首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested the ability of normal osteoclast progenitors found in neonatal liver and bone marrow to develop into functional osteoclasts when co-cultured with metatarsals from newborn osteopetrotic rabbits; the latter inherit an osteoclast incompetence resistant to cure by bone marrow transplantation. This system, developed by Burger and colleagues, has been shown to produce normal, functional osteoclasts when used with normal metatarsals. Our study tested the competence of the mutant skeletal microenvironment for differentiation of normal osteoclasts. Mutant and normal metatarsals were cultured alone or with normal liver, spleen, or bone marrow for up to 14 days. All normal cultures possessed a marrow cavity and contained numerous osteoclasts with cytochemical characteristics (tartrate-resistant acid phosphatase) of active cells. Mutant metatarsals co-cultured with normal spleen, liver, or bone marrow failed to develop a marrow cavity (evidence in itself of reduced bone resorption) and had osteoclasts reduced in both numbers and cytochemically detectable activity. Similar metatarsal cultures of an osteopetrotic rat mutation (incisors--absent) curable by bone-marrow transplantation exhibited marrow cavity development in mutant metatarsals co-cultured with normal spleen. These data suggest that the skeletal environment of osteopetrotic rabbits contains an inhibitor or lacks a promoter of osteoclast differentiation and function.  相似文献   

2.
Osteoclast-mediated bone resorption is increased in response to 1,25 dihydroxyvitamin D (1,25[OH]2D or calcitriol). Osteopetrosis is a metabolic bone disease characterized by defective, osteoclast-mediated bone resorption, which co-exists with elevated serum 1,25-(OH)2D levels in some osteopetrotic children and animals. We examined the effects of high doses of calcitriol on osteoclast number and cytochemistry in both normal and osteopetrotic (os) rabbits. Calcitriol was continuously infused at doses of 0.5, 2.5, or 25 micrograms/kg/day via subcutaneously implanted osmotic minipumps for a period of 7 days. Following treatment, the proximal tibial metaphyses were processed for histomorphometric and cytochemical analyses. Sections were stained for tartrate-resistant acid phosphatase (TrAP) or acid ATPase (TraATPase). Osteoclasts were significantly reduced in untreated os rabbits compared with age-matched normal littermates between birth and 3 weeks of age (41-46% of normal). Whereas most normal osteoclasts (85%) stained heavily for TrAP or TraATPase, less than half of os osteoclasts were heavily stained for these acid hydrolases. Infusions of 1,25(OH)2D resulted in elevations of osteoclast numbers in both normal and os rabbits, but the number of osteoclasts remained significantly lower in mutants than in normal littermates at any given dose. Calcitriol infusions also resulted in a significant increase in the percentage of os osteoclasts staining heavily for TrAP and TraATPase. These results suggest that in response to 1,25(OH)2D normal osteoclasts increase their production of acid hydrolases before increasing cell numbers and that, in spite of high levels of endogenous calcitriol, os rabbits can respond to exogenous 1,25(OH)2D as evidenced by increased osteoclast number and cytochemical staining, even though these osteoclasts fail to resorb the excess skeletal matrix.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Macrophages and osteoclasts derive from related cell lines. In osteopetrotic mutants the function of osteoclasts is greatly reduced compared to that in normal animals or children and macrophage function is variably affected depending upon the mutation. To further explore macrophage function in osteopetrosis we examined the regulation of cyclic AMP production in macrophages from mutants and normal littermates of the osteopetrotic stock incisors-absent (ia) in the rat. Surface stimulation by latex particles of elicited peritoneal macrophages from normal or osteopetrotic (ia) mutant rats caused an identical increase in the accumulation of cyclic AMP. This effect was inhibited in normal animals by coincubation of macrophages with calcitonin (CT) but this inhibition was either absent or less marked in macrophages from mutant littermates. In contrast to human monocytes preincubation of rat macrophages with pertussis toxin did not relieve this inhibition. This implies that rat peritoneal macrophages respond to CT by a different mechanism. These results demonstrate altered macrophage function in osteopetrotic animals and may be functionally related to the reduced CT binding previously described in ia osteoclasts. Furthermore, the coexistence of reduced function of macrophages and osteoclasts in the ia mutation suggests that macrophages and osteoclasts share a common progenitor.  相似文献   

4.
Osteopetrosis, a metabolic bone disease characterized by a generalized sclerosis of the skeleton, is inherited as an autosomal recessive in a number of mammalian species. The pathogenesis of congenital osteopetrosis is mediated by a reduction in bone resorption as a result of decreased osteoclast function. This hypothesis is based on both functional and structural evidence of reduced bone resorption in all mutations examined to date. The present study examined the histology of cartilage and bone, the ultrastructure of osteoclasts, and the morphology of mineralized bone surfaces in a lethal osteopetrotic mutation, the osteosclerotic (oc) mouse. Histologically, epiphyseal cartilage growth plates, especially the hypertrophic zone, are markedly thickened in oc mice and metaphyses contain excessive osteoid, features characteristic of rickets. Transmission electron microscopy revealed that less than one-quarter of osteoclasts in oc mice demonstrated evidence of ruffled border formation compared with three-quarters of the osteoclasts in normal littermates. In mutants, ruffled borders were less elaborate and cytoplasmic processes penetrated into bone surfaces, suggesting that bone may be removed by mechanical rather than by enzymatic means. There was little morphological evidence of cartilage degradation and broad laminae limitantes persisted in mutants. Mineralized surfaces that undergo resorption in normal mice showed no evidence of bone resorption by scanning EM in mutants. The presence of a rachitic condition, the observations of reduced bone resorption, and the possible contribution of undermineralized matrices to decreased bone resorption are characteristics of the osteosclerotic mutation which suggest that it is a unique osteopetrotic mutant in which to study both the development and regulation of skeletal metabolism.  相似文献   

5.
It is well known that cranial flat bone experiences growth and development at the sutural interface, which is regarded as a neutral zone to control mechanical stimuli. In osteopetrotic (op/op) mice, meanwhile, cranial deformation is produced by the deficiency of osteoclasts and the subsequent defect of bone resorption. It would be a reasonable assumption that such disturbance in bone remodeling affects sutural modification and the relevant cranial flat bone development. The present study was thus conducted to examine histological features of the sagittal sutures in op/op mice, with special reference to the relevant bone remodeling. The sagittal sutures in 10-, 15-, 30-, and 60-day-old normal and op/op mice were observed microscopically. Furthermore, osteoclastic activity was evaluated on the sections stained with tartrate-resistant acid phosphatase (TRAP). The sutures of 15-day-old op/op mice showed stenosis and synostosis, and less-developed collagen fibers associated with an irregular arrangement of fibroblasts, whereas these changes were rarely found in normal mice. Osteoclasts were hardly detected in the parietal bones around the sutures of op/op mice, although the number was numerous in normal mice. These results emphasize that congenital deficiency in osteoclast produces unbalanced bone remodeling at the sutural interface and on the surfaces of the cranial bones, which is assumed to be closely related to cranial bone deformity in op/op mice.  相似文献   

6.
The resorbing osteoclast is an exceptional cell that secretes large amounts of acid through the coupled activity of a v-type H+-ATPase and a chloride channel that both reside in the ruffled membrane. Impairment of this acid secretion machinery by genetic mutations can abolish bone resorption activity, resulting in osteopetrotic phenotypes. Another key feature of osteoclasts is the transport of high amounts of calcium and phosphate from the resorption lacuna to the basolateral plasma membrane. Evidence exists that this occurs in part through entry of these ions into the osteoclast cytosol. Handling of such large amounts of a cellular messenger requires elaborate mechanisms. Membrane proteins that regulate osteoclast calcium homeostasis and the effect of calcium on osteoclast function and survival are therefore the second main focus of this review.  相似文献   

7.
The op/op mouse, in which the M-CSF gene is mutated, has greatly reduced numbers of macrophages and osteoclasts. We assessed the ability of M-CSF to induce osteoclast and macrophage formation in op/op hemopoietic cells in vitro. Osteoclast production was undetectable in op/op cell cultures, but was restored by M-CSF at concentrations approximately an order of magnitude higher than those that induced macrophages. In normal hemopoietic tissue M-CSF similarly increased macrophage numbers, but inhibited osteoclast formation. Despite cure of the macrophage defect, neither interleukin 3 nor granulocyte-macrophage CSF were able to induce osteoclastic differentiation in op/op cells. The results suggest that M-CSF induces osteoclastic differentiation but that macrophages, which are also induced by M-CSF, suppress osteoclast differentiation. Macrophages induced by other cytokines seem unable to contribute to osteoclast-formation.  相似文献   

8.
Osteoclast development was studied in cell cultures prepared from calvaria of neonatal osteopetrotic (mi/mi) mice or their normal littermates, using tartrate-resistant acid phosphatase (TRAPase), as an osteoclast marker. In cultures from normal mice, treatment with 10 nM PTH for 4-5 days stimulated the formation of osteoclasts. However in cultures from mi/mi mice, this response was only 7% +/- 5% that of normal mice and they were significantly smaller than osteoclasts of normal mice. Mineralized bone particles elicited osteoclast development in cultures from both normal and mi/mi mice, and osteoclast size was identical for both genotypes. Seventy-eight to 96% of the TRAPase-positive cells bound 125I-CT, as demonstrated by autoradiography. 125I-CT binding characteristics were identical in cultures from both genotypes treated with bone particles, exhibiting a Kd of 3.3-3.6 x 10(-10) M. Addition of PTH stimulated 45Ca release from the added bone particles only in the case of cultures prepared from normal mice, and CT inhibited this response. Cells from normal mice were capable of excavating bone from the surface of smooth cortical bone wafers, but such excavations were rarely seen in the case of calvarial cells from mi/mi mice. Thus, PTH-driven differentiation of osteoclasts is arrested in calvarial cell cultures from mi/mi mice, but mi/mi preosteoclasts retain the ability to express certain osteoclast markers in response to bone derived signals. We hypothesize that the lack of activity of mi/mi osteoclasts is due to the failure of mi/mi preosteoclasts to respond appropriately to resorptive agents, or to cytokines elicited by these agents.  相似文献   

9.
Osteopetrosis is a group of metabolic bone diseases characterized by reductions in osteoclast development and/or function. These aspects of osteoclast biology are known to be influenced by osteoblasts and their products. To ascertain whether osteoblast dysfunction contributes to aberrations in the structural and functional properties of osteoclasts in osteopetrosis, we systematically examined gene expression as reflected by mRNA levels for a series of cell growth- and tissue-related genes associated with the osteoblast phenotype during skeletal development in normal and mutant rats of three different osteopetrotic stocks. We show that the methods used permit the reproducible isolation of undegraded total cellular RNA from bone and that mRNA levels can be reliably quantitated in these preparations. Each osteopetrotic mutation exhibits a distinct aberrant pattern of osteoblast gene expression that may be correlated with and explain some abnormalities in extracellular matrix composition, mineralization, osteoclast development, and effects of elevated serum levels of 1 alpha,25-dihydroxyvitamin D3, depending upon the mutation. Normal rats show minor variations in gene expression that reflect the genetic background (stock). This, the first comprehensive molecular analysis of osteoblast gene expression in osteopetrosis, suggests that some osteopetroses, particularly in the toothless rat, are associated with and potentially related to mechanisms associated with aberrations in osteoblast function. More generally, the present studies demonstrate alterations in gene expression as reflected by mRNA levels that are associated with functional properties of the osteoblast, particularly those contributing to the recruitment and/or differentiation of osteoclasts, thereby influencing skeletal modeling.  相似文献   

10.
The osteopetrotic (os) rabbit is a lethal mutation of autosomal recessive inheritance characterized by hypocalcemia, hypophosphatemia, fibrosis of marrow spaces, and ultrastructural abnormalities in both osteoclasts and osteoblasts. Procedures involving the transplantation of cells from normal hemopoietic tissues, which are sources of osteoclast precursors, are known to cure osteopetrosis in several mutations including some children. We tested the ability of transplanted bone marrow and/or spleen from normal littermates to reverse the skeletal sclerosis in os rabbits. Treatment of 15 neonatal mutants consisted of immunosuppression by whole-body irradiation followed by transplantation of normal bone marrow and/or spleen cell suspensions. This treatment failed to prolong life span or to cure osteopetrosis judged radiographically and histologically for up to 3 weeks posttreatment, the longest time of survival. These data indicate that transplantation of stem cells from multiple hemopoietic tissues, procedures known to cure osteopetrosis in other mutations, is not effective in the os rabbit. These results support the hypothesis that the skeletal microenvironment is not capable of supporting the development and function of normal osteoclasts in this mutation.  相似文献   

11.
Bone resorption by osteoclasts is necessary to maintain bone homeostasis. Osteoclast differentiation from hematopoietic progenitors and their activation depend on M-CSF and RANKL, but also requires co-stimulatory signals acting through receptors associated with DAP12 and FcRgamma adaptors. Dap12 mutant mice (KDelta75) are osteopetrotic due to inactive osteoclasts but, surprisingly, these mice are more sensitive than WT mice to bone loss following an ovariectomy. Because estrogen withdrawal is known to disturb bone mass, at least in part, through lymphocyte interaction, we looked at the role of mature lymphocytes on osteoclastogenesis and bone mass in the absence of functional DAP12. Lymphocytes were found to stimulate an early osteoclast differentiation response from Dap12-deficient progenitors in vitro. In vivo, Rag1-/- mice lacking mature lymphocytes did not exhibit any bone phenotype, but lost their bone mass after ovariectomy like KDelta75 mice. KDelta75;Rag1-/- double mutant female mice exhibited a more severe osteopetrosis than Dap12-deficient animals but lost their bone mass after ovariectomy, like single mutants. These results suggest that both DAP12 and mature lymphocytes act synergistically to maintain bone mass under physiological conditions, while playing similar but not synergistic co-stimulatory roles in protecting bone loss after gonadal failure. Thus, our data support a role for lymphocytes during osteoclast differentiation and suggest that they may function as accessory cells when regular osteoclast function is compromised.  相似文献   

12.
Immunolocalization of beta 3 subunit of integrins in osteoclast membrane   总被引:1,自引:0,他引:1  
Utilizing isolated and cultured osteoclasts it has been possible to establish that they adhere to the substrate through specialized close contact areas, the podosomes, that in fully spread osteoclasts in vitro or in vivo are located within the clear zone. The cytochemical organization of podosomes has further been investigated in order to elucidate their possible involvement in the control of substrate recognition, that precedes bone resorption. An immunofluorescence investigation, performed utilizing human osteoclasts, shows that the beta 2 integrin subunit that in human monocytes is expressed and located in podosomes is absent in human osteoclasts, while the beta 3 subunit of the vitronectin receptor is expressed by osteoclasts, but not by other monocyte-derived cells and colocalizes with vinculin around the actin core of the podosome. The beta 1 subunit of the fibronectin receptors is also found, but with a diffuse pattern, in the osteoclast membrane. These results indicate that podosomes, while present in different cell types, may have in the osteoclast an unique cytochemical organization related to the peculiar function of this cell.  相似文献   

13.
The toothless (tl) rat is a nonlethal osteopetrotic mutation characterized by the presence of few osteoclasts and the failure to be cured by bone-marrow transplantation. We examined the skeletal biology of tl rats and normal littermates up to 6 weeks after birth. Osteoclasts in tl rats were small, reduced 25-fold in number, and had greatly reduced concentrations of acid hydrolases. Bone shape internally and externally reflected reduced bone resorption, and tl rats were hypophosphatemic and mildly hypocalcemic at 2 weeks. These data indicate that the basic defect in tl rats is one of differentiation of osteoclasts and, coupled with the observation that normal bone-marrow cells cannot develop into osteoclasts in the tl skeleton, suggest that the defect lies in the skeletal micro-environment.  相似文献   

14.
The most severe form of bone autosomal recessive osteopetrosis both in humans and in the gray-lethal (gl/gl) mouse is caused by mutations in the Ostm1 gene. Although osteopetrosis is usually associated with a defect in the hematopoietic-derived osteoclast cells, this study determined that Ostm1 is expressed in many hematopoietic cells of the myeloid and lymphoid B- and T-lineages. Hematopoiesis in gl/gl mice is characterized by a marked expansion of the osteoclast lineage but also by deregulation of the lymphoid lineages with a decrease in B-lymphoid cell populations and altered distribution in T-lymphoid double and single CD4 CD8-positive cells. In committed gl/gl osteoclasts, specific Ostm1 transgene targeting showed a requirement of additional factors and/or cells for normal osteoclast function, and importantly, defined the gl osteopetrotic defect as non-cell autonomous. By contrast, gl/gl osteoclast, B- and T-lymphoid lineage phenotypes were rescued when Ostm1 is expressed under PU.1 regulation from a bacterial artificial chromosome transgene, which established an essential role for Ostm1 in hematopoietic cells in addition to osteoclasts. Together these experiments are the first to demonstrate the existence of hematopoietic crosstalk for the production of functional and active osteoclasts.  相似文献   

15.
16.
17.
The osteopetrotic rabbit: skeletal cytology and ultrastructure   总被引:1,自引:0,他引:1  
The lethal, autosomal recessive osteopetrotic mutation in the rabbit, osteosclerosis (os/os), has recently been made available for experimental investigation. We have examined the cytology and ultrastructure of skeletal cells in mutants and report abnormalities in osteoblasts, osteocytes, and osteoclasts. Mutant osteoclasts lack a well-defined ruffled border and show few morphological signs of bone resorption. Osteoblasts in mutants form bone in neonatal life but show signs of degeneration by 2 weeks after birth. Mutant osteoblasts and osteocytes contain large, electron-dense cytoplasmic inclusions. External surfaces of mutant long bones show no evidence of bone resorption by scanning electron microscopy, and fibrosis of intertrabecular spaces is a prominent feature in mutants. These data, considered with recent evidence that the functions of osteoblasts and osteoclasts are interrelated, suggest that reduced bone resorption, a characteristic feature of osteopetrosis, may be related to osteoblast incompetence in this mutation.  相似文献   

18.
19.
The midpalatal suture was observed histologically in both toothless osteopetrotic (op/op) and normal (control) mice. The normal mice had a mature sutural structure, which consists of a well-developed cartilage cell zone and palatal bone. In contrast, the thickness of the cartilage cell zone was substantially greater in the op/op mice than that in the controls. Moreover, the cartilage cells in the op/op mice were frequently found in the palatal bone as well as in the sutural space, exhibiting an imperfect fusion. It seems that immature fusion at the sutural interface in the op/op mice is related to a decrease in biting or masticatory force accompanied by the failure of tooth eruption in addition to an essential defect in osteoclast differentiation, which is a congenital symptom in op/op mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号