首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Opposite differential staining between sister chromatids was obtained by two silver-staining techniques on chromosomes replicated twice in medium containing 5-bromodeoxyuridine (BrdU) and pretreated with Hoechst plus black light. Both silver-nitrate and silver-carbonate staining were affected by chemical extraction and enzyme digestion of chromosomal proteins. Prestaining of silver nitrate or silver carbonate also blocked the fluorescences of protein dyes. However, removal of chromosomal DNA affected the silver-carbonate but not the silver-nitrate staining; the fluorescences of DNA dyes were blocked by the prestaining of silver carbonate but not silver nitrate. Chromosomal protein labelling was released only slightly and its relative amount between BrdU bifilarly substituted and unifilarly substituted chromatids was unchanged during pretreatment of Hoechst plus black light. We speculate that chromosomal non-histones are the targets for silver-nitrate stain, and DNA-non-histone complexes for silver-carbonate stain.  相似文献   

2.
Chinese hamster ovary cells (CHO) grown for one cycle in bromodeoxyuridine (BrdU) contain a small amount (0.5%) of unusually dense double stranded DNA. This dense DNA has been previously interpreted as being bifilarly substituted with BrdU and hence evidence that sister chromatid exchange (SCE) formation proceeds via the Holliday model of recombination. However, the amount of this dense DNA is 100 times greater than that expected based on the SCE frequency in similarly cultured CHO cells, and it is not increased by treating the cells with mitomycin C. Moreover, contrary to expectations for bifilary substituted DNA, the amount of this dense DNA is not reduced by growing BrdU-labeled cells for a second cycle in TdR. Finally, DNA isolated from CHO cells contains a minor band (0.5%) with a density 0.025 gm/cc greater than that of the main band, whether or not BrdU has been incorporated. These results call into question the identification of this unusually dense DNA as bifilarly substituted and hence its previously postulated relationship to SCE formation.  相似文献   

3.
4.
An Escherichia coli protein that preferentially binds to sharply curved DNA   总被引:22,自引:0,他引:22  
We attempted to find Escherichia coli proteins which preferentially bind to a curved DNA sequence even in the presence of an excess amount of a non-curved DNA sequence as a competitor, mainly by means of a DNA-binding gel retardation assay. Since the two sequences used had nearly the same nucleotide compositions, including consecutive dA5 stretches, we reasoned that this strategy would allow us to identify proteins which preferentially recognize an overall DNA curvature. We purified such a protein from E. coli. Its preferential binding to the curved DNA was found to be inhibited by distamycin, which removes the curvature from appropriate DNA sequences. The purified protein was identified as the E. coli nucleoid protein, H-NS.  相似文献   

5.
The geminivirus Tomato golden mosaic virus (TGMV) replicates in differentiated plant cells using host DNA synthesis machinery. We used 5-bromo-2-deoxyuridine (BrdU) incorporation to examine DNA synthesis directly in infected Nicotiana benthamiana plants to determine if viral reprogramming of host replication controls had an impact on host DNA replication. Immunoblot analysis revealed that up to 17-fold more BrdU was incorporated into chromosomal DNA of TGMV-infected versus mock-infected, similarly treated healthy leaves. Colocalization studies of viral DNA and BrdU demonstrated that BrdU incorporation was specific to infected cells and was associated with both host and viral DNA. TGMV and host DNA synthesis were inhibited differentially by aphidicolin but were equally sensitive to hydroxyurea. Short BrdU labeling times resulted in some infected cells showing punctate foci associated with host DNA. Longer periods showed BrdU label uniformly throughout host DNA, some of which showed condensed chromatin, only in infected nuclei. By contrast, BrdU associated with viral DNA was centralized and showed uniform, compartmentalized labeling. Our results demonstrate that chromosomal DNA is replicated in TGMV-infected cells.  相似文献   

6.
A differential Giemsa staining between sister chromatids was obtained by treating chromosomes replicated twice in medium containing 5-bromodeoxyuridine (BrdU) with Hoechst 33258 plus black light at 55 degrees C (HB pretreatment) and deoxyribonuclease (DNase) I, II, or micrococcal nuclease. In this staining pattern the BrdU bifilarly substituted chromatids were darkly and the unifilarly substituted chromatids lightly stained. This staining pattern was obtained only by staining the HB-DNase I-treated chromosomes with Giemsa and methylene blue, not by several other dyes tested. Relatively more DNA labelling was removed from the non-BrdU-substituted than the BrdU-substituted chromosomes, when the HB-pretreated chromosomes were digested with DNase I. But the protein labelling was not removed appreciably in the same treatment. The differential DNase I sensitivity between the non-BrdU-substituted and BrdU-substituted chromosomes disappeared when the HB-pretreated chromosomes were incubated with proteinase K before The DNase I digestion. Moreover, no differential DNase I sensitivity was found between the HB-pretreated isolated DNA containing and not containing BrdU. We propose that during the HB pretreatment, more DNA-protein cross-linkings are induced in BrdU bifilarly substituted than the unifilarly substituted chromatids. This structure protects the chromosomal DNA against the DNase I digestion. Thus, a reverse differential Giemsa staining between sister chromatids is obtained by the HB-DNase I treatment.  相似文献   

7.
Summary After incorporation of BrdU for one or more replication cycles, the fragile site at Xq27 [fra(X)] was induced by a late pulse with excess thymidine (dT), resulting in the simultaneous visualization of G bands and differentially stained sister chromatids. The degree of BrdU substitution (uni- vs bifilarly substituted DNA) did not affect the expression of the fra(X). Without addition of dT, expression was the same in M1, M2, and M3 cells. With the addition of dT, expression was reduced in M1 cells and increased in M2 and M3 cells. One way to explain this fact would be an increased repair of the fragile site in M1 cells by illegitimate G:BrdU pairing under dCTP-deficient conditions. A preferential depletion of M3 cells, and to a lesser extent also M2 cells, could suggest a synergistic toxic effect of BrdU substitution and dCTP depletion. With this technique, sister chromatid exchanges (SCEs) could be directly localized at band level, facilitating a more detailed study of SCEs at the Xq27 fragile site.  相似文献   

8.
To investigate the critical target, dose response and dose-rate response for the induction of chromosomal instability by ionizing radiation, bromodeoxyuridine (BrdU)-substituted and unsubstituted GM10115 cells were exposed to a range of doses (0.1-10 Gy) and different dose rates (0.092-17.45 Gy min(-1)). The status of chromosomal stability was determined by fluorescence in situ hybridization approximately 20 generations after irradiation in clonal populations derived from single progenitor cells surviving acute exposure. Overall, nearly 700 individual clones representing over 140,000 metaphases were analyzed. In cells unsubstituted with BrdU, a dose response was found, where the probability of observing delayed chromosomal instability in any given clone was 3% per gray of X rays. For cells substituted with 25-66% BrdU, however, a dose response was observed only at low doses (<1.0 Gy); at higher doses (>1.0 Gy), the incidence of chromosomal instability leveled off. There was an increase in the frequency and complexity of chromosomal instability per unit dose compared to cells unsubstituted with BrdU. The frequency of chromosomal instability appeared to saturate around approximately 30%, an effect which occurred at much lower doses in the presence of BrdU. Changing the gamma-ray dose rate by a factor of 190 (0.092 to 17.45 Gy min(-1)) produced no significant differences in the frequency of chromosomal instability. The enhancement of chromosomal instability promoted by the presence of the BrdU argues that DNA comprises at least one of the critical targets important for the induction of this end point of genomic instability.  相似文献   

9.
The origin recognition complex (ORC) plays a central role in the initiation of DNA replication in eukaryotic cells. It interacts with origins of DNA replication in chromosomal DNA and recruits additional replication proteins to form functional initiation complexes. These processes have not been well characterized at the biochemical level except in the case of Saccharomyces cerevisiae ORC. We report here the expression, purification, and initial characterization of Schizosaccharomyces pombe ORC (SpORC) containing six recombinant subunits. Purified SpORC binds efficiently to the ars1 origin of DNA replication via the essential Nterminal domain of the SpOrc4 subunit which contains nine AT-hook motifs. Competition binding experiments demonstrated that SpORC binds preferentially to DNA molecules rich in AT-tracts, but does not otherwise exhibit a high degree of sequence specificity. The complex is capable of binding to multiple sites within the ars1 origin of DNA replication with similar affinities, indicating that the sequence requirements for origin recognition in S. pombe are significantly less stringent than in S. cerevisiae. We have also demonstrated that SpORC interacts directly with Cdc18p, an essential fission yeast initiation protein, and recruits it to the ars1 origin in vitro. Recruitment of Cdc18p to chromosomal origins is a likely early step in the initiation of DNA replication in vivo. These data indicate that the purified recombinant SpORC retains at least two of its primary biological functions and that it will be useful for the eventual reconstitution of the initiation reaction with purified proteins.  相似文献   

10.
A procedure for rapid, preparative purification of plasmid DNA is described and compared with a conventional equilibrium centrifugation method. A discontinuous, two-step CsCl-ethidium bromide gradient is used, with the starting position of the plasmid-containing extract being at the bottom of the tube. During centrifugation in a fixed angle rotor, covalently closed circular plasmid DNA is separated from contaminating protein, RNA, and chromosomal DNA in 5 hr. Plasmids purified by this method are considerably less contaminated with RNA than when purified by a 48-hr equilibrium run in a homogeneous gradient, as determined by agarose gel electrophoresis and 5'-end-labeling studies. Plasmid DNA purified in two-step gradients can be used directly for restriction endonuclease analysis and DNA sequencing.  相似文献   

11.
Cell lines which exhibit the BrdU-dependent phenotype (B4 and HAB) were studied with respect to BrdU-induced alterations in genetic expression by two-dimensional gel electrophoresis. A comparison of the proteins from the HAB cells, in which the DNA is 100% substituted by BrdU, to those of the unsubstituted parent line (3460) showed 55 protein alterations; the synthesis of 15 increased while that of the other 40 decreased. When 3460 cells were grown in BrdU such that their DNA was greater than 50% substituted, 27 protein changes could be detected; of these, the synthesis of 10 increased while that of 17 decreased. A comparison of all these changes in the various cell lines showed six which were common to the BrdU-substituted cell lines. The proteins from another Syrian hamster cell line, BHK-21 (C-13) and those of HAB cells grown in thymidine or BrdC were also examined on two-dimensional gels. Although BrdU has a dramatic effect on many cellular functions, relatively few changes in the pattern of protein synthesis could be detected in these cell lines, perhaps reflecting the specialized action of this analogue on particular cellular functions.  相似文献   

12.
Cell lines which exhibit the BrdU-dependent phenotype (B4 and HAB) were studied with respect to BrdU-induced alterations in genetic expression by two-dimensional gel electrophoresis. A comparison of the proteins from the HAB cells, in which the DNA is 100% substituted by BrdU, to those of the unsubstituted parent line (3460) showed 55 protein alterations; the synthesis of 15 increased while that of the other 40 decreased. When 3460 cells were grown in BrdU such that their DNA was > 50% substituted, 27 protein changes could be detected; of these, the synthesis of 10 increased while that of 17 decreased. A comparison of all these changes in the various cell lines showed six which were common to the BrdU-substituted cell lines. The proteins from another Syrian hamster cell line, BHK.-21 (C-13) and those of HAB cells grown in thymidine or BrdC were also examined on two-dimensional gels.
Although BrdU has a dramatic effect on many cellular functions, relatively few changes in the pattern of protein synthesis could be detected in these cell lines, perhaps reflecting the specialized action of this analogue on particular cellular functions.  相似文献   

13.
14.
The interaction of the bisbenzimidazole dye 33258 Hoechst with DNA and chromatin is characterized by changes in absorption, fluorescence, and circular dichroism measurements. At low dye/phosphate ratios, dye binding is accompanied by intense fluorescence and circular dichroism and exhibits little sensitivity to ionic strength. At higher dye/phosphate ratios, additional dye binding can be detected by further changes in absorptivity. This secondary binding is suppressed by increasing the ionic strength. A-T rich DNA sequences enhance both dye binding and fluorescence quantum yield, while chromosomal proteins apparently exclude the dye from approximately half of the sites available with DNA. Fluorescence of the free dye is sensitive to pH and, below pH 8, to quenching by iodide ion. Substitution of 5-bromodeoxyuridine (BrdU) for thymidine in synthetic polynucleotides, DNA, or unfixed chromatin quenches the fluorescence of bound dye. This suppression of dye fluorescence permits optical detection of BrdU incorporation associated with DNA synthesis in cytological chromosome preparations. Quenching of 33258 Hoechst fluorescence by BrdU can be abolished by appropriate alterations in solvent conditions, thereby revealing changes in dye fluorescence of microscopic specimens specifically due to BrdU incorporation.  相似文献   

15.
E E Henderson  B Strauss 《Cell》1975,5(4):381-387
Long term human lymphoblastoid lines differ in their ability to grow in medium containing bromodeoxyuridine (BrdU) and to incorporate analog into their DNA. Eight Burkitt's lymphoma cell lines divided at least twice in BrdU-containing medium and made DNA in which over 90% of the thymidine residues were substituted with analog in both strands. Three infectious mononucleosis-derived lines and 24 lines transformed in vitro were inhibited by BrdU after one cell division and made only hybrid DNA in which one strand was substituted with analog. One out of eight normal individuals from whom long term lines were prepared gave cell lines which divided at least twice in BrdU and gave DNA in which both strands were substituted with analog. It would appear that intrinsic cellular factors regulate the response to BrdU and that Burkitt's tumor lines are characterized by their ability to make stable doubly substituted DNA containing a high proportion of halogenated analog.  相似文献   

16.
Although antibodies directed against bromodeoxyuridine (BrdU) are being used in both clinical and basic research laboratories as tools to study and monitor DNA synthesis, little is known about the epitopes with which they react. Four monoclonal antibodies directed against BrdU were produced and were characterized to learn more about the epitopes on BrdU which are important for antibody recognition, to identify compounds other than BrdU which react with the antibodies and which might interfere with immunologic assays for BrdU, and to characterize the reaction of these antibodies with BrdU-containing DNA. By radioimmunoassays, the antibodies generally reacted well with 5-iododeoxyuridine, 5-fluorodeoxyuridine, and 5-nitrouracil. However, none of the antibodies reacted well with uridine--indicating that a substituent on uridine C5 was essential for antibody reactivity--or with 5-bromo- or iodo-cytosine, indicating that the region around pyrimidine C4 is important for antibody recognition. Although the antibodies reacted with 5-halogen-substituted uracil bases, the antibodies reacted much better with the corresponding halogenated nucleosides, indicating that the sugar moiety was important for recognition. The presence of a triphosphate group on C'5 of BrdU (i.e., BrdUTP) did not detectably alter antibody recognition. Three of the antibodies reacted only with purified DNA containing BrdU, whereas one antibody, which exhibited a weak interaction with thymidine, also reacted with BrdU-free DNA. S1 nuclease treatment of purified DNA suggested that all four monoclonal antibodies reacted exclusively with single-stranded regions of BrdU-containing DNA. Comparison of detecting DNA synthesis by [3H]TdR incorporation followed by autoradiography with that by BrdU incorporation followed by indirect immunofluorescence indicated that the latter technique was both an accurate and a sensitive measure of DNA synthesis.  相似文献   

17.
18.
1) A method is described for the separation and fractionation of nonhistone chromosomal proteins from salt-urea dissociated calf thymus chromatin. After precipitating DNA in the dissociated chromatin solution with LaCl3, the chromosomal proteins in the supernatant were fractionated by SP-Sephadex C-25 column chromatography using a combination of NaCl stepwise and linear gradient elutions. Much care was taken to prevent proteolytic degradation of the chromosomal proteins during the preparation. 2) Among the protein fractions separated by this chromatography, twenty subfractions were found to be homogeneous on SDS-polyacrylamide gel electrophoresis. These purified proteins account for about 18% of the whole chromosomal protein. Eleven subfractions of these purified nonhistone proteins had ratios of acidic to basic amino acids above 1.0 and the nine remaining subfractions had ratios below 1.0, corresponding to nonhistone proteins of basic character. 3) The molecular weights of the purified nonhistone proteins ranged from 7,400 to 19,000.  相似文献   

19.
The specificity of the binding of purified non-histone proteins to DNA has been investigated through two types of experiments. Using a nitrocellulose filter assay at a low protein/DNA ratio, the binding of mouse non-histone proteins to mouse DNA was twice as great as the binding of mouse non histone protein to Drosophila DNA. The reverse experiment using Drosophila non-histone protein confirmed the interpretation that some protein . DNA complexes were specific. Protein . DNA complexes isolated by gel filtration chromatography indicated that 20% or 10% of the non-histone protein was bound to homologous or heterologous DNA respectively. Purified non-histone proteins bound with lower efficiency (15%) than unpurified but with higher specificity to soluble chromatin than to naked DNA. This binding did not result from an exchange between chromatin non-histone proteins and purified non-histone proteins added in excess. DNA-bound and chromatin-bound proteins were analysed on polyacrylamide gels. Whereas no major qualitative differences were observed with DNA-bound proteins, some proteins bound to homologous mouse chromatin were different from those bound to heterologous Drosophila chromatin. These results suggest a possible role of DNA-bound non-histone proteins in the regulation of gene expression.  相似文献   

20.
Centromere function on minichromosomes isolated from budding yeast.   总被引:7,自引:1,他引:6       下载免费PDF全文
Centromeres are a complex of centromere DNA (CEN DNA) and specific factors that help mediate microtubule-dependent movement of chromosomes during mitosis. Minichromosomes can be isolated from budding yeast in a way that their centromeres retain the ability to bind microtubules in vitro. Here, we use the binding of these minichromosomes to microtubules to gain insight into the properties of centromeres assembled in vivo. Our results suggest that neither chromosomal DNA topology nor proximity of telomeres influence the cell's ability to assemble centromeres with microtubule-binding activity. The microtubule-binding activity of the minichromosome's centromere is stable in the presence of competitor CEN DNA, suggesting that the complex between the minichromosome CEN DNA and proteins directly bound to it is very stable. The efficiency of centromere binding to microtubules is dependent upon the concentration of microtubule polymer and is inhibited by ATP. These properties are similar to those exhibited by mechanochemical motors. The binding of minichromosomes to microtubules can be inactivated by the presence of 0.2 M NaCl and then reactivated by restoring NaCl to 0.1 M. In 0.2 M NaCl, some centromere factor(s) bind to microtubules, whereas other(s) apparently remain bound to the minichromosome's CEN DNA. Therefore, the yeast centromere appears to consist of two domains: the first consists of a stable core containing CEN DNA and CEN DNA-binding proteins; the second contains a microtubule-binding component(s). The molecular functions of this second domain are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号