首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Translational control of growth factor and proto-oncogene expression   总被引:10,自引:0,他引:10  
Control of translation is now understood to be one of the major regulatory events in eukaryotic gene expression. Moreover there is evidence which suggests that aberrant expression of growth-related genes by translational mechanisms makes a significant contribution to cell transformation. However, the mechanisms which regulate translation of specific growth-related mRNAs have yet to be fully elucidated. The majority of these mRNAs have long 5' untranslated regions (UTRs) and three features which are important in translational control have been identified, namely (i) structured regions which inhibit the scanning mechanisms of translation, (ii) regulatory upstream open reading frames and (iii) internal ribosome entry segments which are capable of initiating cap-independent translation. In this review the translational regulation of specific mRNAs encoding growth factors and proto-oncogenes by these three mechanisms will be discussed, together with examples of altered translational regulation in neoplasia.  相似文献   

2.
Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus.The dependence of viruses on the host translation system imposes constraints that are central to virus biology and have led to specialized mechanisms and intricate regulatory interactions. Failure to translate viral mRNAs and to modulate host mRNA translation would have catastrophic effects on virus replication, spread, and evolution. Accordingly, a wide assortment of virus-encoded functions is dedicated to commandeering and controlling the cellular translation apparatus. Viral strategies to dominate the host translation machinery target the initiation, elongation, and termination steps and include mechanisms ranging from the manipulation of key eukaryotic translation factors to the evolution of specialized cis-acting elements that recruit ribosomes or modify genome-coding capacity. Because many of these strategies have likely been pirated from their hosts and because virus genetic systems can be manipulated with relative ease, the study of viruses has been a preeminent source of information on the mechanism and regulation of the protein synthesis machinery. In this article, we focus on select viruses that infect mammalian or plant cells and review the mechanisms they use to exploit and control the cellular protein synthesis machinery.  相似文献   

3.
4.
Translational control is a key genetic regulatory mechanism implicated in regulation of cell and organismal growth and early embryonic development. Initiation at the mRNA 5' cap structure recognition step is frequently targeted by translational control mechanisms. In the Drosophila embryo, cap-dependent translation of the uniformly distributed caudal (cad) mRNA is inhibited in the anterior by Bicoid (Bcd) to create an asymmetric distribution of Cad protein. Here, we show that d4EHP, an eIF4E-related cap binding protein, specifically interacts with Bcd to suppress cad translation. Translational inhibition depends on the Bcd binding region (BBR) present in the cad 3' untranslated region. Thus, simultaneous interactions of d4EHP with the cap structure and of Bcd with BBR renders cad mRNA translationally inactive. This example of cap-dependent translational control that is not mediated by canonical eIF4E defines a new paradigm for translational inhibition involving tethering of the mRNA 5' and 3' ends.  相似文献   

5.
6.
7.
The expression of certain eukaryotic genes is – at least in part – controlled at the level of mRNA translation. The step of translational initiation represents the primary target for regulation. The regulation of the intracellular iron storage protein ferritin in response to iron levels provides a good example of translational control by a reversible RNA/protein interaction in the 5' untranslated region of an mRNA. We consider mechanisms by which mRNA/protein interactions may impede translation initiation and discuss recent data suggesting that the ferritin example may represent the ‘tip of the iceberg’ of a more general theme for translational control.  相似文献   

8.
In the past decade, translational control has been shown to be crucial in the regulation of gene expression. Research in this field has progressed rapidly, revealing new control mechanisms and adding constantly to the list of translationally regulated genes. There is accumulating evidence that translational control plays a primary role in cell-cycle progression and cell differentiation, as well as in the induction of specific cellular functions. Recently, the aetiologies of several human diseases have been linked with mutations in genes of the translational control machinery, highlighting the significance of this regulatory mechanism. In addition, deregulation of translation is associated with a wide range of cancers. Current research focuses on novel therapeutic strategies that target translational control, a promising concept in the treatment of human diseases.  相似文献   

9.
10.
Chloroplast gene expression is primarily controlled during the translation of plastid mRNAs. Translation is regulated in response to a variety of biotic and abiotic factors, and requires a coordinate expression with the nuclear genome. The translational apparatus of chloroplasts is related to that of bacteria, but has adopted novel mechanisms in order to execute the specific roles that this organelle performs within a eukaryotic cell. Accordingly, plastid ribosomes contain a number of chloroplast-unique proteins and domains that may function in translational regulation. Chloroplast translation regulation involves cis-acting RNA elements (located in the mRNA 5′ UTR) as well as a set of corresponding trans-acting protein factors. While regulation of chloroplast translation is primarily controlled at the initiation steps through these RNA-protein interactions, elongation steps are also targets for modulating chloroplast gene expression. Translation of chloroplast mRNAs is regulated in response to light, and the molecular mechanisms underlying this response involve changes in the redox state of key elements related to the photosynthetic electron chain, fluctuations of the ADP/ATP ratio and the generation of a proton gradient. Photosynthetic complexes also experience assembly-related autoinhibition of translation to coordinate the expression of different subunits of the same complex. Finally, the localization of all these molecular events among the different chloroplast subcompartments appear to be a crucial component of the regulatory mechanisms of chloroplast gene expression.  相似文献   

11.
12.
13.
14.
15.
16.
Riboswitches are RNA sensors that have been shown to modulate the expression of downstream genes by altering their structure upon metabolite binding. Riboswitches are unique among cellular regulators in that metabolite detection is strictly performed using RNA interactions with the sensed metabolite and in which no regulatory protein is needed to mediate the interaction. However, recent studies have shed light on riboswitch control mechanisms relying on protein regulators to harness metabolite binding for the mediation of gene expression, thereby increasing the range of cellular factors involved in riboswitch regulation. The interaction between riboswitches and proteins adds another level of evolutionary pressure as riboswitches must maintain key residues for metabolite detection, structural switching and protein binding sites. Here, we review regulatory mechanisms involving Escherichia coli riboswitches that have recently been shown to rely on regulatory proteins. We also discuss the implication of such protein-based riboswitch regulatory mechanisms for genetic regulation.  相似文献   

17.
Translational control by cytoplasmic polyadenylation in Xenopus oocytes   总被引:2,自引:0,他引:2  
Elongation of the poly(A) tails of specific mRNAs in the cytoplasm is a crucial regulatory step in oogenesis and early development of many animal species. The best studied example is the regulation of translation by cytoplasmic polyadenylation elements (CPEs) in the 3' untranslated region of mRNAs involved in Xenopus oocyte maturation. In this review we discuss the mechanism of translational control by the CPE binding protein (CPEB) in Xenopus oocytes as follows: Finally we discuss some of the remaining questions regarding the mechanisms of translational regulation by cytoplasmic polyadenylation and give our view on where our knowledge is likely to be expanded in the near future.  相似文献   

18.
Recent advances in our understanding of both the regulation of components of the translational machinery and the upstream signalling pathways that modulate them have provided important new insights into the mechanisms by which hormones, growth factors, nutrients and cellular energy status control protein synthesis in mammalian cells. The importance of proper control of mRNA translation is strikingly illustrated by the fact that defects in this process or its control are implicated in a number of disease states, such as cancer, tissue hypertrophy and neurodegeneration. Signalling pathways such as those involving mTOR (mammalian target of rapamycin) and mitogen-activated protein kinases modulate the phosphorylation of translation factors, the activities of the protein kinases that act upon them and the association of RNA-binding proteins with specific mRNAs. These effects contribute both to the overall control of protein synthesis (which is linked to cell growth) and to the modulation of the translation or stability of specific mRNAs. However, important questions remain about both the contributions of individual regulatory events to the control of general protein synthesis and the mechanisms by which the translation of specific mRNAs is controlled.  相似文献   

19.
MicroReview Control of translation initiation in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
The first observations regarding the control of translation initiation in the yeast Saccharomyces cerevisiae were made by Fred Sherman and his colleagues in 1971. Elegant genetic studies of the CYC1 gene resulted in the formulation of 'Sherman's Rules' for translation initiation as follows: (i) AUG is the only initiator codon. (ii) the most proximal AUG from the 5' end of a message will serve as the start site of translation; and (iii) if the upstream AUG codon is mutated then initiation begins at the next available AUG in the message. Hidden within these rules is the mechanism of eukaryotic translation initiation, as these very same rules were later shown to apply to higher eukaryotic organisms and were formulated into the scanning model. However, only in the past five years has yeast been taken seriously as an organism for studying the mechanism of eukaryotic translation initiation. The basis for this is that the yeast genes for at least four mammalian translation initiation factor homologues have been identified and the number is growing. Similar factors suggest similar mechanisms for translation initiation between yeast and mammals. For some translation initiation factors, the genetics of yeast has provided new insights into their function. A mechanism for regulating translation initiation in mammalian cells is now evident in yeast. It seems clear that the molecular genetics of yeast coupled with the available in vitro translation system will provide a wealth of information in the future regarding translational control and regulatory mechanisms. The purpose of this review is to summarize what is known about translational control in S. cerevisiae.  相似文献   

20.
RNA plant viruses use various translational regulatory mechanisms to control their gene expression. Translational enhancement of viral mRNAs that leads to higher levels of protein synthesis from specific genes may be essential for the virus to successfully compete for cellular translational machinery. The control elements have yet to be analyzed for members of the genus Carmovirus, a small group of plant viruses with positive-sense RNA genomes. In this study, we examined the 3' untranslated region (UTR) of hibiscus chlorotic ringspot virus (HCRSV) genomic RNA (gRNA) and subgenomic RNA (sgRNA) for its role in the translational regulation of viral gene expression. The results showed that the 3' UTR of HCRSV significantly enhanced the translation of several open reading frames on gRNA and sgRNA and a viral gene in a bicistronic construct with an inserted internal ribosome entry site. Through deletion and mutagenesis studies of both the bicistronic construct and full-length gRNA, we demonstrated that a six-nucleotide sequence, GGGCAG, that is complementary to the 3' region of the 18S rRNA and a minimal length of 180 nucleotides are required for the enhancement of translation induced by the 3' UTR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号