首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Four chelating surfactants were synthesized in a few steps from octyl D-glucosides. Their main interfacial properties were determined, and their flotation properties were evaluated on a laboratory scale using Fe(III) as a model contaminant metal. The performance on metal extraction was mainly dependent on the complexing functional group, but the surfactant efficiency was also important.  相似文献   

2.
In recent years, several new chelating reagents have been synthesized and tested for their collecting power in sulfide and non-sulfide minerals flotation. Many researchers have indicated that chelating reagents have the advantage of offering better selectivity and specificity as flotation collectors. Therefore, density functional theory (DFT) calculations at the B3LYP/6–31G(d,p) level were performed to investigate the observed activities of 2-mercaptobenzothiazole, 6-methyl-2-mercaptobenzothiazole and 6-methoxy-2-mercaptobenzothiazole as the most popular flotation collectors. The molecular properties and activity relationships were determined by the HOMO localizations, the HOMO energies, Mulliken charges and the electrostatic potentials at the thioamide functional group, which is the key site in the forming efficiency of the collectors studied. It is concluded that these quantities can be used successfully for understanding the collecting abilities of 2-mercaptobenzothiazoles. The results obtained theoretically are consistent with the experimental data reported in the literature.  相似文献   

3.
微生物对植物源中药有效成分形成的影响   总被引:1,自引:0,他引:1  
植物体内外生长着大量微生物,它们主要从表皮侵入植物体.植物识别侵入的微生物后,会形成次生代谢产物来抵抗微生物的侵入,这些代谢产物为我们提供了丰富的药源.血竭、沉香、皮用中药、组培生产药用成分及一些栽培中药中有效成分的形成都与微生物有密切关系.微生物在中药上的应用有很多问题急待解决,深入研究微生物对中药的影响对提高中药质量具有重要作用.  相似文献   

4.
叶际微生物研究进展   总被引:5,自引:0,他引:5  
植物的叶际是一个复杂的生态系统,微生物的生存环境条件严苛。其可被利用的营养成分较少,温湿度波动大。此外,较强的紫外线辐射对于叶际微生物的生存也有很大影响。但是植物叶际却有着丰富的微生物多样性,其中还有许多有益细菌和真菌。它们通过和植物寄主的互作,改善着叶际微生物的栖居环境;其对植物病原体的拮抗亦可提高植物的抗病性。植物叶际的微生物还可以产生激素以促进植物生长,还有一些微生物可以利用农药等污染有机物作为营养物质,在污染物的环境生物修复方面显示巨大的潜力。此外,叶际微生物作为一种生态学指标在生态稳定与环境安全评价中开始发挥显著的作用。  相似文献   

5.
Soil pollution is an unavoidable evil; many crude-oil exploring communities have been identified to be the most ecologically impacted regions around the world due to hydrocarbon pollution and their concurrent health risks. Several clean-up technologies have been reported on the removal of hydrocarbons in polluted soils but most of them are either very expensive, require the integration of advanced mechanization and/or cannot be implemented in small scale. However, “Bioremediation” has been reported as an efficient, cost-effective and environment-friendly technology for clean-up of hydrocarbon”s contaminated soils. Here, we suggest the implementation of synergistic mechanism of bioremediation such as the use of rhizosphere mechanism which involves the actions of plant and microorganisms, which involves the exploitation of plant and microorganisms for effective and speedy remediation of hydrocarbon”s contaminated soils. In this mechanism, plant”s action is synergized with the soil microorganisms through the root rhizosphere to promote soil remediation. The microorganisms benefit from the root metabolites (exudates) and the plant in turn benefits from the microbial recycling/solubilizing of mineral nutrients. Harnessing the abilities of plants and microorganisms is a potential headway for cost-effective clean-up of hydrocarbon”s polluted sites; such technology could be very important in countries with great oil producing activities/records over many years but still developing.  相似文献   

6.
The possibility of using microorganisms to clean oiled iron scale of metallurgical production was investigated with the goal of recuperation. A stable microbial association growing on mineral oil as the sole carbon source was isolated from a sample from oiled iron scale taken directly from a metallurgical plant. For microbial cultures isolated from this association, the taxonomic position, as well as their morphological and cultural characteristics, were determined. The microorganisms belonged to the genera Luteimonas, Alcanivorax, Flavobacterium, and Pseudomonas. Microbial associations oxidizing mineral oil were found to contain some microorganisms incapable of its utilization, which stimulated the hydrocarbon-oxidizing microflora. Application of the isolates, as well as of the strains from microbial collections, resulted in a 58% decrease in residual oil content in treated samples of the oiled iron scale.  相似文献   

7.
Interactions between pathogenic microorganisms and their hosts are varied and complex, encompassing open-field scale interactions to interactions at the molecular level. The capacity of plant pathogenic bacteria and fungi to cause diseases in human and animal systems was, until recently, considered of minor importance. However, recent evidence suggests that animal and human infections caused by plant pathogenic fungi, bacteria and viruses may have critical impacts on human and animal health and safety. This review analyses previous research on plant pathogens as causal factors of animal illness. In addition, a case study involving disruption of type III effector-mediated phagocytosis in a human cell line upon infection with an opportunistic phytopathogen, Pseudomonas syringae pv. tomato, is discussed. Further knowledge regarding the molecular interactions between plant pathogens and human and animal hosts is needed to understand the extent of disease incidence and determine mechanisms for disease prevention.  相似文献   

8.
Biodegradation is increasingly being considered as a less expensive alternative to physical and chemical means of decomposing organic pollutants. Pathways of biodegradation have been characterized for a number of heterotrophic microorganisms, mostly soil isolates, some of which have been used for remediation of water. Because cyanobacteria are photoautotrophic and some can fix atmospheric nitrogen, their use for bioremediation of surface waters would circumvent the need to supply biodegradative heterotrophs with organic nutrients. This paper demonstrates that two filamentous cyanobacteria have a natural ability to degrade a highly chlorinated aliphatic pesticide, lindane (gamma-hexachlorocyclohexane); presents quantitative evidence that this ability can be enhanced by genetic engineering; and provides qualitative evidence that those two strains can be genetically engineered to degrade another chlorinated pollutant, 4-chlorobenzoate.  相似文献   

9.
In this study, the effect of different flotation operating variables, such as pH, pulp density, collector concentration, impeller speed, frother concentration, and air flow rate, on selective flotation of heavy metals, especially Cu, from fine dredged sediment has been evaluated. Parameter optimization was done using the single parameter at a time method and response surface method (RSM) using Box-Behnken design and was assessed in terms of metal removal, metal recovery, metal concentration factor, and mass recovery. Among the operating variables studied, pulp pH, collector concentration, pulp density, and impeller speed were found to have significant effect on metal flotation selectivity. A validation study of the response surface model showed its aptness to predict the optimum values of operating parameters and their interactions on flotation responses which evaluate flotation performance. Flotation experiments under optimum operating parameters showed good flotation selectivity for Cu (3.3 ± 0.2) with a mass recovery of (mass of sediment in the froth) 14.1 ± 1 and Cu removal of 37.4 ± 3.6%.  相似文献   

10.
The microbial dynamics associated with granular activated carbon (GAC) in a pilot water treatment plant were investigated over a period of 16 months. Microbial populations were monitored in the influent and effluent waters and on the GAC particles by means of total plate counts and ATP assays. Microbial populations between the influent and effluent waters of the GAC columns generally increased, indicating microbial growth. The dominant genera of microorganisms isolated from interstitial waters and GAC particles were Achromobacter, Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Corynebacterium, Micrococcus, Microcyclus, Paracoccus, and Pseudomonas. Coliform bacteria were found in small numbers in the effluents from some of the GAC columns in the later months of the study. Oxidation of influent waters with ozone and maintenance of aerobic conditions on the GAC columns failed to appreciably enhance the microbial growth on GAC.  相似文献   

11.
The microbial dynamics associated with granular activated carbon (GAC) in a pilot water treatment plant were investigated over a period of 16 months. Microbial populations were monitored in the influent and effluent waters and on the GAC particles by means of total plate counts and ATP assays. Microbial populations between the influent and effluent waters of the GAC columns generally increased, indicating microbial growth. The dominant genera of microorganisms isolated from interstitial waters and GAC particles were Achromobacter, Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Corynebacterium, Micrococcus, Microcyclus, Paracoccus, and Pseudomonas. Coliform bacteria were found in small numbers in the effluents from some of the GAC columns in the later months of the study. Oxidation of influent waters with ozone and maintenance of aerobic conditions on the GAC columns failed to appreciably enhance the microbial growth on GAC.  相似文献   

12.
Chunghyoung Lee 《Bioethics》2020,34(5):542-548
The view that human beings begin to exist at fertilization (namely conceptionism) faces a serious challenge from the twinning argument, that identical twins coming from the same zygote must be numerically distinct from the zygote and so did not exist at fertilization. Recently, some philosophers have claimed that the twinning argument rests on a particular metaphysical theory of persistence, namely endurantism, on which a human being, for example, is wholly present at every moment of her existence. And we can easily refute the argument, they claim, by employing perdurantism or exdurantism, according to which a human being is a temporally extended entity with temporal parts or a momentarily existing stage who has other momentarily existing stages as counterparts. I argue that such claims are mistaken. The twinning argument does not rest on endurantism and can be formulated in terms of perdurantism to provide a good reason for perdurantists to reject conceptionism. And exdurantism does not have any advantage in defending conceptionism either, for it already concedes more than what the twinning argument aims to show.  相似文献   

13.
The marine environment provides an opportunity to examine population structure in species with high dispersal capabilities and often no obvious barriers to genetic exchange. In coastal waters of the western North Atlantic, common bottlenose dolphins, Tursiops truncatus, are a highly mobile species with a continuous distribution from New York to Florida. We examine if the highly mobile nature coupled with no obvious geographic barriers to movement in this region result in a large panmictic population. Mitochondrial control region sequences and 18 microsatellite loci indicate dolphins are partitioning the habitat both latitudinally and longitudinally. A minimum of five genetically differentiated populations were identified among 404 samples collected in the range of New Jersey to northern Florida using both genetic marker types, some inhabiting nearshore coastal waters and others utilizing inshore estuarine waters. The genetic results reject the hypothesis of a single stock of coastal bottlenose dolphins put forth after the 1987–1988 epizootic that caused a large‐scale die‐off of dolphins and suggest instead the disease vector was transferred from one population to the next as a result of seasonal migratory movements of some populations. These coastal Atlantic populations also differ significantly from bottlenose dolphin samples collected in coastal waters of the northern Gulf of Mexico, implying a long‐term barrier to movement between the two basins.  相似文献   

14.
Gas vesicles are hollow, proteinaceous structures found in some strains of cyanobacteria. They have been used to increase the oxygen supply and improve the cultivation of shear-sensitive mammalian cells. However, the production and, especially, collection of cells and gas vesicles were laborious and ineffective. In this study we examined the use of the cationic polymer, polyethyleneimine (PEI), for improving the cell harvesting by flocculation and flotation. PEI was examined to determine the appropriate molecular weight, pH range, and dosage. The dose of 20–30 mg/l of PEI with molecular weight of 25,000 in the pH range of 6.0–8.5 was found to provide effective and efficient cell flocculation and flotation. As the PEI dose increased, the rate of flotation increased but the clearance (collection) efficacy declined slightly. The culture samples used in this study were taken from light-limiting continuous culture systems at different dilution rates (0.05–0.24 h−1). Without PEI addition, the cells at dilution rates lower than 0.1 h did not float while those at higher dilution rates would float slowly. With PEI addition, the flocculated cells at the dilution rate of 0.05 h−1 sank and those of higher dilution rates would float and the flotation rate increased with increasing specific growth rate. Nonetheless, PEI flocculation and flotation (or sedimentation) could be used to harvest cells at a wide range of growth states.  相似文献   

15.
Perspectives of microbial oils for biodiesel production   总被引:7,自引:0,他引:7  
Biodiesel has become more attractive recently because of its environmental benefits, and the fact that it is made from renewable resources. Generally speaking, biodiesel is prepared through transesterification of vegetable oils or animal fats with short chain alcohols. However, the lack of oil feedstocks limits the large-scale development of biodiesel to some extent. Recently, much attention has been paid to the development of microbial, oils and it has been found that many microorganisms, such as algae, yeast, bacteria, and fungi, have the ability to accumulate oils under some special cultivation conditions. Compared to other plant oils, microbial oils have many advantages, such as short life cycle, less labor required, less affection by venue, season and climate, and easier to scale up. With the rapid expansion of biodiesel, microbial oils might become one of potential oil feedstocks for biodiesel production in the future, though there are many works associated with microorganisms producing oils need to be carried out further. This review is covering the related research about different oleaginous microorganisms producing oils, and the prospects of such microbial oils used for biodiesel production are also discussed.  相似文献   

16.
Results of experimental retrieval of plant remains (both charred modern and fossil) from three sediment types (clay, gravel and sandy loam) carried out by environmental archaeologists from the Ancient Monuments Laboratory and the Central Archaeology Service, English Heritage, are reported. For each sediment type, six different treatments were carried out using three flotation machines of the Siraf type, two other machines in use in two archaeological units and one experimental machine. The results show that there is invariably considerable discrepancy between the amount of plant material present and that recovered, that the Serif-type machine is among the best currently available and that pretreatment of particular mineral soils may improve recovery of plant macrofossil material.  相似文献   

17.
Microorganisms play a central role in the regulation of ecosystem processes, and they comprise the vast majority of species on Earth. With recent developments in molecular methods, it has become tractable to quantify the extent of microbial diversity in natural environments. Here we examine this revolution in our understanding of microbial diversity, and we explore the factors that contribute to the seemingly astounding numbers of microbial taxa found within individual environmental samples. We conducted a meta-analysis of bacterial richness estimates from a variety of ecosystems. Nearly all environments contained hundreds to thousands of bacterial taxa, and richness levels increased with the number of individuals in a sample, a pattern consistent with those reported for nonmicrobial taxa. A cursory comparison might suggest that bacterial richness far exceeds the richness levels typically observed for plant and animal taxa. However, the apparent diversity of bacterial communities is influenced by phylogenetic breadth and allometric scaling issues. When these features are taken into consideration, the levels of microbial diversity may appear less astounding. Although the fields of ecology and biogeography have traditionally ignored microorganisms, there are no longer valid excuses for neglecting microorganisms in surveys of biodiversity. Many of the concepts developed to explain plant and animal diversity patterns can also be applied to microorganisms once we reconcile the scale of our analyses to the scale of the organisms being observed. Furthermore, knowledge from microbial systems may provide insight into the mechanisms that generate and maintain species richness in nonmicrobial systems.  相似文献   

18.
Biofilm could be defined as a complex communities of microorganisms seen affixed to surfaces, they form clusters without sticking to any surface and buried firmly in an extracellular matrix (ECM). This matrix is formed by microorganisms in the formation of either extracellular polymeric substances (EPSS) or extracellular polymer. Many reviews have addressed the negative consequences of biofilm production in the food industry, among which we talk about biofilms being responsible for spoilage microorganisms and foodborne pathogens such as Listeria monocytogenes, Bacillus cereus etc. These contamination could be linked to biofilms presence in the processing plant. Although researches have tried conferring solutions to these challenges in the food industry, however, in this review we have tried to focus on the positive impact of biofilms formed in the food industry. It is critically expedient while trying to find the solution to the challenges of biofilm in the food industry to develop and give a major focus on the advantages and positive impact biofilm has in the food industry, which has been greatly neglected. Hence in this article, we have highlighted some positive impacts of biofilms formed in the food industry, like enhancing plant health and productivity of food products, as an agent of water and wastewater treatment in the food industry, as a tool in reducing the amount of excess sludge in the wastewater treatment plant. The development of edible biofilms, fermented food products and the production of biodegradable food packaging are also part of biofilms beneficial roles in the food industries.  相似文献   

19.
In the past few decades groups of scientists have focused their study on relatively new microorganisms called endophytes. By definition these microorganisms, mostly fungi and bacteria, colonise the intercellular spaces of the plant tissues. The mutual relationship between endophytic microorganisms and their host plants, taxanomy and ecology of endophytes are being studied. Some of these microorganisms produce bioactive secondary metabolites that may be involved in a host-endophyte relationship. Recently, many endophytic bioactive metabolites, known as well as new substances, possesing a wide variety of biological activities as antibiotic, antitumor, antiinflammatory, antioxidant, etc. have been identified. The microorganisms such as endophytes may be very interesting for biotechnological production of bioactive substances as medicinally important agents. Therefore the aim of this review is to briefly characterize endophytes and summarize the structuraly different bioactive secondary metabolites produced by endophytic microorganisms as well as microbial sources of these metabolites and their host plants.  相似文献   

20.
食微线虫对植物生长及土壤养分循环的影响   总被引:15,自引:0,他引:15  
近二十多年来, 土壤动物的生态功能受到广泛重视。越来越多的证据表明, 土壤动物和微生物间的相互作用对土壤生态系统过程和植物生长起着重要的调节作用。本文综述了食细菌线虫和食真菌线虫对土壤微生物、土壤氮矿化和植物生长的影响。大量研究发现, 食细菌线虫和食真菌线虫都有助于土壤氮素等养分矿化, 从而促进植物生长。这种作用主要是线虫通过取食活动加速微生物周转, 并通过代谢分泌和释放微生物所固持的养分而实现的。但这种作用会因不同的线虫、微生物和植物的种类以及土壤基质的C/N营养状况而异, 此外还受线虫的营养类群及其与其他土壤动物之间复杂关系的影响。今后应该加强以下几方面的研究: (1)深入研究线虫、微生物和植物之间相互作用的机制; (2) 增加控制实验系统的复杂性, 研究线虫不同功能群之间及其与其他土壤动物之间的关系; (3)加强长期实验和观察, 在较长的时间尺度上了解线虫的生态功能; (4)加强对不同生态系统的研究, 在更大的空间尺度上综合了解土壤线虫的生态功能; (5)在全球气候变化的背景下了解土壤线虫的响应, 并预测土壤线虫对全球变化的反馈。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号