首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Using gene targeting, we inserted a high-affinity variant of the reverse tetracycline controlled transactivator (rtTA) into the genomic Sox10 locus. This rtTA transgene faithfully recapitulated Sox10 expression in the emerging neural crest, several of its derivatives, and in oligodendrocytes. It was furthermore able to induce expression of a tetracycline inducible transgenic reporter gene in a doxycycline-dependent manner. Induction was fast, with substantial reporter gene expression visible 6 h after the onset of doxycycline treatment. Shut-off, in contrast, exhibited delayed kinetics, which probably correlated with doxycycline clearance rates. This mouse provides a useful tool for generating tetracycline-controlled gene expression in neural crest and oligodendrocytes.  相似文献   

10.
11.
12.
Conditional gene expression in the respiratory epithelium of the mouse   总被引:12,自引:0,他引:12  
Transgenic mouse models mediating conditional temporal and spatial regulation of gene expression to the respiratory epithelium were developed utilizing the reverse tetracycline transactivator (rtTA) expressed under the control of SP-C and CCSP promoters. Luciferase activity was detected in the lungs of fetal and adult double transgenic mice but was not detected in other tissues or in single transgenic mice. In adult mice, maximal luciferase activity was detected 16h after the administration of doxycycline in the drinking water, or 2h after the injection of doxycycline. Activation of the transgene was observed after the administration of doxycycline in food pellets. After prolonged exposure to doxycycline, luciferase activity decreased slowly following removal of doxycycline, suggesting the importance of tissue pools which maintained expression of the transgene. In SP-C-rtTA mice, exposure of the pregnant dam to doxycycline induced luciferase activity in fetal lung tissue as early as E10.5. Luciferase activity was maintained in the lung tissue of pups during the period of lactation when the mother received doxycycline in the drinking water. In the CCSP-rtTA mice, luciferase was not detected in the absence of doxycycline. In the SP-C-rtTA mice, luciferase activity was detected in the absence of doxycycline but was enhanced approximately 10-fold by administration of drugs. The SP-C-rtTA and CCSP-rtTA activator mice control the expression of transgenes in the developing and mature respiratory epithelium, and will be useful for the study of gene function in the lung.  相似文献   

13.
14.
To accurately analyze the function of transgene(s)of interest in transgenic mice,and togenerate credible transgenic animal models for multifarious human diseases to precisely mimic human dis-ease states,it is critical to tightly regulate gene expression in the animals in a conditional manner.The abilityto turn gene expression on or off in the restricted cells or tissues at specific time permits unprecedentedflexibility in dissecting gene functions in health and disease.Pioneering studies in conditional transgene ex-pression have brought about the development of a wide variety of controlled gene expression systems,whichmeet this criterion.Among them,the tetracycline-controlled expression systems(e.g.Tet-off system andTet-on system)have been used extensively in vitro and in vivo.In recent years,some strategies derived fromtetracycline-inducible system alone,as well as the combined use of Tet-based systems and Cre/lox P switch-ing gene expression system,have been newly developed to allow more flexibility for exploring gene functionsin health and disease,and produce credible transgenic animal models for various human diseases.In thisreview these newly developed strategies are discussed.  相似文献   

15.
There is much interest in using farm animals as ‘bioreactors’ to produce large quantities of biopharmaceuticals. However, uncontrolled constitutive expression of foreign genes have been known to cause serious physiological disturbances in transgenic animals. The objective of this study was to test the feasibility of the controllable expression of an exogenous gene in the chicken. A retrovirus vector was designed to express GFP (green fluorescent protein) and rtTA (reverse tetracycline-controlled transactivator) under the control of the tetracycline-inducible promoter and the PGK (phosphoglycerate kinase) promoter, respectively. G0 founder chickens were produced by infecting the blastoderm of freshly laid eggs with concentrated retrovirus vector. Feeding the chickens obtained with doxycycline, a tetracycline derivative, resulted in emission of green body color under fluorescent light, and no apparent significant physiological dysfunctions. Successful germline transmission of the exogenous gene was also confirmed. Expression of the GFP gene reverted to the pre-induction levels when doxycycline was removed from the diet. The results showed that a tetracycline-inducible expression system in transgenic animals might be a promising solution to minimize physiological disturbances caused by the transgene.  相似文献   

16.
17.
Metabolic syndrome is a combination of medical disorders that increases the risk of developing cardiovascular disease and diabetes. Constitutive overexpression of 11β-HSD1 in adipose tissue in mice leads to metabolic syndrome. In the process of generating transgenic mice overexpressing 11β-HSD1 in an inducible manner, we found a metabolic syndrome phenotype in control, transgenic mice, expressing the reverse tetracycline-transactivator (rtTA) in adipose tissue. The control mice exhibited all four sequelae of metabolic syndrome (visceral obesity, insulin resistance, dyslipidemia, and hypertension), a pro-inflammatory state and marked hepatic steatosis. Gene expression profiling of the adipose tissue, muscle and liver of these mice revealed changes in expression of genes involved in lipid metabolism, insulin resistance, and inflammation. Transient transfection of rtTA, but not tTS, into 3T3-L1 cells resulted in lipid accumulation. We conclude that expression of rtTA in adipose tissue causes metabolic syndrome in mice.  相似文献   

18.
BACKGROUND: The goal of this study was to design improved regulatable lentivirus vector systems. The aim was to design tetracycline (tet)-regulatable lentivirus vectors based on the Tet-on system displaying low background expression in the absence of the doxycycline (DOX) inducer and high transgene expression levels in the presence of DOX. METHODS: We constructed a binary lentivirus vector system that is composed of a self-inactivating (SIN) lentivirus vector bearing inducible first- or second-generation tet-responsive promoter elements (TREs) driving expression of a transgene and a second lentivirus vector encoding a reverse tetracycline-controlled transactivator (rtTA) that activates transgene expression from the TRE in the presence of DOX. RESULTS: We evaluated a number of different rtTAs and found rtTA2S-M2 to induce the highest levels of transgene expression. Regulated transgene expression was stable in human breast carcinoma cells implanted into nude mice for up to 11 weeks. In an attempt to minimize background expression levels, the chicken beta-globin cHS4 insulator element was cloned into the 3' long terminal repeat (LTR) of the transgene transfer vector. The cHS4 insulator element reduced background expression but expression levels following DOX addition were lower than those observed with vectors lacking an insulator sequence. In a second strategy, vectors bearing second-generation TREs harboring repositioned tetracycline operator elements were used. Such vectors displayed greatly reduced leakiness in the absence of DOX and induced transgene expression levels were up to 522-fold above those seen in the absence of DOX. CONCLUSIONS: Inducible lentivirus vectors bearing insulators or second-generation TREs will likely prove useful for applications demanding the lowest levels of background expression.  相似文献   

19.
To achieve inducible and reversible gene expression in the adult mouse brain, we exploited an improved version of the tetracycline-controlled transactivator-based system (rtTA2(S)-M2, rtTA2 hereafter) and combined it with the forebrain-specific CaMKIIalpha promoter. Several independent lines of transgenic mice carrying the CaMKIIalpha promoter-rtTA2 gene were generated and examined for anatomical profile, doxycycline (dox)-dependence, time course, and reversibility of gene expression using several lacZ reporter lines. In two independent rtTA2-expressing lines, dox-treatment in the diet induced lacZ reporter expression in neurons of several forebrain structures including cortex, striatum, hippocampus, amygdala, and olfactory bulb. Gene expression was dose-dependent and was fully reversible. Further, a similar pattern of expression was obtained in three independent reporter lines, indicating the consistency of gene expression. Transgene expression could also be activated in the developing brain (P0) by dox-treatment of gestating females. These new rtTA2-expressing mice allowing inducible and reversible gene expression in the adult or developing forebrain represent useful models for future genetic studies of brain functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号