchantia mtDNA, this now reveals a surprisingly dynamic evolution of marchantiid liverwort mitochondrial genomes.  相似文献   

4.
Length polymorphism in a non-coding spacer (trnLUAA-trnFGAA) in the chloroplast DNA was used in the investigation of the origin of the most common and conspicuous European fern hybrid, Asplenium x alternifolium (Aspleniaceae, Pteridophyta). The origins of A. x alternifolium, the hybrid between A. trichomanes s.l. and A. septentrionale s.l. was studied at three ploidy levels, diploid, triploid and tetraploid. The cpDNA technique allowed us to investigate the mode of hybrid formation between sexual species for the first time over a wide geographic range and with a large sample size. Morphological variation in this hybrid has previously been attributed to different reciprocal parental combinations, and to the influence of chloroplast genes on morphogenesis. Our results demonstrate that one parent, A. septentrionale s.l., acts predominantly as the female parent in these hybrids, with only one population of A. x alternifolium showing reciprocal hybridity. The discovery of predominantly unidirectional hybrid formation in this hybrid may be explained by the different breeding systems of the parental taxa. The role of gametophyte ecology is also assessed.  相似文献   

5.
Although reticulation has indisputably played an important role in the evolutionary history of the genus Hieracium s. str. (Asteraceae), convincingly documented cases of recent interspecific hybridization are very rare. Here we report combined evidence on recent hybridization between two diploid species, Hieracium alpinum and H. transsilvanicum. The hybrid origin of the plants from the Romanian Eastern Carpathians was supported by additive patterns of nuclear ribosomal DNA polymorphism (ITS), an intermediate position of hybrid plants in principal coordinate analysis based on amplified fragment length polymorphism phenotypes (AFLP), and additivity at one allozyme locus. Flow cytometric analyses and chromosome counting showed that two hybrids were diploid (2n ~ 2x ~ 18) while one was surprisingly tetraploid (2n = 4x = 36). To our knowledge, this is the first record of spontaneous polyploidization following interspecific crossing in the genus. Allozyme data, especially the presence of unbalanced heterozygosity at one locus, suggest the origin of this tetraploid via a triploid bridge with subsequent backcrossing to H. alpinum. According to PCR-RFLP analyses of the trnT-trnL intergenic spacer, all H. ×krasani hybrids examined had the H. alpinum haplotype while H. transsilvanicum served as a pollen donor. The hybrids occurred at the locality with abundant H. alpinum plants where paternal H. transsilvanicum was missing. Previously reported instances of interspecific hybridization between the same parental taxa showed an opposite direction of crossing and relative abundance of parental taxa. This suggests that the direction of hybridization might be influenced by the frequency of parental taxa at the locality.  相似文献   

6.
Based on general morphology, spore measurements and ornamentation (scanning electron microscope), genome size estimation, and molecular systematics (trnL-trnF IGS), we show the extreme systematic complexity within the European representatives of the genus Ophioglossum. In particular, three hybrids from Tuscany are described: the tetraploid O. × pierinii Peruzzi, Magrini, Marchetti & Viane, seen as the hybrid between diploid O. lusitanicum L. and hexaploid O. azoricum C.Presl; the tetraploid O. × giovanninii Peruzzi, Pierini, Magrini, Marchetti & Viane, seen as the homoploid hybrid between tetraploid O. vulgatum L. and tetraploid O. × pierinii Peruzzi, Magrini, Marchetti & Viane; the pentaploid O. × pseudoazoricum Peruzzi, Pierini, Magrini, Marchetti & Viane, seen as the hybrid between hexaploid O. azoricum C.Presl and tetraploid O. vulgatum L. All the three new taxa grow in different localities in the Monte Pisano mountain range.  相似文献   

7.
We used the Allium przewalskianum diploid–tetraploid complex on the Qinghai‐Tibetan Plateau (QTP) as a model to examine how this complex responded to the Quaternary climatic oscillations, and whether multiple autopolyploidizations have occurred. We sequenced five chloroplast DNA (cpDNA) fragments (accD‐psaI, trnH‐psbA, trnL‐trnF, trnS‐trnG and rpl16‐intron) in 306 individuals (all of known ploidy level) from 48 populations across the distribution of this species complex. We identified a total of 32 haplotypes—11 in diploids only, 13 in tetraploids only, and 8 found in both cytotypes. This, plus network analyses, indicated that tetraploids have arisen independently from diploids at least eight times. Most populations in the eastern QTP contained multiple haplotypes, but only a single haplotype was found for 17 tetraploid populations on the western QTP, suggesting a recent colonization of the western QTP. We further found that this species complex underwent an earlier range expansion around 5–150 thousand years ago (kya), after the largest glacial period (800–170 kya) in the QTP. In addition, the high frequencies of tetraploids in the QTP suggested that the tetraploid A. przewalskianum cytotype has evolutionary advantages over diploids in colonizing and/or surviving the arid habitats of the QTP.  相似文献   

8.
Allozyme variation was examined in three diploid taxaChionographis japonica var.japonica, var.kurokamiana, andC. koidzumiana and three tetraploid taxaC. japonica var.kurohimensis, ssp.hisauchiana, and ssp.minoensis. Results show thatC. japonica var.kurokamiana is genetically closer toC. koidzumiana than to var.japonica. In the tetraploid taxa, fixed heterozygosities were found at several loci, and this supports the hypothesis that these taxa are allotetraploids. Furthermore, the tetraploid taxa have many unique alleles not found in the diploid taxa. This suggests that sufficient time has passed since the origin of tetraploids for new mutations to have been fixed.  相似文献   

9.
The genetic structure of tetraploid (4x = 44) North American species of Primula subgenus Auriculastrum: P. suffrutescens, P. parryi, P. rusbyi, and P. angustifolia was analyzed at seven enzyme loci and compared with that of the related diploid P. cuneifolia and P. nipponica. The studied tetraploid species showed fixed or almost fixed heterozygosity at various loci, indicating a hybrid origin. About half of their alleles were shared with Cuneifolia taxa sampled, suggesting that they arose from crosses involving a maternal Cuneifolia-like ancestor. A preliminary survey of their possible paternal species, as inferred from their genotypes, was carried out among different Primula groups. Several paternal alleles expected were observed in subgenus Aleuritia, particularly among taxa of sect. Crystallophlomis (e.g., P. chionantha, P. minor, and P. nivalis xanthobasis). However, none of these taxa proved to be a suitable paternal species. Hybridization events that originated P. suffrutescens, P. parryi, P. rusbyi, and P. angustifolia presumably occurred during Pleistocene secondary contacts in Beringia and involved a maternal Cuneifolia-like ancestor and at least two paternal species, for sect. Suffrutescens and Parryi, respectively. Further studies, involving a genetic survey of Aleuritia taxa from Siberia will be needed to detect such paternal species, if not extinct.  相似文献   

10.
A molecular phylogenetic analysis of Cynoglottis was performed to evaluate previous hypotheses based on non-molecular evidence concerning the position of this genus within Boraginaceae tribe Boragineae. ITS-5.8S and trnLUAA sequences from the nuclear and chloroplast non-coding genomes were obtained for four Cynoglottis taxa and selected members of the related genera Anchusa, Anchusella, Gastrocotyle, Brunnera and Pentaglottis. Cynoglottis is monophyletic, but neither trnL nor ITS support a close relationship with Brunnera, unlike previously supposed on morphological grounds. Brunnera is, instead, related to the southwestern European monotypic genus Pentaglottis, with which it forms a basal clade. ITS-5.8S sequences show that Anchusa thessala, a southeastern European annual species of Anchusa subg. Buglossellum, is sister to Cynoglottis and that the two taxa form a clade which also includes the Balkan endemic Gastrocotyle macedonica. Species of Anchusa subg. Anchusa form a separate lineage with high bootstrap support, suggesting that this heterogeneous genus is paraphyletic with respect to Cynoglottis. ITS sequences also discriminate between the Balkan-Apenninic diploid C. barrelieri and the Anatolian tetraploid C. chetikiana, albeit with low support. The molecular results are discussed in the light of karyological, morphological and chorological aspects.This work has been supported by M.I.U.R. 40% 2003 and the University of Firenze.  相似文献   

11.
12.
Seven hundred fifty-two to one thousand ninety-seven base pairs of the trnL intron and trnL–trnF intergenic spacer of the chloroplast DNA of 55 Juncaceae taxa (Juncus, Luzula, Rostkovia, and Oxychloë) was sequenced. Seventeen structural mutations (13 indels marked A to M, 3 parts of the trnF pseudogene, and insertion o within a pseudogene) within the chloroplast trnL–trnF region were examined as possible indicators for phylogenetic relationships in Juncaceae. Juncus trifidus (section Steirochloa) was clearly separated from the other taxa by two large (>80 bp) indels. The Southern Hemisphere clade was strongly supported by a unique insertion (334 bp) in the trnL intron. The monophyly of Luzula was supported by three small (<10 bp) indels in the trnL-F spacer. They were found in all 22 examined members that represent the taxonomic and geographical diversity of the genus Luzula. A tandemly duplicated tRNA pseudogene was found in the Juncus subgenus Juncus species and is supported by four small unique indels too. The acceptor stem and D-domain-encoding regions are separated by a unique 8-bp insertion. The T-domain and acceptor stem-encoding regions were not found in the pseudogene repeats. Only the Juncus sections Ozophyllum and Iridifolii contain the 5 acceptor stem, D-domain, and anticodon domain of the tRNAF encoding DNA. The structural mutations in the trnL intron and the trnL–trnF intergenic spacer are useful for phylogenetic reconstruction in the Juncaceae.  相似文献   

13.
The eastern Asian and eastern North American disjunction in Juglans offers an opportunity to estimate the time since divergence of the Eurasian and American lineages and to compare it with paleobotanical evidence. Five chloroplast DNA noncoding spacer (NCS) sequences: trnT−trnF, psbA−trnH, atpB−rbcL, trnV-16S rRNA, and trnS-trnfM and data from earlier studies (matK, ITS, and nuclear RFLP) were used to reconstruct phylogeny and to estimate the divergence time of major lineages. Seventeen taxa from four sections of Juglans and two outgroup taxa, Pterocarya stenoptera and Carya illinoiensis were included. NCS data was congruent only with matK data. Both maximum parsimony (MP) and maximum likelihood (ML) cladograms were concordant at the sectional level and revealed three well-supported monophyletic clades corresponding to sections Juglans, Cardiocaryon, and Rhysocaryon in both NCS and combined analyses. The single extant American butternut, Juglans cinerea was placed within the poorly resolved, but well-supported Rhysocaryon. Placement of taxa within Rhysocaryon and Cardiocaryon were inconsistent between NCS and combined analyses. Overall, the results suggest that: (1) the NCS sequence divergence observed within and between sections of Juglans is low and the addition of matK data only marginally improved resolution within Rhysocaryon; (2) the early divergence of section Juglans in both MP and ML analyses of NCS and combined data implies its ancient origin in contrast to fossil evidence, which suggests the earliest divergence of sections Rhysocaryon and Cardiocaryon; and (3) the extant taxa may not hold the footprints to unravel the evolutionary history of the genus.  相似文献   

14.
In several studies we used the 5′-trnL(UAA)–trnF(GAA) region of the chloroplast DNA for phylogeographic reconstructions, gene diversity calculations and phylogenetic analyses among the genera Arabidopsis and Boechera. Despite the fact that extensive gene duplications are rare within the chloroplast genome of higher plants, within several genera of the Brassicaceae the anticodon domain of the trnF(GAA) gene exhibit extensive gene duplications with 1–12 tandemly repeated copies in close 5′-proximity of the functional gene. A recent re-examination and additional analysis of trnL(UAA)–trnF(GAA) regions from numerous cruciferous taxa not only reveal extensive trnF gene duplications, but also favour the hypothesis that in cruciferous taxa at least four independent phylogenetic lineages are characterized by these pseudogenes. Among these lineages there is one major clade of taxa carrying pseudogenes indicating an ancient split in crucifer evolution. In two case studies, Boechera and Arabidopsis, intra- and inter-molecular recombinations have been shown to be the reason for the reciprocal exchange of several similar motifs. However, functional constraints might favour two to three or five to six copies as shown for Arabidopsis and Boechera. Herein, we compare the occurrence and distribution of pseudogene copy number in the framework of a comprehensive survey of cpDNA haplotype variation in Boechera, the former genus Cardaminopsis and Arabidopsis thaliana and comment on the value of such kind of mutations in phylogenetic and evolutionary reconstructions.  相似文献   

15.
Chromatographic techniques were used and the results were correlated with karyotypic studies in an attempt to determine the origin of five tetraploid “species” of crested wheatgrass, Agropyron desertorum, A. fragile, A. imbricatum, A. sibiricum, and A. pectimforme. Chromatograms of phenolic extracts of all tetraploid taxa and two diploids, A. imbricatum and A. pectiniforme—Fairway type, were developed using two-dimensional paper chromatography, and comparative analyses were made. The analyses were of three types: one in which the pigments were quantified and assigned weighted values; the second a qualitative analysis in which only the presence or absence of the pigments was considered; the third, a similar qualitative analysis of hydrolysates. Similarity indices were computed for all combinations of taxa in each of the comparative chromatographic analyses, and phenograms were prepared. The two diploid taxa were chromatographically distinct, and all tetraploid forms were intermediate with the exception of A. pectiniforme, which exhibited the same phenolic profile as the diploid A. pectiniforme—Fairway type, and two of its colchicine-induced tetraploids. From these data it is postulated that A. pectiniforme is a natural autopolyploid, and the other tetraploids included herein were derived through hybridization of A. imbricatum and A. pectiniforme— Fairway type, with subsequent allopolyploidy. This is in accord with karyotypic studies of McCoy and Law (unpublished).  相似文献   

16.
The nucleotide sequences of four intergenic spacer regions of chloroplast DNA, atpB-rbcL, trnS-trnG, rps11-rpl36, and rps3-rpl16, were analyzed in the genus Glycine. Phylogenetic analysis based on the sequence data using Neonotonia wightii as the outgroup generated trees supporting the classification of two subgenera, Soja and Glycine, and three plastome groups in the subgenus Glycine. The results were consistent with the presence of diversified chloroplast genomes within tetraploid plants of G. tabacina and G. tomentella, as well as with a close relationship between G. tomentella and G. dolichocarpa that had been suggested based on morphological analyses. Little sequence variation was found in the subgenus Soja, suggesting that G. soja rapidly expanded its distribution in East Asia. The analysis also showed that the differentiation into three plastome groups in the subgenus Glycine occurred in the early stages of its evolution, after the two subgenera diverged.  相似文献   

17.
Many conflicting hypotheses regarding the relationships among crops and wild species closely related to wheat (the genera Aegilops, Amblyopyrum, and Triticum) have been postulated. The contribution of hybridization to the evolution of these taxa is intensely discussed. To determine possible causes for this, and provide a phylogeny of the diploid taxa based on genome‐wide sequence information, independent data were obtained from genotyping‐by‐sequencing and a target‐enrichment experiment that returned 244 low‐copy nuclear loci. The data were analyzed using Bayesian, likelihood and coalescent‐based methods. D statistics were used to test if incomplete lineage sorting alone or together with hybridization is the source for incongruent gene trees. Here we present the phylogeny of all diploid species of the wheat wild relatives. We hypothesize that most of the wheat‐group species were shaped by a primordial homoploid hybrid speciation event involving the ancestral Triticum and Am. muticum lineages to form all other species except Ae. speltoides. This hybridization event was followed by multiple introgressions affecting all taxa except Triticum. Mostly progenitors of the extant species were involved in these processes, while recent interspecific gene flow seems insignificant. The composite nature of many genomes of wheat‐group taxa results in complicated patterns of diploid contributions when these lineages are involved in polyploid formation, which is, for example, the case for tetraploid and hexaploid wheats. Our analysis provides phylogenetic relationships and a testable hypothesis for the genome compositions in the basic evolutionary units within the wheat group of Triticeae.  相似文献   

18.
Chromosome numbers are reported for ten taxa in Sphaeralcea section Fendlerianae (Malvaceae). New ploidy levels are reported for six taxa, with one species not previously reported, and extensive polyploidy at all taxonomic levels is documented. The geographic and taxonomic distribution of polyploids suggests that polyploidy arose many times in the taxa of Sphaeralcea. Sphaeralcea fendleri var. venusta, S. polychroma, and S. wrightii populations have yielded exclusively tetraploid counts. Tetraploidy is correlated with taxa having lavender petals. Polyploidy has also allowed the taxa to expand their distributions without resulting in speciation.  相似文献   

19.
20.
为了探寻蔷薇属植物亲缘关系及系统发育研究的分子细胞遗传学证据,该研究采用双色FISH(荧光原位杂交)技术,对原产中国7个组的17种蔷薇属植物的45S和5S rDNA进行了定位分析。结果表明:(1)多数蔷薇属植物1组染色体对应1个45S rDNA位点和1个或2个5S rDNA位点,偶尔出现1~2个rDNA位点的丢失,但复伞房蔷薇(Rosa brunonii)的1组染色体对应了2个45S rDNA位点。(2)二倍体的蔷薇属植物至少有1对5S rDNA位点与45S rDNA位点共定位,而四倍体材料的5S rDNA位点与45S rDNA位点没有共定位,但所有四倍体材料均至少有1种rDNA信号纯合,表明它们应为二倍体直接加倍产生的同源四倍体。(3)绝大多数材料45S rDNA位于染色体短臂、5S rDNA位于染色体长臂,但缫丝花(R. roxburghii f. roxburghii)有1个5S rDNA信号位于染色体的短臂上,表明它与蔷薇属其他种的亲缘关系较远。(4)阿克苏地区和伊犁地区的疏花蔷薇的核型不同,且45S和5S rDNA的数量和位置不同,分子细胞遗传学证据也支持阿克苏地区的疏花蔷薇应为疏花蔷薇的新变种。(5)该研究中共有8个二倍体和6个四倍体蔷薇属植物的双色FISH为首次报道。研究认为,无论二倍体还是四倍体蔷薇属植物中出现的异形同源染色体、rDNA信号位置在同源染色体上的差异以及rDNA信号的增加和丢失,可能都与染色体结构变异和染色体重组有关,在分子细胞遗传学水平上证明染色体结构变异和染色体重组在蔷薇属植物演化过程中具有重要的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号