首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Effect of glycerol on behaviour of amylose and amylopectin films   总被引:2,自引:0,他引:2  
The effect of water and glycerol on sorption and calorimetric Tgs of amylose and amylopectin films were examined. The mechanical properties of the films were also analysed under varying glycerol content at constant RH and temperature. Based on changes observed in sorption and tensile failure behaviour glycerol was strongly interacted with both starch polymers. Even though water was observed to be more efficient plasticiser than glycerol, glycerol also affected the Tg. But in spite of the observed decrease in Tg under low glycerol contents brittleness of the films increased based on changes in elongation. The increase in brittleness of both polymers was also in agreement with their actual behaviour. At around 20% glycerol great change in the rheological properties occurred. Above 20% glycerol amylose film showed much larger elongation than the low glycerol content films and was still strong but the amylopectin produced a very week and non-flexible film.  相似文献   

2.
Banana, maize, potato and sagu starches were boiled in the presence or absence of plasticizer (glycerol), producing edible films. In vitro digestibility features, amylose content and amylopectin gel filtration behavior of films and parent starches were evaluated. Available starch contents were lower in glycerol-containing films, due to dilution by the plasticizer. Total resistant starch increased in the maize starch-based film but decreased markedly in those prepared from the other starches. Amylose content of banana starch (40%) was about double those of the other starches. Nonetheless, all starch films exhibited similar retrograded resistant starch content. Although film production led to increased -amylolysis rates, these were further augmented by additional film heating, thereby indicating that film-manufacture did not promote complete starch gelatinization. Gel filtration chromatography suggested amylopectin depolymerization after film-making, which may also increase digestion kinetics. The presence of glycerol in the films slowed down starch digestion, a feature of potential dietetic use.  相似文献   

3.
This work describes a novel approach to produce amylopectin films with enhanced properties by the addition of microfibrillated cellulose (MFC). Aqueous dispersions of gelatinized amylopectin, glycerol (0–38 wt%) and MFC (0–10 wt%) were cast at ambient temperature and 50% relative humidity and, after 10 days of storage, the tensile properties were investigated. The structure of the composite films was revealed by optical, atomic force and transmission electron microscopy. The moisture content was determined by thermogravimetry and the temperature-dependent film rigidity was measured by thermal mechanical analysis. Synchrotron simultaneous small- and wide-angle X-ray measurements revealed that the solutions had to be heated to above 85 °C in order to achieve complete gelatinization. Optical microscopy and atomic force microscopy revealed uniformly distributed MFC aggregates in the films, with a length of 10–90 μm and a width spanning from a few hundred nanometers to several microns. Transmission electron microscopy showed that, in addition to aggregates, single MFC microfibrils were also embedded in the amylopectin matrix. It was impossible to cast amylopectin films of sufficient quality with less than 38 wt% glycerol. However, when MFC was added it was possible to produce high quality films even without glycerol. The film without glycerol was stiff and strong but not brittle. It was suggested that this remarkable effect was due to its comparatively high moisture content. Consequently MFC acted both as a “conventional” reinforcement because of its fibrous structure and also indirectly as a plasticiser because its presence led to an increase in film moisture content.  相似文献   

4.
Films of potato starch, amylose, and amylopectin and blends thereof were prepared by solution casting and examined using X-ray diffraction, light microscopy, transmission electron microscopy, and differential scanning calorimetry. Amylose films had a relative crystallinity of about 30% whereas amylopectin films were entirely amorphous. Blending of amylose and amylopectin resulted in films with a considerably higher degree of crystallinity than could be predicted. This is explained by cocrystallization between amylose and amylopectin and possibly by crystallization of amylopectin. The crystallized material gave rise to an endotherm detected with differential scanning calorimetry. The enthalpy and peak temperature of the transition also increased as the water content decreased. When the amylose proportion in the blends was low, separate phases of amylose and amylopectin were observed by light microscopy. At higher amylose proportions, however, the phase separation was apparently prevented by amylose gelation and the formation of a continuous amylose network. The amylose network in the films, observed with transmission electron microscopy, consisted of stiff strands and open pores and became less visible as the amylose proportion decreased. The water content of the films was dependent on the microstructure and the crystallinity.  相似文献   

5.
Endosperm starch and pericarp starch were isolated from maize (B73) kernels at different developmental stages. Starch granules, with small size (2–4 μm diameter), were first observed in the endosperm on 5 days after pollination (DAP). The size of endosperm-starch granules remained similar until 12DAP, but the number increased extensively. A substantial increase in granule size was observed from 14DAP (diameter 4–7 μm) to 30DAP (diameter10–23 μm). The size of starch granules on 30DAP is similar to that of the mature and dried endosperm-starch granules harvested on 45DAP. The starch content of the endosperm was little before 12DAP (less than 2%) and increased rapidly from 10.7% on 14DAP to 88.9% on 30DAP. The amylose content of the endosperm starch increased from 9.2% on 14DAP to 24.2% on 30DAP and 24.4% on 45DAP (mature and dried). The average amylopectin branch chain-length of the endosperm amylopectin increased from DP23.6 on 10DAP to DP26.9 on14DAP and then decreased to DP25.4 on 30DAP and DP24.9 on 45DAP. The onset gelatinization temperature of the endosperm starch increased from 61.3 °C on 8DAP to 69.0 °C on 14DAP and then decreased to 62.8 °C on 45DAP. The results indicated that the structure of endosperm starch was not synthesized consistently through the maturation of kernel. The pericarp starch, however, showed similar granule size, starch content, amylose content, amylopectin structure and thermal properties at different developmental stages of the kernel.  相似文献   

6.
Physico-chemical characterisation of sago starch   总被引:3,自引:0,他引:3  
The physico-chemical characteristics of various sago starch samples from South East Asia were determined and compared to starches from other sources. X-ray diffraction studies showed that all the sago starches exhibited a C-type diffraction pattern. Scanning electron microscopy showed that they consist of oval granules with an average diameter around 30 μm. Proximate composition studies showed that the moisture content in the sago samples varied between 10.6% and 20.0%, ash between 0.06% and 0.43%, crude fat between 0.10% and 0.13%, fiber between 0.26% and 0.32% and crude protein between 0.19% and 0.25%. The amylose content varied between 24% and 31%. The percentage of amylose obtained by colourimetric determination agreed well with the values obtained by fractionation procedures and potentiometric titration. Intrinsic viscosities and weight average molecular weight were determined in 1M KOH. Intrinsic viscosity for amylose from sago starches varied between 310 and 460 ml/g while for amylopectin the values varied between 210 and 250 ml/g. The molecular weight for amylose was found to be in the range of 1.41×106 to 2.23×106 while for amylopectin it was in the range of 6.70×106 to 9.23×106. The gelatinisation temperature for the sago starches studied varied between 69.4°C and 70.1°C. The exponent ‘a’ in the Mark–Houwink equation and the exponent ‘’ in the equation Rg=kM was found to be 0.80 and 0.58, respectively for amylose separated from sago starch and these are indicative of a random coil conformation. Two types of pasting properties were observed. The first was characterised by a maximum consistency immediately followed by sharp decrease in consistency while the second type was characterised by a plateau when the maximum consistency was reached.  相似文献   

7.
The effect of starch composition and concentration on the rheological properties of starch in a mixed solvent, water–DMSO, was investigated in dynamic shear and extensional mode. High amylose corn starch containing 70% amylose and 30% amylopectin, common corn starch containing 25% amylose and 75% amylopectin, and waxy corn starch containing about 99% amylopectin were used in this study. Concentrations of 2, 4, 6, and 8% (w/v) in 10% water-90% DMSO (v/v) were used for each starch type. An increase in the amylopectin content of starch from 30 to 99% caused a change in behavior from semidilute solution to viscoelastic solid at a concentration of 8% (w/v). At a concentration of 2%, an increase in the amylopectin content of starch from 30 to 99% caused a change from Newtonian to incipient gel-like behavior. Behavior at intermediate concentrations of 4 and 6% (w/v) varied from semidilute to critical gel-like with increasing amylopectin content. A power-law relaxation was observed for all concentrations of common and waxy corn starches with the slope decreasing with increase in concentrations. A 2% waxy corn starch solution displayed extension thinning behavior, while a 2% high amylose corn starch solution displayed Newtonian behavior.  相似文献   

8.
The effects of glycerol and water content on the thermal transitions of plasticized barley starch were examined using differential scanning calorimetry. The glycerol contents studied were 14, 20, 29 and 39% and the water content, obtained by conditioning in different relative humidities, varied in the range 1–28%. On the basis of the observed calorimetric glass transition temperatures and corresponding heat capacity increments it was inferred that a single phase system occurred at low water and glycerol contents, while in other cases phase separation occurred and the system was composed of starch-rich and starch-poor phases. Dynamic mechanical thermal analysis on a phase-separated sample showed mechanical loss peaks corresponding to the glass transitions of both phases. Amylopectin crystallization did not occur within 1 week of storage in mixtures having less than 20% water, indicating that glycerol interacted with starch, inhibiting crystallization of amylopectin.  相似文献   

9.
The organization of amylose and amylopectin within starch granules is still not well elucidated. This study investigates the radial distribution of amylose and amylopectin in different corn starches varying in amylose content (waxy corn starch (WC), common corn starch (CC), and 50% and 70% amylose corn starches (AMC)). Corn starches were surface gelatinized by 13 M LiCl at room temperature to different extents (approximately 10%, 20%, 30%, and 40%). The gelatinized surface starch and remaining granules were characterized for amylose content, amylopectin chain-length distribution, thermal properties, swelling power (SP), and water solubility index (WSI). Except for the outmost 10% layer, the amylose content in CC increased slightly with increasing surface removal. In contrast, amylose was more concentrated at the periphery than at the core for 50% and 70% AMC. The proportion of amylopectin A chains generally decreased while that of B1 chains generally increased with increasing surface removal for all corn starches. The gelatinization enthalpy usually decreased, except for 70% AMC, whereas the retrogradation enthalpy relatively remained unchanged for CC but increased for WC, 50% and 70% AMC with increasing surface removal. The SP and WSI increased with increasing surface removal for all corn starches, with WC showing a significant increase in SP after the removal of the outmost 10% layer. The results of this study indicated that there were similarities and differences in the distribution of amylose and amylopectin chains along the radial location of corn starch granules with varying amylose contents. More amylose-lipid complex and amylopectin long chains were present at the periphery than at the core for amylose-containing corn starches.  相似文献   

10.
Fifteen starches from different botanical sources were selected to study the influence of structural features on thermal properties and enzyme digestibility. Morphological appearance, X-ray diffraction pattern, apparent amylose content, unit-chain length distribution of amylopectin, thermal properties and enzyme digestibility of starch varied with botanical source. It was demonstrated that the distribution of unit-chains of amylopectin significantly correlated with functional properties of the starches. Gelatinization temperature of native and retrograded starches decreased and increased with a relative abundance of unit-chains with an approximate degree of polymerization (DP) of 8–12 and 16–26, respectively (P<0.01). Similar unit-chain lengths also affected the enzyme digestibility of starch granules (P<0.01).  相似文献   

11.
Antisense constructs containing cDNAs for potato starch branching enzyme (SBE) were introduced into potato (Solanum tuberosum L.). A population of transgenic plants were generated in which tuber SBE activity was reduced by between 5 and 98% of control values. No significant differences in amylose content or amylopectin branch length profiles of transgenic tuber starches were observed as a function of tuber SBE activity. Starches obtained from low SBE activity plants showed elevated phosphorous content. 31P n.m.r. analysis showed that this was due to proportionate increases in both 3- and 6-linked starch phosphates. A consistent alteration in starch gelatinisation properties was only observed when the level of SBE activity was reduced to below ˜5% of that of control values. Starches from these low SBE activity plants showed increases of up to 5 °C in d.s.c. peak temperature and viscosity onset temperature. Studies on melting of crystallites obtained from linear (1 → 4)-- -glucan oligomers suggest that an average difference of double helix length of about one glucose residue might be sufficient to account for the observed differences in gelatinisation properties. We speculate that the modification of gelatinisation properties at low SBE activities is due to a subtle alteration in amylopectin branch patterns resulting in small changes in double helix lengths within granules.  相似文献   

12.
The effects of starch granules on the rheological behaviour of gels of native potato and high amylopectin potato (HAPP) starches have been studied with small deformation oscillatory rheometry. The influence of granule remnants on the rheological properties of samples treated at 90 °C was evident when compared with samples treated at 140 °C, where no granule remnants were found. The presence of amylose in native potato starch gave to stronger network formation since potato starch gave higher moduli values than HAPP, after both 90 and 140 °C treatments. In addition, amylose may have strengthened the network of HAPP because higher moduli values were obtained when native potato starch was added to the system. The moduli values of the mixtures also increased with increasing polysaccharide concentration in the system, which is due to an increment in the polysaccharide chain contacts and entanglements. Finally, it was found that a mixture of commercial amylose from potato starch and HAPP resulted in lower values of G′ compared to native potato starch. This indicates that the source of amylose is important for the properties in a blend with native amylopectin.  相似文献   

13.
The amylose to amylopectin ratios in six maize starch samples of differing amylose contents were measured by enzymatic debranching, followed by high performance size exclusion chromatography (HPSEC). The molecular size of amyloses, estimated by -log Kwav, shows progressive decrease with the increase in amylose content in maize starches. The gel permeation chromatographs of the corresponding amylopectins, debranched with isoamylase, showed bimodal distributions containing long and short chains. The average chain length of amylopectin has a correlation with amylose content. The correlation coefficients between amylose content and average chain length, long chain length, weight ratio and the mole ratio of long and short chain length, were 0.97, 0.92, 0.96, 0.94 respectively. The maize starch with the highest amylose content has the lowest amylose molecular size and the longest chains, with a high ratio of long to short chains in its amylopectin fraction. Comparing the values of amylose content determined by HPSEC of starch or debranched starch with those of the iodinecomplex method, we conclude that long chains of amylopectin in high amylose starches contribute significantly to apparent amylose content.  相似文献   

14.
High-sensitivity differential scanning microcalorimetry (HSDSC), small-angle X-ray scattering (SAXS), light (LM) and scanning electronic (SEM) microscopy techniques were used to study the defectiveness of different supramolecular structures in starches extracted from 11 Thai cultivars of rice differing in level of amylose and amylopectin defects in starch crystalline lamellae. Despite differences in chain-length distribution of amylopectin macromolecules and amylose level in starches, the invariance in the sizes of crystalline lamellae, amylopectin clusters and granules was established. The combined analysis of DSC, SAXS, LM and SEM data for native starches, as well as the comparison of the thermodynamic data for native and annealed starches, allowed to determine the structure of defects and the localization of amylose chains in crystalline and amorphous lamellae, defectiveness of lamellae, clusters and granules. It was shown that amylose “tie chains”, amylose–lipid complexes located in crystalline lamellae, defective ends of double helical chains dangling from crystallites inside amorphous lamellae (“dangling” chains), as well as amylopectin chains with DP 6–12 and 25–36 could be considered as defects. Their accumulation can lead to a formation of remnant granules. The changes observed in the structure of amylopectin chains and amylose content in starches are reflected in the interconnected alterations of structural organization on the lamellar, cluster and granule levels.  相似文献   

15.
Molecular structures of starches isolated from Japanese-green, Thai-green and Thai-purple cultivars of edible canna (Canna edulis Ker) were investigated. The absolute amylose content ranged from 19 to 25%. Degrees of polymerization (DPn) values of amylose determined by fluorescence-labeling method were 1590 for Thai-purple, 1620 for Japanese-green and 1650 for Thai-green cultivars. Mole% of branched fraction of amyloses from edible canna starches examined by a HPLC system after β-amylolysis of labeled amyloses was 13–16%. Branch chain-length distributions of amylopectin analyzed by HPSEC after debranching with isoamylase, followed by fluorescence-labeling of unit chain, showed bimodal distribution with the DPn range of 25–28. The amylopectin of edible canna starches contained high amounts of organic phosphorus (391–420 ppm). The distribution profile of phosphorylated chains, separated from non-phosphorylated chains by DEAE-Sephadex A-50 chromatography, indicated that the phosphate groups were located mostly in long B-chains of amylopectin molecules.  相似文献   

16.
The general oxidation mechanism by hypochlorite on starch has been well studied, but the information on the distribution of the oxidation sites within starch granules is limited. This study investigated the locations where the oxidation occurred within corn starch granules varying in amylose content, including waxy corn starch (WC), common corn starch (CC), and 50% and 70% high-amylose corn starch (AMC). Oxidized corn starches were surface gelatinized by 13 M LiCl at room temperature to different extents (approximately 10%, 20%, 30%, and 40%). The surface-gelatinized remaining granules were separated and studied for structural characteristics including carboxyl content, amylose content, amylopectin chain-length distribution, thermal properties, and swelling properties. Oxidation occurred mostly at the amorphous lamellae. More carboxyl groups were found at the periphery than at the core of starch granules, which was more pronounced in oxidized 70% AMC. More amylose depolymerization from oxidation occurred at the periphery of CC. For WC and CC, amylopectin long chains (>DP 36) were more prone to depolymerization by oxidation. The gelatinization properties as measured by differential scanning calorimetry also supported the changes in amylopectin fine structure from oxidation. Oxidized starches swelled to a greater extent than their unmodified counterparts at all levels of surface removal. This study demonstrates that the locations of oxidation and physicochemical properties of oxidized starches are affected by the molecular arrangement within starch granules.  相似文献   

17.
Shogren R 《Biomacromolecules》2007,8(11):3641-3645
The effect of orientation on the properties of amylose and starch films was studied in order to determine if film strength, flexibility, and water resistance could be improved. Potato amylose and high (70%) amylose corn starch were peracetylated, cast into films, stretched in hot glycerol 1-6 times the original length, and deacetylated. Molecular orientation of potato amylose films was much higher than for high-amylose corn starch films as determined by optical birefringence. For potato amylose films, orientation resulted in large increases in tensile strength and elongation but little change in modulus. For high-amylose corn starch films, tensile strength and modulus did not change with draw ratio but elongation to break increased from about 8% to 27% as draw ratio increased from 1 to 5. Scanning electron micrographs revealed many small crazes in the drawn starch films, suggesting that the improved film toughness was due to energy dissipation during deformation of the crazes. Annealing of drawn films at 100% humidity resulted in partial crystallization and improved wet strength.  相似文献   

18.
Molecular fractionation of starch by density-gradient ultracentrifugation   总被引:2,自引:0,他引:2  
Amylose and amylopectin in corn and potato starches were fractionated by centrifugation at 124,000g for 3-72 h at 40 degrees C in a gradient media, Nycodenz, based on their sedimentation rate differences. The fractions were collected from a centrifuge tube, and then analyzed by the phenol-sulfuric acid method and iodine-binding test. Amylopectin, a large and highly branched starch molecule, migrated faster than amylose and quickly reached its isopycnic point with a buoyant density of about 1.25 g/mL, exhibiting a sharp and stable carbohydrate peak. Amylose, which is a relatively small and linear molecule, however, migrated slowly in a broad density range and continued moving to higher density regions, eventually overlapping with amylopectin peak as the centrifugation continued. This could indicate that the buoyant density of amylose is similar to that of amylopectin. Under centrifugal conditions of 3 h and 124,000g, amylose and amylopectin molecules were clearly separated, and the presence of intermediate starch molecules (11.5 and 7.7% for corn and potato starch, respectively) was also observed between amylose and amylopectin fractions. The amylose content of corn and potato starches was 22.6 and 21.1%, respectively, based on the total carbohydrate analysis after the ultracentrifugation for 3 h. In alkaline gradients (pH 11 or 12.5), the sedimentation rate of starch molecules and the buoyant density of amylopectin were reduced, possibly due to the structural changes induced by alkali.  相似文献   

19.
Light scattering techniques were used for structural characterization of starches with diverse amylose and amylopectin level, dissolved in water by microwave heating in a high pressure vessel and stored during different times. In general, apparent molar mass ( ), gyration radius ( ) and hydrodynamic radius ( ) values decreased when storage time increased. This could be due to depolymerization of the samples during the storage time. The fractal dimension obtained from the – relationship showed that the samples presented, in general, a globular structure, with a higher level of branching when amylopectin level in the sample increased. The particle scattering factors and Kratky plots, well suited for studying the internal structure of a macromolecule, showed a depolymerization when storage time increased. The νRH values for Eurylon 5 (0.56) and Eurylon 7 (0.58) starches were close to the values reported for linear chains. For amylopectin (0.09) and normal corn starch (0.10) the νRH values were lower; these values would define a highly branched structure. The relaxation rate distribution of the samples showed that there are changes in the internal structure when storage time increases, and that these changes depend on amylose and amylopectin level present in the sample. The ρ values for the samples analyzed were between 0.88 and 1.3; these values are characteristic of a sphere or globular structure.  相似文献   

20.
Starch re-structured directly in potato tubers by antisense suppression of starch branching enzyme (SBE), granule bound starch synthase (GBSS) or glucan water dikinase (GWD) genes was studied with the aim at disclosing the effects on resulting physico-chemical and enzyme degradative properties. The starches were selected to provide a combined system with specific and extensive alterations in amylose and covalently esterified glucose-6-phosphate (G6P) contents. As an effect of the altered chemical composition of the starches their hydrothermal characteristics varied significantly. Despite of the extreme alterations in phosphate content, the amylose content had a major affect on swelling power, enthalpy for starch gelatinization and pasting parameters as assessed by Rapid Visco Analysis (RVA). However, a combined influence of the starch phosphate and long glucan chains as represented by high amylose or long amylopectin chain length was indicated by their positive correlation to the final viscosity and set back (RVA) demonstrating the formation of a highly hydrated and gel-forming system during re-structuring of the starch pastes. Clear inverse correlations between glucoamylase-catalyzed digestibility and amylopectin chain length and starch phosphate and lack of such correlation with amylose content indicates a combined structuring role of the phosphate groups and amylopectin chains on the starch glucan matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号