首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CaBP1 (calcium-binding protein 1) is a 19.4-kDa protein of the EF-hand superfamily that modulates the activity of Ca(2+) channels in the brain and retina. Here we present data from NMR, microcalorimetry, and other biophysical studies that characterize Ca(2+) binding, Mg(2+) binding, and structural properties of recombinant CaBP1 purified from Escherichia coli. Mg(2+) binds constitutively to CaBP1 at EF-1 with an apparent dissociation constant (K(d)) of 300 microm. Mg(2+) binding to CaBP1 is enthalpic (DeltaH = -3.725 kcal/mol) and promotes NMR spectral changes, indicative of a concerted Mg(2+)-induced conformational change. Ca(2+) binding to CaBP1 induces NMR spectral changes assigned to residues in EF-3 and EF-4, indicating localized Ca(2+)-induced conformational changes at these sites. Ca(2+) binds cooperatively to CaBP1 at EF-3 and EF-4 with an apparent K(d) of 2.5 microM and a Hill coefficient of 1.3. Ca(2+) binds to EF-1 with low affinity (K(d) >100 microM), and no Ca(2+) binding was detected at EF-2. In the absence of Mg(2+) and Ca(2+), CaBP1 forms a flexible molten globule-like structure. Mg(2+) and Ca(2+) induce distinct conformational changes resulting in protein dimerization and markedly increased folding stability. The unfolding temperatures are 53, 74, and 76 degrees C for apo-, Mg(2+)-bound, and Ca(2+)-bound CaBP1, respectively. Together, our results suggest that CaBP1 switches between structurally distinct Mg(2+)-bound and Ca(2+)-bound states in response to Ca(2+) signaling. Both conformational states may serve to modulate the activity of Ca(2+) channel targets.  相似文献   

2.
Calmyrin is a myristoylated calcium binding protein that contains four putative EF-hands. Calmyrin interacts with a number of proteins, including presenilin-2 (PS2). However, the biophysical properties of calmyrin, and the molecular mechanisms that regulate its binding to different partners, are not well understood. By site-directed mutagenesis and Ca2+ binding studies, we found that calmyrin binds two Ca2+ ions with a dissociation constant of approximately 53 microM, and that the two C-terminal EF-hands 3 and 4 bind calcium. Using ultraviolet spectroscopy, circular dichroism (CD), and NMR, we found that Ca(2+)-free and -bound calmyrin have substantially different protein conformations. By yeast two-hybrid assays, we found that both EF-hands 3 and 4 of calmyrin must be intact for calmyrin to interact with PS2-loop sequences. Pulse-chase studies of HeLa cells transfected with calmyrin expression constructs indicated that wild-type (Wt) calmyrin has a half-life of approximately 75 min, whereas a mutant defective in myristoylation turns over more rapidly (half-life of 35 min). By contrast, the half-lives of calmyrin mutants with a disrupted EF-hand 3 or EF-hand 4 were 52 and 170 min, respectively. Using immunofluorescence staining of HeLa cells transfected with Wt and mutant calmyrin cDNAs, we found that both calcium binding and myristoylation are important for dynamic intracellular targeting of calmyrin. Double immunofluorescence microscopy indicated that Wt and myristoylation-defective calmyrin proteins colocalize efficiently and to the same extent with PS2, whereas calmyrin mutants defective in calcium binding display less colocalization with PS2. Our results suggest that calmyrin functions as a calcium sensor and that calcium binding sequences in calmyrin are important for interaction with the PS2 loop.  相似文献   

3.
4.
The interaction between the EF-hand Ca(2+)-binding protein calmyrin and presenilin 2 (PS2) has been suggested to play a role in Alzheimer's disease (AD). We now report that calmyrin binds specifically endogenous PS2 and not PS1. However, binding appears to be Ca(2+)-independent and calmyrin does not exhibit a Ca(2+)-dependent translocation to intracellular membranes as demonstrated in a Ca(2+)-myristoyl switch assay. Moreover, calmyrin is only present at very low levels in brain areas associated with the onset of AD. In rat, forebrain calmyrin is localized only in a subset of principal neurons, similarly as in human forebrain. Finally, subcellular fractionation demonstrates only a limited overlap of calmyrin and PS2 at neuronal membranes. We therefore conclude that calmyrin will not contribute significantly as a Ca(2+)-sensor that transduces Ca(2+)-signaling events to PS2 in forebrain.  相似文献   

5.
Roles of three domains of Tetrahymena eEF1A in bundling F-actin   总被引:1,自引:0,他引:1  
The conventional role of eukaryotic elongation factor 1A (eEF1A) is to transport aminoacyl tRNA to the A site of ribosomes during the peptide elongation phase of protein synthesis. eEF1A also is involved in regulating the dynamics of microtubules and actin filaments in cytoplasm. In Tetrahymena, eEF1A forms homodimers and bundles F-actin. Ca(2+)/calmodulin (CaM) causes reversion of the eEF1A dimer to the monomer, which loosens F-actin bundling, and then Ca(2+)/CaM/eEF1A monomer complexes dissociate from F-actin. eEF1A consists of three domains in all eukaryotic species, but the individual roles of the Tetrahymena eEF1A domains in bundling F-actin are unknown. In this study, we investigated the interaction of each domain with F-actin, recombinant Tetrahymena CaM, and eEF1A itself in vitro, using three glutathione-S-transferase-domain fusion proteins (GST-dm1, -2, and -3). We found that only GST-dm3 bound to F-actin and influences dimer formation, but that all three domains bound to Tetrahymena CaM in a Ca(2+)-dependent manner. The critical Ca(2+) concentration for binding among three domains of eEF1A and CaM were < or =100 nM for domain 1, 100 nM to 1 microM for domain 3, and >1 microM for domain 2, whereas stimulation of and subsequent Ca(2+) influx through Ca(2+) channels raise the cellular Ca(2+) concentration from the basal level of approximately 100 nM to approximately 10 microM, suggesting that domain 3 has a pivotal role in Ca(2+)/CaM regulation of eEF1A.  相似文献   

6.
OMPLA is a phospholipase found in the outer membranes of many Gram-negative bacteria. Enzyme activation requires calcium-induced dimerisation plus bilayer perturbation. As the conformation of OMPLA in the different crystal forms (monomer versus dimer; with/without bound Ca(2+)) is remarkably similar we have used multi-nanosecond molecular dynamics (MD) simulations to probe possible differences in conformational dynamics that may be related to enzyme activation. Simulations of calcium-free monomeric OMPLA, of the Ca(2+)-bound dimer, and of the Ca(2+)-bound dimer with a substrate analogue covalently linked to the active site serine have been performed, all with the protein embedded in a phospholipid (POPC) bilayer. All simulations were stable, but differences in the dynamic behaviour of the protein between the various states were observed. In particular, the stability of the active site and the hydrophobic substrate-binding cleft varied. Dimeric OMPLA is less flexible than monomeric OMPLA, especially around the active site. In the absence of bound substrate analogue, the hydrophobic substrate-binding cleft of dimeric OMPLA collapses. A model is proposed whereby the increased stability of the active site in dimeric OMPLA is a consequence of the local ordering of water around the nearby calcium ion. The observed collapse of the substrate-binding cleft may explain the experimentally observed occurrence of multiple dimer conformations of OMPLA, one of which is fully active while the other shows significantly reduced activity.  相似文献   

7.
There are four isoforms of centrin in mammals, with variable sequence, tissue expression, and functional properties. We have recently characterized a number of structural, ion, and target binding properties of human centrin isoform HsCen2. This paper reports a similar characterization of HsCen3, overexpressed in Escherichia coli and purified by phase-reversed chromatography. Equilibrium and dynamic binding studies revealed that HsCen3 has one mixed Ca(2+)/Mg(2+) binding site of high affinity (K(d) = 3 and 10 microM for Ca(2+) and Mg(2+), respectively) and two Ca(2+)-specific sites of low affinity (K(d) = 140 microM). The metal-free protein is fragmented by an unidentified protease into a polypeptide segment of 11 kDa, which was purified by HPLC, and identified by mass spectrometry as the segment of residues 21-112. Similarly, controlled trypsinolysis on Ca(2+)-bound HsCen3 yielded a mixture of segments of residues 1-124 and 1-125. The Ca(2+)/Mg(2+) site could be assigned to this segment and thus resides in the N-terminal half of HsCen3. Temperature denaturation experiments, circular dichroism, and utilization of fluorescence hydrophobic probes allowed us to propose that the metal-free protein has molten globule characteristics and that the dication-bound forms are compact with a polar surface for the Mg(2+) form and a hydrophobic exposed surface for the Ca(2+) form. Thus, HsCen3 could be classified as a Ca(2+) sensor protein. In addition, it is able to bind strongly to a model target peptide (melittin), as well as to peptides derived from the protein XPC and Kar1p, with a moderate Ca(2+) dependence.  相似文献   

8.
ALG-2 belongs to the penta-EF-hand (PEF) protein family and interacts with various intracellular proteins, such as Alix and TSG101, that are involved in endosomal sorting and HIV budding. Through X-ray crystallography, we solved the structures of Ca(2+)-free and -bound forms of N-terminally truncated human ALG-2 (des3-20ALG-2), Zn(2+)-bound form of full-length ALG-2, and the structure of the complex between des3-23ALG-2 and the peptide corresponding to Alix799-814 in Zn(2+)-bound form. Binding of Ca(2+) to EF3 enables the side chain of Arg125, present in the loop connecting EF3 and EF4, to move enough to make a primary hydrophobic pocket accessible to the critical PPYP motif, which partially overlaps with the GPP motif for the binding of Cep55 (centrosome protein 55 kDa). Based on these results, together with the results of in vitro binding assay with mutant ALG-2 and Alix proteins, we propose a Ca(2+)/EF3-driven arginine switch mechanism for ALG-2 binding to Alix.  相似文献   

9.
The yeast ilv2 gene, encoding acetolactate synthase, was subcloned in an Escherichia coli expression vector. Although a major part of the acetolactate synthase synthesized by E. coli cells harbouring this vector was packaged into protein inclusion bodies, we used these recombinant E. coli cells to produce large quantities of the yeast enzyme. The yeast acetolactate synthase was purified to homogeneity using first streptomycin and ammonium sulfate precipitations, followed by T-gel thiophilic interaction, Sephacryl S-300 gel filtration, Mono Q anion exchange, and Superose 12 gel filtration chromatography. SDS/PAGE and gel filtration of the purified enzyme showed that it is a dimer composed of two subunits, each with the molecular mass of 75 kDa. The purified yeast acetolactate synthase was further characterized with respect to pH optimum, dependence of the substrate, pyruvate, and requirements of the cofactors, thiamin diphosphate, Mg2+, and FAD.  相似文献   

10.
S100A4 takes part in control of tumour cell migration and contributes to metastatic spread in in vivo models. In the active dimeric Ca(2+)-bound state it interacts with multiple intracellular targets. Conversely, oligomeric forms of S100A4 are linked with the extracellular function of this protein. We report the 1.5A X-ray crystal structure of Ca(2+)-bound S100A4 and use it to identify the residues involved in target recognition and to derive a model of the oligomeric state. We applied stopped-flow analysis of tyrosine fluorescence to derive kinetics of S100A4 activation by Ca(2+) (k(on)=3.5 microM(-1)s(-1), k(off)=20s(-1)).  相似文献   

11.
The hemolysin-like protein (HLP) Sll1951, characterized by the GGXGXDXUX nonapeptide motif implicated in Ca(2+) binding, was purified from the glucose-tolerant strain (GT) of Synechocystis sp. strain PCC 6803. HLP was eluted at 560 kDa after gel filtration chromatography. Atomic absorption spectroscopy indicated that the protein bound calcium. The bound Ca(2+) was not chelated with EGTA; however, it was released after being heated at 100 degrees C for 1 min, and it rebound to the Ca(2+)-depleted protein at room temperature. The apparent HLP molecular mass increased to 1,000 kDa and reverted to 560 kDa during the release and rebinding of Ca(2+), respectively. The monomers of the respective forms appeared at 90 and 200 kDa after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. HLP showed no apparent hemolytic activity against sheep erythrocytes; however, a slight hemolytic activity was detected during the conformational change caused by the rebinding of Ca(2+). Immunoelectron microscopy using polyclonal antibodies against the 200-kDa monomer revealed that HLP is located in the cell surface layer. The localization and Ca(2+)-induced reversible conformational change suggest that HLP is a member of the repeat in toxin (RTX) protein family despite its latent and low toxicity. In some other cyanobacteria, RTX proteins are reported to be necessary for cell motility. However, the GT was immotile. Moreover, the motile wild-type strain did not express any HLP, suggesting that HLP is one of the factors involved in the elimination of motility in the GT. We concluded that the involvement of RTX protein in cyanobacterial cell motility is not a general feature.  相似文献   

12.
Henzl MT  Tanner JJ  Tan A 《Proteins》2011,79(3):752-764
Birds express two β-parvalbumin isoforms, parvalbumin 3 and avian thymic hormone (ATH). Parvalbumin 3 from chicken (CPV3) is identical to rat β-parvalbumin (β-PV) at 75 of 108 residues. CPV3 displays intermediate Ca(2+) affinity--higher than that of rat β-parvalbumin, but lower than that of ATH. As in rat β-PV, the attenuation of affinity is associated primarily with the CD site (residues 41-70), rather than the EF site (residues 80-108). Structural data for rat α- and β-parvalbumins suggest that divalent ion affinity is correlated with the similarity of the unliganded and Ca(2+)-bound conformations. We herein present a comparison of the solution structures of Ca(2+)-free and Ca(2+)-bound CPV3. Although the structures are generally similar, the conformations of residues 47 to 50 differ markedly in the two protein forms. These residues are located in the C helix, proximal to the CD binding loop. In response to Ca(2+) removal, F47 experiences much greater solvent accessibility. The side-chain of R48 assumes a position between the C and D helices, adjacent to R69. Significantly, I49 adopts an interior position in the unliganded protein that allows association with the side-chain of L50. Concomitantly, the realignment of F66 and F70 facilitates their interaction with I49 and reduces their contact with residues in the N-terminal AB domain. This reorganization of the hydrophobic core, although less profound, is nevertheless reminiscent of that observed in rat β-PV. The results lend further support to the idea that Ca(2+) affinity correlates with the structural similarity of the apo- and bound parvalbumin conformations.  相似文献   

13.
Association of class-II phospholipase A(2) (PLA(2)) with aggregated phospholipid substrate results in elevated levels of the Ca(2+)-dependent hydrolytic activity. The Asp49 residue participates in coordination of the Ca(2+) ion cofactor, however, in Lys49-PLA(2) homologues (Lys49-PLA(2)s), substitution of the Asp49 by Lys results in loss of Ca(2+) binding and lack of detectable phospholipid hydrolysis. Nevertheless, Lys49-PLA(2)s cause Ca(2+)-independent damage of liposome membranes. Bothropstoxin-I is a homodimeric Lys49-PLA(2) from the venom of Bothrops jararacussu, and in fluorescent marker release and dynamic light scattering experiments with DPPC liposomes we demonstrate activation of the Ca(2+)-independent membrane damaging activity by approximately 4 molecules of sodium dodecyl sulphate (SDS) per protein monomer. Activation is accompanied by significant changes in the intrinsic tryptophan fluorescence emission (ITFE) and near UV circular dichroism (UVCD) spectra of the protein. Subsequent binding of 7-10 SDS molecules results in further alterations in the ITFE and far UVCD spectra. Reduction in the rate of N-bromosuccinimide modification of Trp77 at the dimer interface suggests that initial binding of SDS to this region accompanies the activation of the membrane damaging activity. 1-anilinonaphthalene-8-sulphonic acid binding studies indicate that subsequent SDS binding to the active site is concomitant with the second structural transition. These results provide insights in the structural basis of amphiphile/protein coupling in class-II PLA(2)s.  相似文献   

14.
Cyclophilin A (CyPA) is a cytosolic receptor of immunosuppressive drug cyclosporin A (CsA) which possesses peptidyl-prodyl cis/trans isomerase (PPIase) activity. The recombinant human CyPA (rhCyPA) gene has been expressed in E. coli M15. Purification was performed using salting-out, as well as Sephacryl S-100 and DEAE-Sepharose CL-6B column chromatography. The molecular weight is about 18 kDa, confirmed by SDS-PAGE and mass spectrum. The results of Native-PAGE and immunoblotting showed the existence of three bands, which agreed well with the gel filtration results. The molecular mass of the three bands determined via CTAB gel electrophoresis and SDS-PAGE (rhCyPA cross-linked with glutaraldehyde) was 18 kDa, 36 kDa and 54 kDa respectively. Further more, the native rhCyPA and the cross-linked rhCyPA had the similar chromatographic behavior in gel filtration. All of the evidences above suggest that rhCyPA exists in forms of monomer, dimer and trimer. Moreover, we observed that even at low protein concentrations CyPA largely occurs as a dimer in solution, and enzyme kinetic parameters showed that activity of dimer was much higher than monomer or trimer, which probably have some biological significances.  相似文献   

15.
The FRQ1 gene is essential for growth of budding yeast and encodes a 190-residue, N-myristoylated (myr) calcium-binding protein. Frq1 belongs to the recoverin/frequenin branch of the EF-hand superfamily and regulates a yeast phosphatidylinositol 4-kinase isoform. Conformational changes in Frq1 due to N-myristoylation and Ca(2+) binding were assessed by nuclear magnetic resonance (NMR), fluorescence, and equilibrium Ca(2+)-binding measurements. For this purpose, Frq1 and myr-Frq1 were expressed in and purified from Escherichia coli. At saturation, Frq1 bound three Ca(2+) ions at independent sites, which correspond to the second, third, and fourth EF-hand motifs in the protein. Affinity of the second site (K(d) = 10 microM) was much weaker than that of the third and fourth sites (K(d) = 0.4 microM). Myr-Frq1 bound Ca(2+) with a K(d)app of 3 microM and a positive Hill coefficient (n = 1.25), suggesting that the N-myristoyl group confers some degree of cooperativity in Ca(2+) binding, as seen previously in recoverin. Both the NMR and fluorescence spectra of Frq1 exhibited very large Ca(2+)-dependent differences, indicating major conformational changes induced upon Ca(2+) binding. Nearly complete sequence-specific NMR assignments were obtained for the entire carboxy-terminal domain (residues K100-I190). Assignments were made for 20% of the residues in the amino-terminal domain; unassigned residues exhibited very broad NMR signals, most likely due to Frq1 dimerization. NMR chemical shifts and nuclear Overhauser effect (NOE) patterns of Ca(2+)-bound Frq1 were very similar to those of Ca(2+)-bound recoverin, suggesting that the overall structure of Frq1 resembles that of recoverin. A model of the three-dimensional structure of Ca(2+)-bound Frq1 is presented based on the NMR data and homology to recoverin. N-myristoylation of Frq1 had little or no effect on its NMR and fluorescence spectra, suggesting that the myristoyl moiety does not significantly alter Frq1 structure. Correspondingly, the NMR chemical shifts for the myristoyl group in both Ca(2+)-free and Ca(2+)-bound myr-Frq1 were nearly identical to those of free myristate in solution, indicating that the fatty acyl chain is solvent-exposed and not sequestered within the hydrophobic core of the protein, unlike the myristoyl group in Ca(2+)-free recoverin. Subcellular fractionation experiments showed that both the N-myristoyl group and Ca(2+)-binding contribute to the ability of Frq1 to associate with membranes.  相似文献   

16.
LipL32 is the most abundant outer membrane protein from pathogenic Leptospira and has been shown to bind extracellular matrix (ECM) proteins as well as Ca(2+). Recent crystal structures have been obtained for the protein in the apo- and Ca(2+)-bound forms. In this work, we produced three LipL32 mutants (D163-168A, Q67A, and S247A) and evaluated their ability to interact with Ca(2+) and with ECM glycoproteins and human plasminogen. The D163-168A mutant modifies aspartate residues involved in Ca(2+) binding, whereas the other two modify residues in a cavity on the other side of the protein structure. Loss of calcium binding in the D163-D168A mutant was confirmed using intrinsic tryptophan fluorescence, circular dichroism, and thermal denaturation whereas the Q67A and S247A mutants presented the same Ca(2+) affinity as the wild-type protein. We then evaluated if Ca(2+) binding to LipL32 would be crucial for its interaction with collagen type IV and plasma proteins fibronectin and plasminogen. Surprisingly, the wild-type protein and all three mutants, including the D163-168A variant, bound to these ECM proteins with very similar affinities, both in the presence and absence of Ca(2+) ions. In conclusion, calcium binding to LipL32 may be important to stabilize the protein, but is not necessary to mediate interaction with host extracellular matrix proteins.  相似文献   

17.
Phospholipid methyltransferase, the enzyme that converts phosphatidylethanolamine into phosphatidylcholine with S-adenosyl-L-methionine as the methyl donor, was purified to apparent homogeneity from rat liver microsomal fraction. When analysed by SDS/polyacrylamide-gel electrophoresis only one protein, with molecular mass about 50 kDa, is detected. This protein could be phosphorylated at a single site by incubation with [alpha-32P]ATP and the catalytic subunit of cyclic AMP-dependent protein kinase. A less-purified preparation of the enzyme is mainly composed of two proteins, with molecular masses about 50 kDa and 25 kDa, the 50 kDa form being phosphorylated at the same site as the homogeneous enzyme. After purification of both proteins by electro-elution, the 25 kDa protein forms a dimer and migrates on SDS/polyacrylamide-gel electrophoresis with molecular mass about 50 kDa. Peptide maps of purified 25 kDa and 50 kDa proteins are identical, indicating that both proteins are formed by the same polypeptide chain(s). It is concluded that rat liver phospholipid methyltransferase can exist in two forms, as a monomer of 25 kDa and as a dimer of 50 kDa. The dimer can be phosphorylated by cyclic AMP-dependent protein kinase.  相似文献   

18.
We explored the possibility that, in the regulation of an effector enzyme by a Ca(2+)-sensor protein, the actual Ca(2+) sensitivity of the effector enzyme can be determined not only by the affinity of the Ca(2+)-sensor protein for Ca(2+) but also by the relative affinities of its Ca(2+)-bound versus Ca(2+)-free form for the effector enzyme. As a model, we used Ca(2+)-sensitive activation of photoreceptor guanylyl cyclase (RetGC-1) by guanylyl cyclase activating proteins (GCAPs). A substitution Arg(838)Ser in RetGC-1 found in human patients with cone-rod dystrophy is known to shift the Ca(2+) sensitivity of RetGC-1 regulation by GCAP-1 to a higher Ca(2+) range. We find that at physiological concentrations of Mg(2+) this mutation increases the free Ca(2+) concentration required for half-maximal inhibition of the cyclase from 0.27 to 0.61 microM. Similar to rod outer segment cyclase, Ca(2+) sensitivity of recombinant RetGC-1 is strongly affected by Mg(2+), but the shift in Ca(2+) sensitivity for the R838S mutant relative to the wild type is Mg(2+)-independent. We determined the apparent affinity of the wild-type and the mutant RetGC-1 for both Ca(2+)-bound and Ca(2+)-free GCAP-1 and found that the net shift in Ca(2+) sensitivity of the R838S RetGC-1 observed in vitro can arise predominantly from the change in the affinity of the mutant cyclase for the Ca(2+)-free versus Ca(2+)-loaded GCAP-1. Our findings confirm that the dynamic range for RetGC regulation by Ca(2+)/GCAP is determined by both the affinity of GCAP for Ca(2+) and relative affinities of the effector enzyme for the Ca(2+)-free versus Ca(2+)-loaded GCAP.  相似文献   

19.
A Ca(2+)-binding protein was identified in Bacillus subtilis in the log phase of growth. The molecular mass of this protein is about 38 kDa as estimated by polyacrylamide gel electrophoresis in the presence of SDS and by gel filtration. The protein was found to be resistant 10 min at 65 degrees C and was purified about 400 times, starting from heated crude extract, by conventional procedures. This novel protein is able to bind Ca2+ in the presence of an excess of MgCl2 and KCl both in solution and after SDS gel electrophoresis and electrotransfer. Since an impairment of the Ca2+ intake, in Bacillus subtilis, results in an impairment of chemotactic behavior (Matsushita, T. et al (1988) FEBS lett. 236, 437-440), 38 kDa protein may be involved in the regulation of chemotaxis.  相似文献   

20.
The production of cytochrome c peroxidase (CCP) from Pseudomonas ( Ps.) stutzeri (ATCC 11607) was optimized by adjusting the composition of the growth medium and aeration of the culture. The protein was isolated and characterized biochemically and spectroscopically in the oxidized and mixed valence forms. The activity of Ps. stutzeri CCP was studied using two different ferrocytochromes as electron donors: Ps. stutzeri cytochrome c(551) (the physiological electron donor) and horse heart cytochrome c. These electron donors interact differently with Ps. stutzeri CCP, exhibiting different ionic strength dependence. The CCP from Paracoccus ( Pa.) denitrificans was proposed to have two different Ca(2+) binding sites: one usually occupied (site I) and the other either empty or partially occupied in the oxidized enzyme (site II). The Ps. stutzeri enzyme was purified in a form with tightly bound Ca(2+). The affinity for Ca(2+) in the mixed valence enzyme is so high that Ca(2+) returns to it from the EGTA which was added to empty the site in the oxidized enzyme. Molecular mass determination by ultracentrifugation and behavior on gel filtration chromatography have revealed that this CCP is isolated as an active dimer, in contrast to the Pa. denitrificans CCP which requires added Ca(2+) for formation of the dimer and also for activation of the enzyme. This is consistent with the proposal that Ca(2+) in the bacterial peroxidases influences the monomer/dimer equilibrium and the transition to the active form of the enzyme. Additional Ca(2+)does affect both the kinetics of oxidation of horse heart cytochrome c (but not cytochrome c(551)) and higher aggregation states of the enzyme. This suggests the presence of a superficial Ca(2+)binding site of low affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号